CLE peptide-mediated signaling in shoot and vascular meristem development
Thai Q. Dao, Jennifer C. Fletcher
CLE peptide-mediated signaling in shoot and vascular meristem development
BACKGROUND: Multicellular organismsrely on the transmission of information between cells to coordinatevarious biological processes during growth and development. Plants,like animals, utilize small peptide ligands as signaling moleculesto transmit information between cells. These polypeptides typicallyact as extracellular messengers that are perceived by membrane-boundreceptors, which then transduce the signal into the recipient cellto modify downstream gene transcription. The CLAVATA3/EMBRYO SURROUNDINGREGION-RELATED (CLE) proteins represent one of the largest and bestunderstood families of small polypeptides in plants. Members of theCLE family play critical roles in mediating cell fate decisions duringplant development, particularly within the unique meristem structuresthat contain stem cell reservoirs acting as sources of cells for continuousorgan formation.
OBJECTIVE: Here we review theroles of CLE family members in regulating the activity of the shootapical meristems that generate the aerial parts of the plants, andof the vascular meristems that produce the sugar- and water-conductingtissues.
METHODS: A systematic literaturesearch was performed using the Google Scholar and PubMed search engines.The keywords “CLE”, “CLV3”, “TDIF”,“meristem”, and “plant stem cells” were usedas search terms. The 95 retrieved articles, dating from 1992, wereorganized by topic and their key findings incorporated into the text.
RESULTS: We summarize our currentunderstanding of how the CLE peptide CLV3 orchestrates the activityof shoot apical meristems, describing its expression, processing andmovement, as well as its intracellular signal transduction pathways,key target genes and downstream gene regulatory networks. We alsodiscuss the roles of CLE peptide signaling in the vascular meristemsto promote procambial cell proliferation and suppress xylem differentiation.
CONCLUSIONS: Signaling pathwaysmediated by CLE peptides are critical for stem cell maintenance anddifferentiation in shoot apical and vascular meristems in plants,exposing CLE genes as potentialtargets for increasing yield and biomass production. While large numbersof CLE genes are being discoveredin plants, only a few have been functionally characterized. We anticipatethat future research will continue to elucidate the roles of the CLEfamily in plant development, and their potential impacts on agricultureand commerce.
CLE / CLV3 / TDIF / WUS / stem cells / procambium
[1] |
Bedford M T, Clarke S G (2009). Protein arginine methylation in mammals: who, what, and why. Mol Cell, 33(1): 1–13
CrossRef
Pubmed
Google scholar
|
[2] |
Bergeron J J M, Di Guglielmo G M, Dahan S, Dominguez M, Posner B I (2016). Spatial and temporal regulation of receptor tyrosine kinase activationand intracellular signal transduction. Annu Rev Biochem, 85(1): 573–597
CrossRef
Pubmed
Google scholar
|
[3] |
Betsuyaku S, Takahashi F, Kinoshita A, Miwa H, Shinozaki K, Fukuda H, Sawa S (2011). Mitogen-activated protein kinaseregulated by the CLAVATA receptors contributes to shoot apical meristemhomeostasis. Plant Cell Physiol, 52(1): 14–29
CrossRef
Pubmed
Google scholar
|
[4] |
Blackwell T K, Kretzner L, Blackwood E M, Eisenman R N, Weintraub H (1990). Sequence-specific DNA binding by the c-Myc protein. Science, 250(4984): 1149–1151
CrossRef
Pubmed
Google scholar
|
[5] |
Bleckmann A, Weidtkamp-Peters S, Seidel C A M, Simon R (2010). Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol, 152(1): 166–176
CrossRef
Pubmed
Google scholar
|
[6] |
Bommert P, Nagasawa N S, Jackson D (2013). Quantitative variation in maize kernel row number is controlled by the FASCIATEDEAR2 locus. Nat Genet, 45(3): 334–337
CrossRef
Pubmed
Google scholar
|
[7] |
Bowe L M, Coat G, dePamphilis C W (2000). Phylogeny of seed plants based on all three genomic compartments: extant gymnospermsare monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA, 97(8): 4092–4097
CrossRef
Pubmed
Google scholar
|
[8] |
Brand U, Fletcher J C, Hobe M, Meyerowitz E M, Simon R (2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulatedby CLV3 activity. Science, 289(5479): 617–619
CrossRef
Pubmed
Google scholar
|
[9] |
Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T (2008). Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Dev Cell, 14(6): 867–876
CrossRef
Pubmed
Google scholar
|
[10] |
Busch W, Miotk A, Ariel F D, Zhao Z, Forner J, Daum G, Suzaki T, Schuster C, Schultheiss S J, Leibfried A, Haubeiss S, Ha N, Chan R L, Lohmann J U (2010). Transcriptional control of a plant stem cell niche. Dev Cell, 18(5): 849–861
CrossRef
Pubmed
Google scholar
|
[11] |
Cadigan K M, Fish M P, Rulifson E J, Nusse R (1998). Wingless repression of Drosophila frizzled 2 expression shapes theWingless morphogen gradient in the wing. Cell, 93(5): 767–777
CrossRef
Pubmed
Google scholar
|
[12] |
Caño-Delgado A, Yin Y, Yu C, Vafeados D, Mora-García S, Cheng J C, Nam K H, Li J, Chory J (2004). BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiationin Arabidopsis. Development, 131(21): 5341–5351
CrossRef
Pubmed
Google scholar
|
[13] |
Casamitjana-Martínez E, Hofhuis H F, Xu J, Liu C M, Heidstra R, Scheres B (2003). Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathwayin the control of Arabidopsis root meristem maintenance. Curr Biol, 13(16): 1435–1441
CrossRef
Pubmed
Google scholar
|
[14] |
Chen M K, Wilson R L, Palme K, Ditengou F A, Shpak E D (2013). ERECTA family genes regulate auxin transport in the shoot apical meristemand forming leaf primordia. Plant Physiol, 162(4): 1978–1991
CrossRef
Pubmed
Google scholar
|
[15] |
Clark S E, Running M P, Meyerowitz E M (1993). CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development, 119(2): 397–418
Pubmed
|
[16] |
Clark S E, Running M P, Meyerowitz E M (1995). CLAVATA3 is a specific regulator of shoot and floral meristem development affectingthe same processes as CLAVATA1. Development, 121: 2057–2067
|
[17] |
Clark S E, Williams R W, Meyerowitz E M (1997). The CLAVATA1 gene encodes a putative receptorkinase that controls shoot and floral meristem size in Arabidopsis. Cell, 89(4): 575–585
CrossRef
Pubmed
Google scholar
|
[18] |
Cock J M, McCormick S (2001). A large family of genes that share homology with CLAVATA3. PlantPhysiol, 126(3): 939–942
CrossRef
Pubmed
Google scholar
|
[19] |
Daum G, Medzihradszky A, Suzaki T, Lohmann J U (2014). A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci USA, 111(40): 14619–14624
CrossRef
Pubmed
Google scholar
|
[20] |
DeYoung B J, Bickle K L, Schrage K J, Muskett P, Patel K, Clark S E (2006). The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem functionin Arabidopsis. Plant J, 45(1): 1–16
CrossRef
Pubmed
Google scholar
|
[21] |
DeYoung B J, Clark S E (2008). BAM receptors regulate stem cell specification and organ developmentthrough complex interactions with CLAVATA signaling. Genetics, 180(2): 895–904
CrossRef
Pubmed
Google scholar
|
[22] |
Diévart A, Dalal M, Tax F E, Lacey A D, Huttly A, Li J, Clark S E (2003). CLAVATA1 dominant-negative alleles reveal functional overlap betweenmultiple receptor kinases that regulate meristem and organ development. Plant Cell, 15(5): 1198–1211
CrossRef
Pubmed
Google scholar
|
[23] |
Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C (2016). Tor signaling and nutrient sensing. Ann Rev Plant Biol, 67 (1): 261
|
[24] |
Doebley J F, Gaut B S, Smith B D (2006). The molecular geneticsof crop domestication. Cell, 127(7): 1309–1321
CrossRef
Pubmed
Google scholar
|
[25] |
Dolzblasz A, Nardmann J, Clerici E, Causier B, van der Graaff E, Chen J, Davies B, Werr W, Laux T (2016). Stem cell regulationby Arabidopsis WOX genes. Mol Plant, 9(7): 1028–1039
CrossRef
Pubmed
Google scholar
|
[26] |
Durbak A R, Tax F E (2011). CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well asin meristems. Genetics, 189(1): 177–194
CrossRef
Pubmed
Google scholar
|
[27] |
Engstrom E M, Andersen C M, Gumulak-Smith J, Hu J, Orlova E, Sozzani R, Bowman J L (2011). Arabidopsis homologs of the petunia HAIRY MERISTEM gene are required for maintenanceof shoot and root indeterminacy. Plant Physiol, 155(2): 735–750
CrossRef
Pubmed
Google scholar
|
[28] |
Etchells J P, Mishra L S, Kumar M, Campbell L, Turner S R (2015). Wood formation in trees is increased by manipulating PXY-regulated celldivision. Curr Biol, 25(8): 1050–1055
CrossRef
Pubmed
Google scholar
|
[29] |
Etchells J P, Provost C M, Mishra L, Turner S R (2013). WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independentlyof any role in vascular organisation. Development, 140(10): 2224–2234
CrossRef
Pubmed
Google scholar
|
[30] |
Etchells J P, Turner S R (2010). The PXY-CLE41 receptor ligand pair defines a multifunctional pathwaythat controls the rate and orientation of vascular cell division. Development, 137(5): 767–774
CrossRef
Pubmed
Google scholar
|
[31] |
Fan C, Wu Y, Yang Q, Yang Y, Meng Q, Zhang K, Li J, Wang J, Zhou Y (2014). A novel single-nucleotide mutation in a CLAVATA3 gene homolog controls a multilocularsilique trait in Brassica rapa L. MolPlant, 7(12): 1788–1792
CrossRef
Pubmed
Google scholar
|
[32] |
Feng Z, Zhang B, Ding W, Liu X, Yang D L, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu J K (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 23(10): 1229–1232
CrossRef
Pubmed
Google scholar
|
[33] |
Fisher K, Turner S (2007). PXY, a receptor-like kinase essential for maintaining polarity duringplant vascular-tissue development. Curr Biol, 17(12): 1061–1066
CrossRef
Pubmed
Google scholar
|
[34] |
Fletcher J C, Brand U, Running M P, Simon R, Meyerowitz E M (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 283(5409): 1911–1914
CrossRef
Pubmed
Google scholar
|
[35] |
Furner I J, Pumfrey J E (1992). Cell fate in the shoot apical meristem of Arabidopsis thaliana. Development, 115: 755–764
|
[36] |
Gifford E M (1954). The shoot apex in angiosperms. Bot Rev, 20(8): 429–447
CrossRef
Google scholar
|
[37] |
Goad D M, Zhu C, Kellogg E A (2017). Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groupswith potentially shared function. New Phytol, 216(2):605–616
|
[38] |
Gordon S P, Chickarmane V S, Ohno C, Meyerowitz E M (2009). Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA, 106(38): 16529–16534
CrossRef
Pubmed
Google scholar
|
[39] |
Grooteclaes M L, Frisch S M (2000). Evidence for a function of CtBP in epithelial gene regulation andanoikis. Oncogene, 19(33): 3823–3828
CrossRef
Pubmed
Google scholar
|
[40] |
Guo Y, Han L, Hymes M, Denver R, Clark S E (2010). CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. Plant J, 63(6): 889–900
CrossRef
Pubmed
Google scholar
|
[41] |
Han H, Zhang G, Wu M, Wang G (2016). Identification and characterization of the Populus trichocarpa CLE family. BMC Genomics, 17(1): 174
CrossRef
Pubmed
Google scholar
|
[42] |
Hastwell A H, Gresshoff P M, Ferguson B J (2015). Genome-wide annotation and characterization of CLAVATA/ESR (CLE) peptide hormonesof soybean (Glycine max) and common bean (Phaseolus vulgaris), and their orthologues of Arabidopsis thaliana. J Exp Bot, 66(17): 5271–5287
CrossRef
Pubmed
Google scholar
|
[43] |
Hirakawa Y, Kondo Y, Fukuda H (2010). TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell, 22(8): 2618–2629
CrossRef
Pubmed
Google scholar
|
[44] |
Hirakawa Y, Shinohara H, Kondo Y, Inoue A, Nakanomyo I, Ogawa M, Sawa S, Ohashi-Ito K, Matsubayashi Y, Fukuda H (2008). Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA, 105(39): 15208–15213
CrossRef
Pubmed
Google scholar
|
[45] |
Ikeda M, Mitsuda N, Ohme-Takagi M (2009). Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressorin stem cell regulation and as an activator in floral patterning. Plant Cell, 21(11): 3493–3505
CrossRef
Pubmed
Google scholar
|
[46] |
Irish V F, Sussex I M (1992). A fate map of the Arabidopsis embryonic shoot apical meristem. Development, 115: 745–753
|
[47] |
Ishida T, Tabata R, Yamada M, Aida M, Mitsumasu K, Fujiwara M, Yamaguchi K, Shigenobu S, Higuchi M, Tsuji H, Shimamoto K, Hasebe M, Fukuda H, Sawa S (2014). Heterotrimeric G proteins controlstem cell proliferation through CLAVATA signaling in Arabidopsis. EMBORep, 15(11): 1202–1209
CrossRef
Pubmed
Google scholar
|
[48] |
Ito Y, Nakanomyo I, Motose H, Iwamoto K, Sawa S, Dohmae N, Fukuda H (2006). Dodeca-CLE peptides as suppressors of plant stem celldifferentiation. Science, 313(5788): 842–845
CrossRef
Pubmed
Google scholar
|
[49] |
Je B I, Gruel J, Lee Y K, Bommert P, Arevalo E D, Eveland A L, Wu Q, Goldshmidt A, Meeley R, Bartlett M, Komatsu M, Sakai H, Jönsson H, Jackson D (2016). Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cellproliferation and yield traits. Nat Genet, 48(7): 785–791
CrossRef
Pubmed
Google scholar
|
[50] |
Jeong S, Trotochaud A E, Clark S E (1999). The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stabilityof the CLAVATA1 receptor-like kinase. Plant Cell, 11(10): 1925–1934
CrossRef
Pubmed
Google scholar
|
[52] |
Ji J, Strable J, Shimizu R, Koenig D, Sinha N, Scanlon M J (2010). WOX4 promotes procambial development. Plant Physiol, 152(3): 1346–1356
CrossRef
Pubmed
Google scholar
|
[53] |
Jun J, Fiume E, Roeder A H K, Meng L, Sharma V K, Osmont K S, Baker C, Ha C M, Meyerowitz E M, Feldman L J, Fletcher J C (2010). Comprehensive analysis of CLE polypeptide signaling gene expression and overexpressionactivity in Arabidopsis. Plant Physiol, 154(4): 1721–1736
CrossRef
Pubmed
Google scholar
|
[54] |
Kayes J M, Clark S E (1998). CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development, 125(19): 3843–3851
Pubmed
|
[55] |
Kieffer M, Stern Y, Cook H, Clerici E, Maulbetsch C, Laux T, Davies B (2006). Analysis of the transcription factor WUSCHEL and its functional homologuein Antirrhinum reveals a potentialmechanism for their roles in meristem maintenance. Plant Cell, 18(3): 560–573
CrossRef
Pubmed
Google scholar
|
[56] |
Kinoshita A, Betsuyaku S, Osakabe Y, Mizuno S, Nagawa S, Stahl Y, Simon R, Yamaguchi-Shinozaki K, Fukuda H, Sawa S (2010). RPK2 is an essential receptor-like kinase that transmitsthe CLV3 signal in Arabidopsis. Development, 137(22): 3911–3920
CrossRef
Pubmed
Google scholar
|
[57] |
Kinoshita A, Seo M, Kamiya Y, Sawa S (2015). Mystery in genetics: PUB4 gives a clue to the complexmechanism of CLV signaling pathway in the shoot apical meristem. Plant Signal Behav, 10(6): e1028707
CrossRef
Pubmed
Google scholar
|
[58] |
Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, Sakagami Y (2006). A plant peptide encoded by CLV3 identified by in situMALDI-TOF MS analysis. Science, 313(5788): 845–848
CrossRef
Pubmed
Google scholar
|
[59] |
Kondo Y, Ito T, Nakagami H, Hirakawa Y, Saito M, Tamaki T, Shirasu K, Fukuda H (2014). Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDRsignalling. Nat Commun, 5: 3504
CrossRef
Pubmed
Google scholar
|
[60] |
Kuittinen H, Aguadé M (2000). Nucleotide variation at the CHALCONE ISOMERASE locusin Arabidopsis thaliana. Genetics, 155(2): 863–872
Pubmed
|
[61] |
Laux T, Mayer K F X, Berger J, Jürgens G (1996). The WUSCHEL gene is required for shoot and floral meristemintegrity in Arabidopsis. Development, 122(1): 87–96
Pubmed
|
[62] |
Lease K A, Walker J C (2006). The Arabidopsis unannotated secretedpeptide database, a resource for plant peptidomics. Plant Physiol, 142(3): 831–838
CrossRef
Pubmed
Google scholar
|
[63] |
Leibfried A, To J P C, Busch W, Stehling S, Kehle A, Demar M, Kieber J J, Lohmann J U (2005). WUSCHEL controls meristem function by direct regulation of cytokinin-inducible responseregulators. Nature, 438(7071): 1172–1175
CrossRef
Pubmed
Google scholar
|
[64] |
Li Z, Chakraborty S, Xu G (2017). Differential CLE peptide perception by plant receptors implicated from structuraland functional analyses of TDIF-TDR interactions. PLoS One, 12(4): e0175317
CrossRef
Pubmed
Google scholar
|
[65] |
Long J A, Ohno C, Smith Z R, Meyerowitz E M (2006). TOPLESS regulates apical embryonic fate in Arabidopsis. Science, 312(5779): 1520–1523
CrossRef
Pubmed
Google scholar
|
[66] |
Mandel T, Candela H, Landau U, Asis L, Zelinger E, Carles C C, Williams L E (2016). Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and classIII HD-ZIP pathways. Development, 143(9): 1612–1622
CrossRef
Pubmed
Google scholar
|
[67] |
Mandel T, Moreau F, Kutsher Y, Fletcher J C, Carles C C, Eshed Williams L (2014). The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity. Development, 141(4): 830–841
CrossRef
Pubmed
Google scholar
|
[68] |
Matsubayashi Y (2014). Posttranslationally modified small-peptidesignals in plants. Annu Rev Plant Biol, 65(1): 385–413
CrossRef
Pubmed
Google scholar
|
[69] |
Mayer K F X, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T (1998). Role of WUSCHEL in regulating stemcell fate in the Arabidopsis shoot meristem. Cell, 95(6): 805–815
CrossRef
Pubmed
Google scholar
|
[70] |
McCallum C M, Comai L, Greene E A, Henikoff S (2000). Targeting Induced Local Lesions IN Genomes (TILLING)for plant functional genomics. Plant Physiol, 123(2): 439–442
CrossRef
Pubmed
Google scholar
|
[71] |
Meng L, Ruth K C, Fletcher J C, Feldman L (2010). The roles of different CLE domainsin Arabidopsis CLE polypeptideactivity and functional specificity. Mol Plant, 3(4): 760–772
CrossRef
Pubmed
Google scholar
|
[72] |
Morita J, Kato K, Nakane T, Kondo Y, Fukuda H, Nishimasu H, Ishitani R, Nureki O (2016). Crystal structure of the plant receptor-like kinase TDR in complex with theTDIF peptide. Nat Comm, 7:12383
|
[73] |
Müller R, Bleckmann A, Simon R (2008). The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell, 20(4): 934–946
CrossRef
Pubmed
Google scholar
|
[74] |
Nekrasov V, Staskawicz B, Weigel D, Jones J D G, Kamoun S (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol, 31(8): 691–693
CrossRef
Pubmed
Google scholar
|
[75] |
Ni J, Clark S E (2006). Evidence for functional conservation, sufficiency, and proteolyticprocessing of the CLAVATA3 CLE domain. Plant Physiol, 140(2): 726–733
CrossRef
Pubmed
Google scholar
|
[76] |
Ni J, Guo Y, Jin H, Hartsell J, Clark S E (2011). Characterization of a CLE processing activity. Plant Mol Biol, 75(1-2): 67–75
CrossRef
Pubmed
Google scholar
|
[77] |
Nimchuk Z L (2017). CLAVATA1 controls distinct signalingoutputs that buffer shoot stem cell proliferation through a two-steptranscriptional compensation loop. PLoS Genet, 13(3): e1006681
CrossRef
Pubmed
Google scholar
|
[78] |
Nimchuk Z L, Tarr P T, Meyerowitz E M (2011a). An evolutionarilyconserved pseudokinase mediates stem cell production in plants. Plant Cell, 23(3): 851–854
CrossRef
Pubmed
Google scholar
|
[79] |
Nimchuk Z L, Tarr P T, Ohno C, Qu X, Meyerowitz E M (2011b). Plant stem cell signaling involves ligand-dependent trafficking of the CLAVATA1receptor kinase. Curr Biol, 21(5): 345–352
CrossRef
Pubmed
Google scholar
|
[80] |
Nimchuk Z L, Zhou Y, Tarr P T, Peterson B A, Meyerowitz E M (2015). Plant stem cell maintenance by transcriptional cross-regulation of relatedreceptor kinases. Development, 142(6): 1043–1049
CrossRef
Pubmed
Google scholar
|
[81] |
Oelkers K, Goffard N, Weiller G F, Gresshoff P M, Mathesius U, Frickey T (2008). Bioinformatic analysis of the CLE signaling peptide family. BMC Plant Biol, 8(1): 1
CrossRef
Pubmed
Google scholar
|
[82] |
Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y (2008). Arabidopsis CLV3 peptide directlybinds CLV1 ectodomain. Science, 319(5861): 294
CrossRef
Pubmed
Google scholar
|
[83] |
Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001). Repression domains of class II ERF transcriptional repressors share an essentialmotif for active repression. Plant Cell, 13(8): 1959–1968
CrossRef
Pubmed
Google scholar
|
[84] |
Ohyama K, Shinohara H, Ogawa-Ohnishi M, Matsubayashi Y (2009). A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol, 5(8): 578–580
CrossRef
Pubmed
Google scholar
|
[85] |
Perales M, Rodriguez K, Snipes S, Yadav R K, Diaz-Mendoza M, Reddy G V (2016). Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. Proc Natl Acad Sci USA, 113(41): E6298–E6306
CrossRef
Pubmed
Google scholar
|
[86] |
Pfeiffer A, Janocha D, Dong Y, Medzihradszky A, Schöne S, Daum G, Suzaki T, Forner J, Langenecker T, Rempel E, Schmid M, Wirtz M, Hell R, Lohmann J U (2016). Integration of light and metabolic signals for stem cell activation at the shootapical meristem. eLife, 5: e17023
CrossRef
Pubmed
Google scholar
|
[87] |
Poethig R S (1987). Clonal analysis of cell lineage patternsin plant development. Am J Bot, 74(4): 581–194
CrossRef
Google scholar
|
[88] |
Poethig R S, Coe E H J Jr, Johri M M (1986). Cell lineage patterns in maize Zea mays embryogenesis: A clonal analysis. Dev Biol, 117(2): 392–404
CrossRef
Google scholar
|
[89] |
Poethig R S, Sussex I M (1985a). The cellular parameters of leaf development in tobacco:a clonal analysis. Planta, 165(2): 170–184
CrossRef
Pubmed
Google scholar
|
[90] |
Poethig R S, Sussex I M (1985b). The developmental morphology and growth dynamics ofthe tobacco leaf. Planta, 165(2): 158–169
CrossRef
Pubmed
Google scholar
|
[91] |
Prigge M J, Otsuga D, Alonso J M, Ecker J R, Drews G N, Clark S E (2005). Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct rolesin Arabidopsis development. Plant Cell, 17(1): 61–76
CrossRef
Pubmed
Google scholar
|
[92] |
Reddy G V, Meyerowitz E M (2005). Stem-cell homeostasis and growth dynamics can be uncoupledin the Arabidopsis shoot apex. Science, 310(5748): 663–667
CrossRef
Pubmed
Google scholar
|
[93] |
Rodriguez K, Perales M, Snipes S, Yadav R K, Diaz-Mendoza M, Reddy G V (2016). DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilizationcontrol WUSCHEL levels and spatial patterning. Proc Natl Acad Sci USA, 113(41): E6307–E6315
CrossRef
Pubmed
Google scholar
|
[94] |
Rojo E, Sharma V K, Kovaleva V, Raikhel N V, Fletcher J C (2002). CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell, 14(5): 969–977
CrossRef
Pubmed
Google scholar
|
[95] |
Satina S, Blakeslee A F, Avery A G (1940). Demonstration of the three germ layers in the shoot apex of Datura by means of inducedpolyploidy in periclinal chimeras. Am J Bot, 27(10): 895–905
CrossRef
Google scholar
|
[96] |
Schoof H, Lenhard M, Haecker A, Mayer K F X, Jürgens G, Laux T (2000). The stemcell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 100(6): 635–644
CrossRef
Pubmed
Google scholar
|
[97] |
Schuster C, Gaillochet C, Medzihradszky A, Busch W, Daum G, Krebs M, Kehle A, Lohmann J U (2014). A regulatory framework for shoot stem cell control integrating metabolic, transcriptional,and phytohormone signals. Dev Cell, 28(4): 438–449
CrossRef
Pubmed
Google scholar
|
[98] |
Sharma V K, Ramirez J, Fletcher J C (2003). The Arabidopsis CLV3-like (CLE) genes are expressedin diverse tissues and encode secreted proteins. Plant Mol Biol, 51(3): 415–425
CrossRef
Pubmed
Google scholar
|
[99] |
Shimizu N, Ishida T, Yamada M, Shigenobu S, Tabata R, Kinoshita A, Yamaguchi K, Hasebe M, Mitsumasu K, Sawa S (2015). BAM 1 and RECEPTOR-LIKE PROTEIN KINASE 2 constitute a signaling pathwayand modulate CLE peptide-triggered growth inhibition in Arabidopsis root. New Phytol, 208(4): 1104–1113
CrossRef
Pubmed
Google scholar
|
[100] |
Shinohara H, Matsubayashi Y (2013). Chemical synthesis of Arabidopsis CLV3 glycopeptide reveals the impact of hydroxyproline arabinosylation on peptide conformationand activity. Plant Cell Physiol, 54(3): 369–374
CrossRef
Pubmed
Google scholar
|
[101] |
Shinohara H, Matsubayashi Y (2015). Reevaluation of the CLV3-receptor interaction in theshoot apical meristem: dissection of the CLV3 signaling pathway froma direct ligand-binding point of view. Plant J, 82(2): 328–336
CrossRef
Pubmed
Google scholar
|
[102] |
Shiu S H, Bleecker A B (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA, 98(19): 10763–10768
CrossRef
Pubmed
Google scholar
|
[103] |
Smith Z R, Long J A (2010). Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription factors. Nature, 464(7287): 423–426
CrossRef
Pubmed
Google scholar
|
[104] |
Somssich M, Je B I, Simon R, Jackson D (2016). CLAVATA-WUSCHEL signaling in the shoot meristem. Development, 143(18): 3238–3248
CrossRef
Pubmed
Google scholar
|
[105] |
Somssich M, Ma Q, Weidtkamp-Peters S, Stahl Y, Felekyan S, Bleckmann A, Seidel C A M, Simon R (2015). Real-time dynamics of peptide ligand-dependent receptor complex formationin planta. Sci Signal, 8(388): ra76
CrossRef
Pubmed
Google scholar
|
[106] |
Song S K, Lee M M, Clark S E (2006). POL and PLL1 phosphatasesare CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development, 133(23): 4691–4698
CrossRef
Pubmed
Google scholar
|
[107] |
Song X F, Xu T T, Ren S C, Liu C M (2013). Individual amino acid residues in CLV3 peptide contributeto its stability in vitro. Plant Signal Behav, 8(9): 8
CrossRef
Pubmed
Google scholar
|
[108] |
Song X F, Yu D L, Xu T T, Ren S C, Guo P, Liu C M (2012). Contributions of individual amino acid residues to the endogenous CLV3 function in shoot apical meristemmaintenance in Arabidopsis. Mol Plant, 5(2): 515–523
CrossRef
Pubmed
Google scholar
|
[109] |
Steeves T A, Sussex I M (1989). Patterns in Plant Development. New York: Cambridge University Press.
|
[110] |
Strabala T J, Phillips L, West M, Stanbra L (2014). Bioinformatic and phylogenetic analysis of the CLAVATA3/EMBRYO-SURROUNDING REGION (CLE) and the CLE-LIKE signal peptide genes in the Pinophyta. BMC Plant Biol, 14(1): 47
CrossRef
Pubmed
Google scholar
|
[111] |
Stuurman J, Jäggi F, Kuhlemeier C (2002). Shoot meristem maintenance is controlled by a GRAS-gene mediated signalfrom differentiating cells. Genes Dev, 16(17): 2213–2218
CrossRef
Pubmed
Google scholar
|
[112] |
Suer S, Agusti J, Sanchez P, Schwarz M, Greb T (2011). WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell, 23(9): 3247–3259
CrossRef
Pubmed
Google scholar
|
[113] |
Sussex I M (1954). Experiments on the cause of dorsiventralityin leaves. Nature, 174(4425): 351–352
CrossRef
Pubmed
Google scholar
|
[114] |
Szemenyei H, Hannon M, Long J A (2008). TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science, 319(5868): 1384–1386
CrossRef
Pubmed
Google scholar
|
[115] |
Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue B P (2015). The plant peptidome: an expanding repertoire of structural featuresand biological functions. Plant Cell, 27(8): 2095–2118
CrossRef
Pubmed
Google scholar
|
[116] |
To J P C, Haberer G, Ferreira F J, Deruère J, Mason M G, Schaller G E, Alonso J M, Ecker J R, Kieber J J (2004). Type-A Arabidopsis response regulators are partiallyredundant negative regulators of cytokinin signaling. Plant Cell, 16(3): 658–671
CrossRef
Pubmed
Google scholar
|
[117] |
Trotochaud A E, Hao T, Wu G, Yang Z, Clark S E (1999). The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complexthat includes KAPP and a Rho-related protein. Plant Cell, 11(3): 393–406
CrossRef
Pubmed
Google scholar
|
[118] |
Uchida N, Shimada M, Tasaka M (2013). ERECTA-family receptor kinases regulate stem cell homeostasis via buffering itscytokinin responsiveness in the shoot apical meristem. Plant Cell Physiol, 54(3): 343–351
CrossRef
Pubmed
Google scholar
|
[119] |
Urano D, Jones A M (2014). Heterotrimeric G protein-coupled signaling in plants. Annu Rev Plant Biol, 65(1): 365–384
CrossRef
Pubmed
Google scholar
|
[120] |
Wang X, Mitchum M G, Gao B, Li C, Diab H, Baum T J, Hussey R S, Davis E L (2005). A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. Mol Plant Pathol, 6(2): 187–191
CrossRef
Pubmed
Google scholar
|
[121] |
Whitford R, Fernandez A, De Groodt R, Ortega E, Hilson P (2008). Plant CLE peptides from two distinct functional classes synergisticallyinduce division of vascular cells. Proc Natl Acad Sci USA, 105(47): 18625–18630
CrossRef
Pubmed
Google scholar
|
[122] |
Williams R W, Wilson J M, Meyerowitz E M (1997). A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway. Proc Natl Acad Sci USA, 94(19): 10467–10472
CrossRef
Pubmed
Google scholar
|
[123] |
Xu C, Liberatore K L, MacAlister C A, Huang Z, Chu Y H, Jiang K, Brooks C, Ogawa-Ohnishi M, Xiong G, Pauly M, Van Eck J, Matsubayashi Y, van der Knaap E, Lippman Z B (2015). A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet, 47(7): 784–792
CrossRef
Pubmed
Google scholar
|
[124] |
Xu T T, Song X F, Ren S C, Liu C M (2013). The sequence flanking the N-terminus of the CLV3 peptideis critical for its cleavage and activity in stem cell regulationin Arabidopsis. BMC Plant Biol, 13(1): 225
CrossRef
Pubmed
Google scholar
|
[125] |
Yadav R K, Perales M, Gruel J, Girke T, Jönsson H, Reddy G V (2011). WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev, 25(19): 2025–2030
CrossRef
Pubmed
Google scholar
|
[126] |
Yadav R K, Perales M, Gruel J, Ohno C, Heisler M, Girke T, Jönsson H, Reddy G V (2013). Plant stem cell maintenance involves direct transcriptional repressionof differentiation program. Mol Syst Biol, 9(1): 654
CrossRef
Pubmed
Google scholar
|
[127] |
Yamamoto R, Fujioka S, Iwamoto K, Demura T, Takatsuto S, Yoshida S, Fukuda H (2007). Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation. Plant Cell Physiol, 48(1): 74–83
CrossRef
Pubmed
Google scholar
|
[128] |
Yue M, Li Q, Zhang Y, Zhao Y, Zhang Z, Bao S (2013). Histone H4R3 methylation catalyzed by SKB1/PRMT5 is required for maintaining shoot apical meristem. PLoS One, 8(12): e83258
CrossRef
Pubmed
Google scholar
|
[129] |
Zhang H, Lin X, Han Z, Qu L J, Chai J (2016). Crystalstructure of PXY-TDIF complex reveals a conserved recognition mechanismamong CLE peptide-receptor pairs. Cell Res, 26(5): 543–555
CrossRef
Pubmed
Google scholar
|
[130] |
Zhang Z, Tucker E, Hermann M, Laux T (2017). A molecular framework for the embryonic initiation ofshoot meristem stem cells. Dev Cell, 40(3): 264–277.e4
CrossRef
Pubmed
Google scholar
|
[131] |
Zhou Y, Liu X, Engstrom E M, Nimchuk Z L, Pruneda-Paz J L, Tarr P T, Yan A, Kay S A, Meyerowitz E M (2015). Control of plant stem cell function by conserved interacting transcriptionalregulators. Nature, 517(7534): 377–380
CrossRef
Pubmed
Google scholar
|
[132] |
Zhu Y, Wang Y, Li R, Song X, Wang Q, Huang S, Jin J B, Liu C M, Lin J (2010). Analysis of interactions among the CLAVATA3 receptors reveals a directinteraction between CLAVATA2 and CORYNE in Arabidopsis. Plant J, 61(2): 223–233
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |