CLE peptide-mediated signaling in shoot and vascularmeristem development

Thai Q. Dao , Jennifer C. Fletcher

Front. Biol. ›› 2017, Vol. 12 ›› Issue (6) : 406 -420.

PDF (1130KB)
Front. Biol. ›› 2017, Vol. 12 ›› Issue (6) : 406 -420. DOI: 10.1007/s11515-017-1468-9
REVIEW
REVIEW

CLE peptide-mediated signaling in shoot and vascularmeristem development

Author information +
History +
PDF (1130KB)

Abstract

BACKGROUND: Multicellular organismsrely on the transmission of information between cells to coordinatevarious biological processes during growth and development. Plants,like animals, utilize small peptide ligands as signaling moleculesto transmit information between cells. These polypeptides typicallyact as extracellular messengers that are perceived by membrane-boundreceptors, which then transduce the signal into the recipient cellto modify downstream gene transcription. The CLAVATA3/EMBRYO SURROUNDINGREGION-RELATED (CLE) proteins represent one of the largest and bestunderstood families of small polypeptides in plants. Members of theCLE family play critical roles in mediating cell fate decisions duringplant development, particularly within the unique meristem structuresthat contain stem cell reservoirs acting as sources of cells for continuousorgan formation.

OBJECTIVE: Here we review theroles of CLE family members in regulating the activity of the shootapical meristems that generate the aerial parts of the plants, andof the vascular meristems that produce the sugar- and water-conductingtissues.

METHODS: A systematic literaturesearch was performed using the Google Scholar and PubMed search engines.The keywords “CLE”, “CLV3”, “TDIF”,“meristem”, and “plant stem cells” were usedas search terms. The 95 retrieved articles, dating from 1992, wereorganized by topic and their key findings incorporated into the text.

RESULTS: We summarize our currentunderstanding of how the CLE peptide CLV3 orchestrates the activityof shoot apical meristems, describing its expression, processing andmovement, as well as its intracellular signal transduction pathways,key target genes and downstream gene regulatory networks. We alsodiscuss the roles of CLE peptide signaling in the vascular meristemsto promote procambial cell proliferation and suppress xylem differentiation.

CONCLUSIONS: Signaling pathwaysmediated by CLE peptides are critical for stem cell maintenance anddifferentiation in shoot apical and vascular meristems in plants,exposing CLE genes as potentialtargets for increasing yield and biomass production. While large numbersof CLE genes are being discoveredin plants, only a few have been functionally characterized. We anticipatethat future research will continue to elucidate the roles of the CLEfamily in plant development, and their potential impacts on agricultureand commerce.

Keywords

CLE / CLV3 / TDIF / WUS / stem cells / procambium

Cite this article

Download citation ▾
Thai Q. Dao, Jennifer C. Fletcher. CLE peptide-mediated signaling in shoot and vascularmeristem development. Front. Biol., 2017, 12(6): 406-420 DOI:10.1007/s11515-017-1468-9

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

The growth and development of multicellularorganisms is heavily dependent on communication between groups ofcells. Intercellular signaling pathways convey cell fate information,regulate cell division and differentiation processes, propagate andamplify specific signaling states, and coordinate tissue functions.Both plants and animals utilize systemic hormones as well as polypeptidesignaling molecules to mediate cell-to-cell communication. In animals,polypeptides such as epidermal growth factor (EGF) and transforminggrowth factor-beta (TGF-b) actas extracellular ligands that are generated in certain cell typesand perceived at the surface of neighboring cells, typically by transmembranereceptor kinases. Binding of the ligand to its receptor or receptorsinitiates a cascade of intracellular phosphorylation events that affectsthe activity of one or more nuclear transcription factors, resultingin the alteration of gene expression programs (Bergeron et al., 2016).

Although plants lack canonical EGF,TGF-b, Wingless and other peptidesuperfamilies found in animals, they also make extensive use of polypeptidesignaling systems to mediate various biological processes (Matsubayashi, 2014; Tavormina et al., 2015). The genomeof Arabidopsis thaliana, a memberof the mustard family related to food plants such as broccoli andcauliflower, encodes well over a thousand small proteins (<100amino acids) that may function as peptide signaling molecules as wellas more than 600 putative plasma membrane-bound receptor proteins(Shiu and Bleecker, 2001; Lease and Walker, 2006; Tavormina et al., 2015). The CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) family representsone of the largest families of plant polypeptides identified to date,consisting of 32 members in Arabidopsis (Cock and McCormick, 2001) and as many as 84 members in other species (Hastwell et al., 2015). Members ofthe CLE gene family are presentthroughout the land plant lineage and in some plant parasitic nematodes(Cock and McCormick, 2001; Wang et al., 2005).

The CLE genes encode polypeptides of less than 15 kDa in molecular massthat share several structural features. Each peptide consists of eitheran N-terminal signal peptide or a membrane anchor sequence, a 40-to 90-amino acid variable domain, and a highly conserved 14-aminoacid motif near the carboxyl terminus called the CLE domain (Cock and McCormick, 2001) (Fig. 1A).The signal peptide is sufficient to direct the CLE proteins throughthe secretory pathway (Rojo et al.,2002; Sharma et al.,2003) and is required for their in vivo function (Menget al., 2010). Full length CLE pre-propeptides are processed(Casamitjana-Martínez et al.,2003; Ni and Clark,2006) to produce biologically active 12-13 amino acidpolypeptides consisting of the CLE domain (Kondo et al., 2006; Ohyama et al., 2009). The roles ofthe CLE genes are best understoodin plant development and particularly in the meristems, which aresmall stem cell reservoirs that provide cells for continuous organformation. Here we review recent insights into CLE gene regulation and function in the shoot apical meristemas well as in the meristematic tissue of the shoot vascular cambium.

SAM maintenance requires intercellular communication

The shoot apical meristem (SAM) ofangiosperm plants is a small, highly organized structure at the growingshoot tip that provides all of the cells to generate the above groundarchitecture of the plant (Fig. 2). The SAM is established duringembryogenesis and is maintained throughout the life of the plant.Its two major functions are to continuously initiate organs such asleaves and flowers and to sustain a stem cell reservoir for futureorgan formation. The organs arise as primordia on the flanks of themeristem, while at the apex the self-renewing stem cell reservoirreplenishes the cells that have become incorporated into the organprimordia. To function as a site of ongoing organ formation, the SAMmaintains a continuous balance between loss of stem cells throughdifferentiation and their replacement through cell division.

The SAM is stratified into distinctcell layers called the tunica and corpus (Satina et al., 1940). In Arabidopsis and many other dicotyledonous plants, the tunica is comprised ofan overlying L1 epidermal layer and a sub-epidermal L2 layer (Gifford, 1954). These layers area single cell thick and remain clonally distinct from one anotherdue to their specific cell division patterns (Poethig, 1987). The corpus, or L3,lies beneath the tunica and consists of cells that divide in all planes.Because cells in each layer participate in both SAM maintenance andorgan formation (Poethig and Sussex,1985a, b), these activities must be coordinated between all of the cell layers.

The SAM is also organized into threedistinct functional domains. The central zone (CZ) at the very apexof the SAM consists of a reservoir of pluripotent stem cells withlow mitotic activity (Steeves andSussex, 1989). Divisions of stem cells in the CZ continuouslydisplace their descendants outward into the surrounding peripheralzone (PZ) or downward into the interior rib zone (RZ). The PZ is atransitional region wherein more rapidly dividing stem cell descendantsacquire more specified fates and become incorporated either into organprimordia or into regions of stem between the organs. The upper regionof the RZ contains the organizing center (OC), which acts as a nichethat sustains the overlying stem cell population. Cells in the RZconstitute the meristem pith and contribute to the bulk of the stemand vascular tissue (Steeves andSussex, 1989). Classical experiments have demonstratedthat the functional domains within the SAM exchange cell fate information(Sussex, 1954) andthat the fate of each SAM cell is determined by positional informationfrom the surrounding cells rather than from a lineage-specific heritage(Poethig et al., 1986; Furner and Pumfrey, 1992; Irish and Sussex, 1992). Thus SAM cells are in continuous communication with their neighborsin order to assess their relative positions in the meristem and behaveaccordingly.

A CLV3-mediated shoot apical meristem maintenance pathway

A molecular network called the CLAVATA(CLV)-WUSCHEL (WUS) pathway communicates cell fate decisions in theSAM and is essential for stem cell maintenance in higher plants (Somssich et al., 2016) (Fig. 3).The Arabidopsis CLV3 gene is afounding member of the CLE genefamily that is expressed exclusively within the stem cell reservoirof shoot apical and floral meristems (Fletcher et al., 1999). CLV3 expression in the SAM initiates during the early heart stage ofembryogenesis and continues throughout the life cycle. Loss-of-functionmutations in CLV3 cause an accumulationof supernumerary stem cells that leads to progressive SAM enlargement,resulting in the formation of strap-like fasciated stems that producemany more flowers than normal (Clarket al., 1995). Flowers arise from transient stem cellreservoirs in floral meristems (FM), which are also enlarged in clv3 plants and produce extra floral organs.Thus CLV3 restricts above groundstem cell accumulation throughout the life of the plant. Live imagingexperiments revealed that CLV3 performsthis function both by restricting stem cell fate to the CZ and alsoby non-cell autonomously limiting cell division rates in the PZ (Reddy and Meyerowitz, 2005).

CLV3 encodes a secreted signaling molecule that is localized to the extracellularspace (Fletcher et al., 1999; Rojo et al., 2002). As with many animal polypeptides, the CLV3 ligand is generatedfrom a larger pre-propeptide that undergoes proteolytic cleavage ofthe signal peptide and the pro-domain before displaying biologicalactivity. Cleavage of CLV3 occurs between the Leu69 and Arg70 residues (Ni and Clark, 2006; Ni et al., 2011; Xu et al., 2013), and requires arecognition domain of five amino acids flanking the N terminus ofthe CLE domain (Xu et al., 2013). It has been suggested that CLV3 cleavage is catalyzed by a serineprotease (Ni et al., 2011), but this remains to be confirmed experimentally.

The active form of CLV3 was firstidentified as a 12 amino acid glycopeptide consisting of Arg70 to His81 of the CLE motif,in which the first two proline residues are modified to hydroxyproline(Kondo et al., 2006).When applied to Arabidopsis seedlingsthis synthetic MCLV3 peptide generates a SAM termination phenotypecharacteristic of CLV3 gain-of-functionplants, demonstrating its biological activity. Two studies have examinedthe contributions of individual residues within the CLV3 peptide toits function in restricting meristem cell accumulation. The transformationof constructs encoding Alanine-substituted CLV3 peptides into clv3 null mutants revealed that, in orderof importance, the Asp8, His11, Gly6, Hyp4, Arg1 and Pro9 residues are the most critical for CLV3 activityin the SAM (Song et al., 2012). However, the hydroxyproline residue at position 7 has a minimalimpact on CLV3 function, as do the flanking sequences outside thecore CLE motif. A follow up study applying synthetic CLV3 peptidesto cultured clv3 null mutant seedlingsdemonstrated that the Pro9 and His11 residues of the CLV3 peptide (Fig. 3) are the mostcritical for restricting SAM size in vitro (Song et al., 2013). The presence of these two residues positively correlates withCLV3 protein stability in vitro, suggesting that CLV3 stability may be important for its role inSAM maintenance.

Sugar modification of the CLV3 peptideis also important for its activity in SAM maintenance. A 13 aminoacid hydroxylated and arabinosylated secreted peptide was biochemicallyidentified from Arabidopsis CLV3 overexpressing plants (Ohyama etal., 2009), in which the Hyp7 residue of CLV3 is post-translationally modified with three L-arabinoseresidues (Fig. 3). This modification was shown to enhance CLV3 activityin the seedling SAM (Ohyama et al.,2009). NMR spectroscopy revealed that arabinosylationinduces a conformational change in the carboxyl-terminal half of theCLV3 peptide and enhances receptor binding affinity (Shinohara and Matsubayashi, 2013). In tomato, three arabinosyltransferase genes, FASCIATED INFLORESCENCE (FIN), REDUCED RESIDUAL ARABINOSE 3 (RRA3A) and FASCIATED AND BRANCHED2 (FAB2), are implicated in the arabinosylation of CLV3 peptides (Xu et al., 2015). Mutations in anyof these genes cause increase inflorescence branching and the formationof fasciated flowers with extra floral organs. SlCLV3 null mutants generated using the CRISPR-Cas9 genomeediting method display a fasciated SAM phenotype and closely resemble fin plants. Synthesized arabinosylated SlCLV3peptides partially rescue the fin fasciated phenotype, confirming the importance of CLV3 arabinosylation in vivo. A similar effect was obtained usingarabinosylated SlCLE9 peptides, implying a role for SlCLE9 in SAMsignaling, although this is yet to be confirmed using mutational analysis.Together, the results indicate that the progressive addition of arabinosechains to CLV3, and potentially to related CLE peptides, by a cascadeof arabinosyltransferases is required to fully maintain stem cellhomeostasis in the SAM.

CLV3 orthologs are also present in a variety of other crop plants, whichover the past ten thousand years have undergone intense selectionby humans (Kuittinen and Aguadé,2000; Doebley et al.,2006) for yield traits such as larger and more numerousinflorescences, fruits, and seeds. The CLV3 locus has been a target of selection during the domestication ofseveral crop species to enhance agricultural yields (Somssich et al., 2016). A naturallyoccurring mutation in the mustard (Brassicarapa) CLV3 gene MULTILOCULAR4 (ML4) leads to the formation of fruits with four chambers instead of two,which increases seed production (Fanet al., 2014). Likewise, the mild branching and fasciatedflower and fruit phenotype of the classical tomato fasciated (fas) allele results from a regulatorymutation at the SlCLV3 locus thatreduces the size of the CLV3 expressiondomain without affecting peptide function (Xu et al., 2015). These studiessuggest that fine-tuning CLV signaling in the SAM by modulating CLV3 mRNA expression levels and/or peptideactivity may also be exploited in other crops to improve productivity.

CLV3 signal perception

Genetic analyses have uncovered asmall suite of membrane-associated receptors that mediate CLV3 signalingin shoot and floral meristems (Fig. 3). However, the contributionsof the various receptors to CLV3 signal transduction have remainedunclear, as has the functional relationships between them and theirrelative effects on downstream signaling outputs. Several recent studiesprovide new insights into these questions.

The first receptor gene shown toplay a role in SAM stem cell homeostasis was CLV1. Loss-of-function mutations in CLV1 cause progressive shoot and floral meristem enlargementphenotypes that are similar to but weaker than clv3 phenotypes, and the two genes act in the same geneticpathway (Clark et al., 1993, 1995; Diévart et al., 2003). CLV1encodes a leucine-rich repeat (LRR) receptor serine/threonine kinase(Fig. 1B) that is produced in shoot and floral meristem cells interiorto the CLV3-expressing stem celldomain (Clark et al., 1997). CLV1 is localized to the plasma membrane, where it forms homodimers(Bleckmann et al., 2010) and binds the CLV3 ligand (Ogawa et al., 2008). In contrastwith other intercellular signaling pathways in plants, CLV3 appearsto bind pre-formed receptor complexes at the plasma membrane (Somssich et al., 2015). Ligand bindingtriggers activation of the CLV1 kinase domain on the cytosolic surfaceof the cell, which is thought to lead to recruitment of accessoryproteins and to result in CLV1 internalization and trafficking tothe lytic vacuole for degradation (Nimchuk et al., 2011b). Signaling through the CLV3-CLV1ligand-receptor pair limits SAM stem cell accumulation by negativelyregulating the WUS expression domainin the underlying RZ cells (Brand etal., 2000). The CLV1 receptors are sequestered withinplasma membrane microdomains following CLV3 perception, attenuatingtheir signaling activity to prevent complete repression of WUS transcription and SAM termination (Somssich et al., 2015).

Genetic and biochemical studies alsoprovide evidence for a second distinct receptor complex involved inCLV3-mediated stem cell signaling, consisting of the CLV2 and CORYNE(CRN) proteins (Guo et al., 2010; Durbak and Tax, 2011). CLV2 encodes a receptor-likeprotein with extracellular LRRs, a transmembrane domain and a shortcytoplasmic tail (Jeong et al., 1999). Like CLV3 and CLV1, CLV2 restricts shoot and floral stem cell accumulation (Kayes and Clark, 1998), as does FASCIATED EAR2 (FEA2), the maize orthologof CLV2 that maps to a quantitativetrait locus (QTL) for kernel row number (Bommert et al., 2013). CRN encodes a membrane-associated protein with a cytoplasmic serine/threoninekinase domain, and crn mutantsdisplay clv-like enlarged SAM phenotypes(Müller et al., 2008). Unlike CLV1, both CLV2 and CRN are widely expressed in many plant tissues and have broad effectson plant development (Jeong et al.,1999; Müller etal., 2008).

CLV2 and CRN proteins localize tothe plasma membrane and form heterodimers (Bleckmann et al., 2010; Zhu et al., 2010). However, CRNlacks kinase activity and is likely to be a pseudokinase that functionsas a CLV2 co-receptor (Nimchuk etal., 2011a). Overexpression of CLV3 in clv2 plantsfails to rescue the enlarged SAM phenotype, indicating that CLV2 isinvolved in CLV3 signal transduction (Brand et al., 2000). However, the observation that clv1 phenotypes are enhanced by mutationsin either CLV2 or CRN shows that the CLV2-CRN complex functionsindependently of CLV1 in this process (Müller et al., 2008; Zhu et al., 2010). Whether the CLV2-CRN complex bindsCLV3 peptide is unresolved, though, as immunoprecipitation experimentsindicate that CLV2 generates a CLV3 binding activity in tobacco leaves(Guo et al., 2010),whereas photo affinity labeling experiments show that CLV2 does notdirectly bind to arabinosylated CLV3 peptide (Shinohara and Matsubayashi, 2015).

The transcriptional regulation of CRN is important for SAM maintenance (Yue et al., 2013). CRN transcription is directly repressed bySKB1/PRMT5, a member of the type II arginine methyltransferase familythat in animals regulate chromatin remodeling, transcription and pre-mRNAsplicing (Bedford and Clarke, 2009). SKB1 directs symmetric dimethylation of histone H4R3 at the CRN locus, which leads to upregulation of CLV3 and WUS transcription in their native domains and maintenance of properSAM size (Yue et al., 2013).

CLV1 forms a monophyletic group with three other LRR-RLK genes, BARELY ANY MERISTEM1, 2 and 3 (BAM1-3), which are predominantly expressedon the flanks of the SAM (DeYounget al., 2006). Plants carrying higher order combinationsof bam alleles have reduced SAMsize, indicating that the BAM genesredundantly promote stem cell maintenance (DeYoung et al., 2006). However, clv1 null mutant phenotypes can be enhancedby mutations in BAM1 or BAM2 (DeYoungand Clark, 2008); thus BAM1 and BAM2 also function asredundant CLV3 receptors in the PZ. Indeed, both BAM1 and BAM2 bindCLV3 peptide (Guo et al., 2010; Shinohara and Matsubayashi, 2015). Because clv1 bam1 plants areinsensitive to exogenous arabinosylated CLV3 peptide treatment, CLV1and BAM1 activity is sufficient to regulate CLV3-mediated stem cellhomeostasis in the SAM (Shinoharaand Matsubayashi, 2015). A recent study has clarifiedthe relationship between CLV1 andthe BAM genes in SAM maintenance.CLV1 signaling was found to repress the expression of BAM1 and BAM3 in the RZ, such that in clv1 mutants,ectopic BAM expression partiallycompensates for loss of CLV1 activity (Nimchuk et al., 2015). Interestingly, clv1 bam123 quadruple mutants have strongervegetative SAM phenotypes than clv3 null mutants (Nimchuk et al., 2015), indicating that at least one other ligand that acts partiallyredundantly with CLV3 in SAM maintenance remains be identified.

The BAM1 protein has been shown tophysically associate with a LRR receptor-like kinase encoded by the RECEPTOR-LIKE PROTEIN KINASE2 (RPK2) gene(Kinoshita et al., 2010). Plants carrying rpk2 mutationsdisplay slightly enlarged SAMs and are insensitive to CLV3 peptidetreatment, indicating that RPK2 is involved in CLV3 ligand perception. RPK2 is expressed uniformly throughout theSAM (Kinoshita et al., 2010), and forms homomers as well as interacting with BAM1. However,it neither associates with CLV1 or CLV2 (Kinoshita et al., 2010; Shimizu et al., 2015) nor binds directly to CLV3 peptide(Shinohara and Matsubayashi, 2015). RPK2 is therefore likely to regulate meristem maintenance by transmittingthe CLV3 signal through the BAM1 pathway rather than the CLV1 or CLV2/CRNpathways.

The relationship between CLV1 andthe other SAM receptors has been investigated using genetic analysis.Like CLV1, CLV2 and CRN mediate stem cell regulation exclusivelyin the WUS-expressing cells ofthe RZ (Nimchuk, 2017). However, CLV2, CRN and RPK2 are dispensable for the repression ofthe BAM receptor kinase genes byCLV3-CLV1 signaling. The CLV1-mediated repression of WUS transcription and consequent restrictionof stem cell accumulation was determined to be genetically separablefrom its regulation of BAM geneexpression. CLV1 therefore controls two distinct signaling outputs– the repression of WUS transcriptionand the repression of BAM transcription– in SAM stem cell niches in response to the CLV3 ligand independentlyof the other receptors.

CLV3 signal transduction

Several classes of cytosolic componentsfunction in CLV3 signal transduction downstream of ligand binding(Fig. 3). In Arabidopsis, the kinaseassociated protein phosphatase KAPP and a Rho GTPase-related proteinphysically associate with the cytosolic CLV1 kinase domain (Williams et al., 1997; Trotochaud et al., 1999), whilethe related protein phosphatase 2C proteins POLTERGEIST (POL) andPOL-LIKE1 (PLL1) act downstream of CLV1 to promote stem cell maintenanceby regulating WUS expression (Song et al., 2006). A mitogen-activatedprotein kinase (MAPK) activity (Betsuyakuet al., 2011) and a E3 ubiquitin ligase called PLANTU-BOX4 (PUB4) (Kinoshita et al., 2015) have also been implicated in signaling downstream of the CLV receptors,although their roles in the signaling network remain to be preciselydefined.

In maize, mutations in the COMPACT PLANT2 (CT2) gene, which encodesthe alpha-subunit of a heterotrimeric GTP binding protein, cause clv-like SAM phenotypes (Bommert et al., 2013). HeterotrimericGTP binding proteins, which are composed of alpha, beta and gammasubunits, are signaling molecules that link extracellular signalsto intracellular readouts (Uranoand Jones, 2014). The CT2 protein localizes to the plasmamembrane and physically interacts with the FEA2 receptor protein invitro, suggesting a molecular mechanismthrough which receptor-like proteins that lack a kinase domain cantransmit information inside the cell (Bommert et al., 2013). Similarly, mutations in the Arabidopsis G protein beta-subunit1 gene AGB1 produce enlarged SAMs similar to clv mutant SAMs and AGB1 acts upstream of WUS in stem cell homeostasis (Ishidaet al., 2014). AGB1 protein physically associates withRPK2 at the plasma membrane, although not with CLV1 or CLV2. In contrastto the situation in maize, Arabidopsis Ga activity does not affect SAMfunction, although Gg activityhas a minor role in limiting SAM size (Ishida et al., 2014). Together these observations indicatea role for heterotrimeric GTP binding proteins in transducing CLV-dependentsignals within the recipient cells.

CLV3-independent signaling pathways in SAM regulation

Members of the ERECTA (ER) receptor kinase gene family also influencestem cell homeostasis in the SAM. ER, ERL1 and ERL2 act redundantly to restrictvegetative SAM activity (Uchida etal., 2013). The promoters of all three genes are activein the SAM, and er erl1 erl2 seedlingsform enlarged SAMs in which the L1 and L2 cells are wider than normal(Chen et al., 2013).Hormone induction experiments suggest that ER family members regulatestem cell homeostasis in the SAM by buffering its responsiveness tocytokinin, which promotes cell proliferation and stem cell activity(Gordon et al., 2009). The ER pathway negatively regulates WUS transcription (Chen et al., 2013), although this occurs independently of the CLV pathway (Mandel et al., 2014). In fact, ER,CLV and a third pathway consisting of class III HOMEODOMAIN-LEUCINEZIPPER (HD-ZIP III) transcription factors (Prigge et al., 2005) act in parallelto regulate SAM size (Mandel et al.,2016). The three pathways seem to affect different aspectsof SAM activity, as CLV3 preferentiallyrestricts SAM cell accumulation along the longitudinal axis whereas ER and the HD-ZIPIII genes restrict its growth along distinct lateral orientations.RNA-seq analysis provides evidence that the CLV pathway limits theaccumulation of stem cells in the CZ, whereas the ER pathway regulatesmitotic activity in the PZ (Mandelet al., 2016). Thus the coordination of cell behaviorswithin the SAM appears to be orchestrated by distinct signaling pathwaysacting along discrete growth vectors.

A novel CLE ligand-receptor signaltransduction pathway that regulates maize shoot apical meristem activityhas been revealed by the recent study of the FASCIATED EAR3 (FEA3) gene (Je et al., 2016). FEA3 encodes a LRR receptor-like protein with 12 extracellular LRR motifs,a transmembrane domain and a short cytoplasmic tail. FEA3 functionsto limit maize SAM size and suppresses ZmWUS expression in cells below the OC. However, FEA3 does not perceivea CLV3 signal. Rather it responds to a CLE peptide encoded by the FON2-LIKE CLE PROTEIN 1 (ZmFCP1) gene, whichis orthologous to the rice FCP1 gene. Mutations in ZmFCP1 causeenlarged SAM phenotypes, and ZmFCP1 and FEA3 function in the samegenetic pathway. Interestingly, ZmFCP1 is not expressed in the SAM itself but in the initiating organ primordiaon the SAM flanks. The authors propose that a ZmFCP1 signal originatingfrom differentiating cells within organ primordia is perceived byFEA3 in the interior of the SAM where it acts to restrict stem cellproliferation by negatively regulating ZmWUS expression in the RZ cells beneath the OC. The Arabidopsis FEA3 ortholog, AtFEA3, also appears to restrict SAM activity and AtFEA3 RNAi lines are resistant to CLE27 peptide application,although CLE27 is not the ZmFCP1 ortholog. Thus stem cell homeostasisin plants is mediated by multiple CLE peptides that originate fromdifferent cell types and associate with distinct transmembrane receptors.

WUS-CLV3 stem cell homeostasis feedback loop

The key biologically relevant targetof the CLV3 stem cell signaling pathway is the WUSCHEL (WUS) gene. WUS is the founding member of theWUSCHEL-LIKE HOMEOBOX (WOX) family of transcription factors that containa homeodomain superficially resembling that found in animal homeodomainproteins (Mayer et al., 1998) (Fig. 1C). In addition, the protein contains three conserved shortsequence motifs at the carboxyl terminus: an acidic domain that mayfunction in transcription activation, a canonical WUS box, and anEAR domain that can mediate transcriptional repression (Ohta et al., 2001). WUS expression is restricted to a small setof cells just beneath the stem cells (Mayer et al., 1998), which is called the organizingcenter (OC) based on its functional correspondence to animal stemcell niches (Fig. 2).

Although WUS is dispensable for the establishment of the Arabidopsis shoot stem cell reservoir (seebelow), it is required to sustain stem cell activity in shoot andfloral meristems throughout the life of the plant (Laux et al., 1996). WUS promotesstem cell fate in a non-cell autonomous fashion, with the proteinmoving from the OC into the overlying stem cells where it accumulatesat a lower level than in the OC cells themselves (Yadav et al., 2011). This movementoccurs via cytoplasmic channels between neighboring cells called plasmodesmataand is essential for SAM maintenance (Daum et al., 2014). WUS protein accumulation in theCZ induces the expression of CLV3 (Fig. 4), activating its own negative regulator in a dynamic feedbackloop that regulates stem cell homeostasis in the SAM (Brand et al., 2000; Schoof et al., 2000).

The regulation of CLV3 transcription by WUS occurs in a dosage-dependentmanner. Lower concentrations of WUS protein activate CLV3 transcription whereas higher concentrationsrepress CLV3 transcription (Perales et al., 2016). WUS proteinbinds with different affinities to six cis elements in the regulatory region of the CLV3 locus, five of which occur in a module in the 3′region, and these six elements mediate both the activation and repressionof CLV3 expression. WUS binds the CLV3 cis elements as monomers at lower concentrations,and as homodimers at higher concentrations (Perales et al., 2016). Structure-functionanalysis indicates that reduced WUS protein accumulation in the stemcell reservoir may occur through a combination of potent nuclear exportand weak nuclear retention of the protein within these cells, potentiallydue to a lower affinity for DNA and reduced dimerization activity(Rodriguez et al., 2016). In this manner, lower levels of WUS protein in the nucleus ofthe stem cells leads to CLV3 activation,whereas higher levels of WUS protein in the nucleus of OC cells leadsto CLV3 repression (Perales et al., 2016).

WUS-dependent gene regulatory network

WUS is a bi-functional protein thatcan act as both an activator and a repressor of transcription (Ikeda et al., 2009), and regulatesthe expression of hundreds of genes in the shoot apical meristem.A genome-wide identification of WUS response genes using Arabidopsis ATH1 arrays yielded a total of675 genes (Busch et al., 2010), including 4 hormone responsive type-A ARABIDOPSIS RESPONSE REGULATOR (ARR) genes previouslydescribed as WUS targets (Leibfriedet al., 2005). Gene ontogeny analysis revealed an over-representationof WUS responsive genes in three categories: regulation of development,metabolic processes, and hormone signaling. The CLV1 gene was found to be directly repressed by WUS despitetheir overlapping expression patterns in the interior of the SAM,suggesting that WUS acts to fine-tune CLV1 transcription rather than acting as a binary switch. WUS also directlyrepresses the transcription of TPR1 and TPR2, members of the TOPLESS/TOPLESS RELATED (TPL/TPR) familyof transcriptional co-repressor genes that play key roles in embryopatterning and auxin responses (Longet al., 2006; Szemenyeiet al., 2008). WUS protein was shown to directly bindtwo distinct DNA motifs, one of which is a G-Box motif with strikingsimilarity to binding sites for proteins involved in stem cell renewalin animals, the zinc-finger homeodomain transcription factor Zeb-1(Grooteclaes and Frisch, 2000) and the bHLH-ZIP transcription factor MYC (Blackwell et al., 1990).

A second study using an inducibleWUS system also identified over 600 WUS-responsive genes in SAM tissue,among which 49 upregulated and 140 downregulated genes are directWUS targets (Yadav et al., 2013). The majority of WUS-activated genes are expressed in the CZ andOC of the SAM, whereas the majority of WUS-repressed genes are expressedin the PZ. Among the latter, WUS directly binds to the regulatoryregions of key transcription factor genes such as KANADI1 (KAN1), KAN2, ASYMMETRIC LEAVES2 and YABBY3 that promote organ identity and celldifferentiation. Thus WUS controls stem cell homeostasis in part byrepressing the expression of differentiation-inducing transcriptionfactor genes in the central regions of the SAM to prevent prematurestem cell differentiation.

An important direct target of WUSrepression in the OC is the bHLH transcription factor gene HECATE1 (HEC1) (Schuster et al., 2014). HEC1 is expressed in the PZ of the SAM as well as in developing organprimordia, and functions redundantly with the related HEC2 and HEC3 genes to promote SAM cell accumulation. HEC1 activity represses CLV3 and WUS expression while elevating the expression of cell-cycle regulatorygenes to stimulate cell proliferation (Fig. 4). In addition, transcriptomeanalysis indicates that WUS and HEC1 oppositely regulate suites ofmetabolic and hormone signaling genes, including the type-A ARR7 and ARR15 genes. These ARR genes are involvedin negative feedback regulation of cytokinin signaling (To et al., 2004) and can arrestSAM function when constitutively activated (Leibfried et al., 2005). WhereasWUS directly represses type-A ARR gene transcription to enhance cytokinin signaling in the SAM (Leibfried et al., 2005), HEC1 inducestheir expression and thereby acts as a negative regulator of downstreamcytokinin signaling outputs (Schusteret al., 2014). The opposing activities of these twotranscription factors in hormone regulation are thought to representan important mechanism for coordinating a balance between cell proliferationand differentiation in distinct functional domains of the SAM.

WUS-associated factors

WUS does not regulate gene expressionin isolation but physically associates with members of the HAIRY MERISTEM(HAM) family of GRAS domain transcriptional regulators (Zhou et al., 2015). Members of thisfamily promote stem cell maintenance in Arabidopsis and petunia (Stuurman et al., 2002; Engstrom et al., 2011), and Arabidopsis ham1234 plantsarrest at early seedling stage with terminated SAMs (Zhou et al., 2015). The HAM gene expression patterns overlap withthat of WUS in the SAM, with both HAM1 and HAM2 being expressed in the RM, including the OC cells. In addition HAM1 expression, like WUS expression, is repressed by CLV3 signaling. Becausea weak wus-7 allele displays dose-dependentgenetic interactions with ham nullalleles, the strong wus-1 mutantis epistatic to ham123 null mutants,and the WUS and HAM proteins share some common downstream regulatorytargets (Zhou et al., 2015), the HAM transcriptional regulators are proposed to act as conservedinteracting cofactors with WUS in the OC of the SAM (Fig. 4).

WUS also physically associates withTPL and several TPR co-repressor proteins via the acidic domain, WUSbox, and EAR motif in the carboxyl-terminal region of the WUS protein(Kieffer et al., 2006; Dolzblasz et al., 2016). The TPL and TPR proteins associate with HISTONE DEACETYLASE19(HDA19) to form a transcription repression complex (Szemenyei et al., 2008), suggestinga mechanism through which WUS may repress the expression of differentiation-inducinggenes within the OC by recruitment of histone modifying complexes.Whether members of either the HAM or TPL/TPR families act togetherwith WUS to regulate CLV3 transcriptionremains to be determined.

CLV-WUS activity in early development

The CLV-WUS signal transduction pathwayis essential for shoot apical meristem maintenance, but recent studieshave revealed unexpected nuances in the pathway during early stemcell initiation and activation. Surprisingly WUS, although its expression commences prior to SAM formationat the 16-cell stage of embryogenesis (Mayer et al., 1998), is dispensable for embryonic stemcell initiation and CLV3 activation(Zhang et al., 2017). Instead the WUS paralog WOX2, along with the redundant WOX1, WOX3 and WOX5 genes, is required for the initiation of the embryonic stem cellprogram, as assayed by CLV3 expression. WOX2 mRNA expression initiates in the zygoteand then becomes restricted to the apical lineage (Breuninger et al., 2008). The WOX2 module downregulates the expressionof cotyledon-specific genes and limits the distribution of the syntheticauxin response reporter DR5:GFP in apical embryo cells, suggesting that these WOX genes block cell differentiation in the presumptivestem cell domain (Zhang et al., 2017). The WOX2 module also contributesdirectly to SAM formation by promoting expression in the presumptiveSAM region of HD-ZIP III genesthat induce cytokinin biosynthesis gene transcription and are requiredfor shoot stem cell identity (Priggeet al., 2005; Smithand Long, 2010). The authors propose that the functionof the WOX2 module in embryonicstem cell formation is largely mediated through its upregulation of HD-ZIP III gene expression, thereby balancingthe activities of the cytokinin and auxin pathways to suppress celldifferentiation and promote cell proliferation (Zhang et al., 2017).

Plants undergo distinct post-embryonicdevelopmental programs depending on whether they germinate in thedarkness or in the light. In the darkness, the SAM of the germinatingseedling remains dormant and growth occurs predominantly via cellelongation in the hypocotyl. Only in the light is the SAM activatedand the above ground organ development program triggered. Recent evidenceindicates that SAM stem cell identity, as monitored by CLV3 expression, is sustained even in thedormant state, independent of growth conditions (Pfeiffer et al.,2016). In contrast, WUS expressionis not detectable in dark-grown seedlings and its induction dependson both light and sucrose, which acts as an energy source for stemcell activity. Shoot stem cell activation by sugars is dependent ona TARGET OF RAPAMYCIN (TOR) kinase-dependent signaling pathway (Dobrenel et al., 2016; Pfeiffer etal., 2016). Light activation of WUS expression also occurs via TOR kinase-dependent signaling, independentof photosynthesis, and thus TOR acts as a central regulator of post-embryonicstem cell activation in response to environmental cues. The findingssuggest that TOR activation by light enables plant cells to anticipatethe amount of energy available for photomorphogenesis and efficientlyadapt their growth and development to the local environmental conditions(Pfeiffer et al., 2016).

CLE peptide function during shoot vascular development

Several CLE genes also play an important role in vascular development in shoottissues. The wedge-shaped vascular bundles of the plant stem consistof two conducting tissues, the phloem and the xylem (Fig. 5). Thephloem lies laterally and contains sieve tubes that transport sugarsand amino acids, whereas the vessels and tracheids of the interiorxylem transport water and ions absorbed from the soil. Between thesetwo mature tissues lies a narrow strip of meristematic cells calledthe procambium or vascular cambium. Procambial cells divide parallelto the plane of the stem to generate phloem cells in one directionand xylem cells in the other direction. This secondary growth propertyof plant stems allows them to grow radially over long periods of timeand is regulated by both systemic hormone signals and localized CLEpeptide activity.

TDIF regulates the organization of the stem vascular bundle

TRACHEARY ELEMENT DIFFERENTIATIONINHIBITORY FACTOR (TDIF) is an active peptide derived from the CLE41 and CLE44 coding sequences that has two related functions: to promote theproliferation of Arabidopsis procambialcells and to inhibit their differentiation into xylem (Ito et al., 2006). The effect ofTDIF peptide application to procambial cell proliferation is enhancedby simultaneous treatment with CLE6 peptide (Whitford et al., 2008), althoughthe biological significance of this is as yet unknown. The TDIF ligandis bound by the LRR receptor-like kinase PHLOEM INTERCALATED WITHXYLEM (PXY) (Hirakawa et al., 2008; Etchells and Turner, 2010), also known as TDIF RECEPTOR (TDF), which controls the rate andorientation of procambial cell division (Fisher and Turner, 2007; Etchells and Turner, 2010; Hirakawa et al., 2010). The CLE42 peptide, which differsfrom TDIF in one amino acid, also has partial TDIF activity (Hirakawa et al., 2008) and showsa weak interaction with the PXY extracellular domain in in vitro assays (Zhang et al., 2016). PXY also interacts genetically with the ER receptor kinase gene to regulate vascularorganization, acting to prevent the intercalation of phloem and xylemin the inflorescence stem vascular bundles (Etchells et al., 2013).

Like its counterparts in the shootapical meristem, the TDIF/PXY ligand-receptor duo appears to act asa short-range signaling module. CLE41 and CLE44 are both expressedin the phloem (Hirakawa et al., 2008; Etchells and Turner, 2010), and TDIF protein can be detected in the extracellular space aroundphloem precursor cells (Hirakawa etal., 2008). In contrast, PXY is specifically expressed in the adjacent vascular procambium (Fisher and Turner, 2007). Thus TDIFsignals in a non-cell autonomous fashion from phloem cells to inducethe proliferation and suppress the differentiation of the neighboringprocambial cells. At the molecular level CLE41 signaling negativelyregulates PXY expression in inflorescencestems (Etchells and Turner, 2010). Such ligand-mediated repression of receptor gene expression alsooccurs in animal systems to shape the gradient of ligand activityacross tissues (Cadigan et al., 1998).

Several groups have recently reportedthe crystal structure of the TDIF-PXY ligand-receptor complex (Morita et al., 2016; Zhang et al., 2016; Li et al., 2017). The TDIF peptideconsists of 12 amino acids, including two hydroxyproline (Hyp) residues(Ito et al., 2006),whereas PXY belongs to the class XI subfamily of LRR-RLKs and is composedof an extracellular LRR domain, a transmembrane domain and a cytoplasmickinase domain. Resolution of the PXY extracellular domain crystalstructure revealed that it forms a twisted superhelix consisting of22 LRR motifs, with N-terminal and C-terminal capped ends that areinvolved in stabilizing the structure (Morita et al., 2016; Zhang et al., 2016). TDIF was found to adopt an extendedconfirmation that fits in a shallow groove along the LRR4-LRR15 motifson the inner concave surface of the PXY extracellular domain. A horseshoe-shapedkink around the Gly6-Hyp7 residues in the middle of the peptide is recognized by a complimentarilyshaped pocket formed by residues in LRR8, LRR9 and LRR11 and is criticalfor the TDIF-PXY interaction.

The crystal structures provide importantinsights into the mechanisms of CLE ligand-receptor binding. The kink-formingresidues of TDIF are highly conserved among the CLE family peptides,and the Gly6 residue is required for thebinding of TDIF to PXY (Li et al.,2017). Mutations in Gly6 reducethe activity of TDIF as well as several other CLE peptides, includingCLV3 and CLE3 (Fletcher et al., 1999; Ito et al., 2006).Further, the residues in the kink recognition pocket of PXY are conservedamong CLE receptors such as CLV1 and BAM1/2/3 (Morita et al., 2016; Li et al., 2017), suggesting thatthis interface may function as a feature for general recognition ofCLE ligands by their receptors. In contrast, the His1 and Asn12 residues at the ends of thepeptide appear to be important for the discrimination of TDIF fromother CLE molecules by the PXY receptor (Morita et al., 2016; Li et al., 2017).

Downstream components of TDIF signaling

The dual functions of TDIF-PXY signalingin shoot vascular development are mediated by distinct downstreamcomponents. A key downstream target of TDIF-PXY signaling to directprocambial cell proliferation is WOX4, which is expressed in the vascular procambium and cambium (Hirakawa et al., 2010; Etchells et al., 2013). WOX4 is rapidly induced by exogenous applicationof TDIF in a PXY-dependent fashion (Hirakawa et al., 2010), and promotes procambial celldivision (Ji et al., 2010; Suer et al., 2011). The WOX14 gene acts redundantlywith WOX4 to promote procambialcell division but not vascular organization (Etchells et al., 2013). This alongwith the data that the PXY-ER genetic interaction affects vascularorganization but not vascular cell division indicates that these aregenetically separable processes that may be regulated by CLE-WOX signalingmodules with some shared and some unique constituents.

WOX4 is not required, however, for the suppression of xylem differentiationby TDIF (Hirakawa et al., 2010). Instead, at the plasma membrane of procambial cells, the PXY receptorkinase physically associates with and promotes the kinase activityof BRASSINOSTEROID-INSENSITIVE 2 (BIN2) and other members of the GLYCOGENSYNTHASE KINASE 3 (GSK3) family of proteins in a TDIF-dependent manner(Kondo et al., 2014).The GSK3 proteins, which also function in brassinosteroid signaling,act redundantly to inhibit procambial cell differentiation into xylemby repressing the activity of the transcription factor BES1. Giventhat brassinosteroids also promote xylem cell differentiation (Caño-Delgado et al., 2004; Yamamoto et al., 2007), furtherstudies should uncover the extent of crosstalk between the differentsignal transduction pathways.

Finally, the role of the TDIF/PXYpathway in shoot vascular development in trees, which produce woodvia the differentiation of procambium cells into xylem, has been investigatedby cloning PtCLE41 and PtPXY from hybrid aspen (Etchells et al., 2015). Molecularcomplementation experiments showed that both PtCLE41 and PtPXY arefunctional orthologs of the corresponding Arabidopsis genes. Tissue-specific overexpression of PtCLE41 and PtPXY in hybrid aspen produced taller trees with a twofold increase inthe rate of wood formation and increased overall woody biomass, indicatingthat the CLE41 signaling pathway functions to regulate secondary growthin trees by controlling procambial activity. Such knowledge may beexploited to enhance secondary growth and wood formation in commerciallygrown tree species.

Perspectives and frontiers

Functional analysis of CLE peptideligands will become increasingly important as systematic genome-wideanalyses continue to identify CLE gene families in agriculturally valuable crop species. Recently,84 CLE peptide-encoding genes wereidentified in soybean (Glycine max) and 44 in common bean (Phaseolus vulgaris) (Hastwell et al., 2015). Phylogenetic analyses of the soybean, common bean and Arabidopsis pre-propeptide sequences yieldedseven distinct groups based on their CLE domain sequence and predictedfunction, enabling the distinguishing of soybean and common bean orthologsof the Arabidopsis CLV3, CLE40and the TDIF peptides. In poplar (Populustrichocarpa), genome-wide analysis identified a total of50 CLE genes (Han et al., 2016), adding 24 genesto those found in a previous study (Oelkers et al., 2008). The first systematic analysisof CLE genes in gymnosperms identified93 CLE genes among eight coniferspecies (Strabala et al., 2014). In this case, only the TDIF peptide sequence was completely conservedbetween gymnosperms and angiosperms. Two TDIF orthologs from Pinus radiata were shown to be expressedin the root and in the phloem of the inflorescence stem, suggestinga possible conserved role for TDIF peptides in regulating vascularcambium development between dicots and conifers whose ancestors divergedover 270 million years ago (Bowe etal., 2000).

In addition, a phenetic method wasused to identify 1628 CLE genesfrom 57 different plant genomes (Goadet al., 2016). This study found two additional CLE genes in soybean, two in poplar, and19 more in maize (Zea mays) thanpreviously reported (Je et al., 2016). Up to nine CLE genes were identifiedin mosses and lycophytes, but none were detected in green algae. Clusteringanalysis based on the full pre-propeptide sequences generated 12 groupsof CLE proteins sequences, with CLE peptides known to be involvedin meristem activity, vascular development or nodulation clusteringtogether. However, these studies underscore how little informationis available about the biological functions of the vast majority ofCLE peptide ligands.

The advent of genome engineeringthrough the CRISPR-Cas9 system (Fenget al., 2013; Nekrasovet al., 2013) has the potential to dramatically accelerateour understanding of CLE gene functionin plants. Unlike other methods such as TILLING (McCallum et al., 2000) or transposonmutagenesis, the small size of the CLE coding sequences is not an impediment to generating null mutationsusing the CRISPR-Cas9 system. Moreover, multiple CLE genes that show tight genetic linkage and/or stronglyoverlapping expression patterns can be targeted simultaneously, helpingto surmount the widespread functional redundancy that occurs among CLE family members (Jun et al., 2010). The applicationof genome editing to CLE genesin both model plants and crop systems will provide valuable new insightsinto the mechanisms of cell-to-cell communication in plants as wellas an expanded toolkit for augmenting crop plant growth and resiliencein response to global climate change.

References

[1]

Bedford M TClarke  S G (2009). Protein arginine methylation in mammals: who, what, and why. Mol Cell33(1): 1–13

[2]

Bergeron J J M Di Guglielmo G M Dahan S Dominguez M Posner B I (2016). Spatial and temporal regulation of receptor tyrosine kinase activationand intracellular signal transduction. Annu Rev Biochem85(1): 573–597

[3]

Betsuyaku STakahashi  FKinoshita A Miwa HShinozaki  KFukuda H Sawa S (2011). Mitogen-activated protein kinaseregulated by the CLAVATA receptors contributes to shoot apical meristemhomeostasis. Plant Cell Physiol52(1): 14–29

[4]

Blackwell T K Kretzner L Blackwood E M Eisenman R N Weintraub H (1990). Sequence-specific DNA binding by the c-Myc protein. Science250(4984): 1149–1151

[5]

Bleckmann AWeidtkamp-Peters  SSeidel C A M Simon R (2010). Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol152(1): 166–176

[6]

Bommert PNagasawa  N SJackson  D (2013). Quantitative variation in maize kernel row number is controlled by the FASCIATEDEAR2 locus. Nat Genet45(3): 334–337

[7]

Bowe L MCoat  GdePamphilis C W (2000). Phylogeny of seed plants based on all three genomic compartments: extant gymnospermsare monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA97(8): 4092–4097

[8]

Brand UFletcher  J CHobe  MMeyerowitz E M Simon R (2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulatedby CLV3 activity. Science289(5479): 617–619

[9]

Breuninger HRikirsch  EHermann M Ueda MLaux  T (2008). Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Dev Cell14(6): 867–876

[10]

Busch WMiotk  AAriel F D Zhao ZForner  JDaum G Suzaki T Schuster C Schultheiss S J Leibfried A Haubeiss S Ha NChan  R LLohmann  J U (2010). Transcriptional control of a plant stem cell niche. Dev Cell18(5): 849–861

[11]

Cadigan K MFish  M PRulifson  E JNusse  R (1998). Wingless repression of Drosophila frizzled 2 expression shapes theWingless morphogen gradient in the wing. Cell93(5): 767–777

[12]

Caño-Delgado A Yin YYu  CVafeados D Mora-García S Cheng J C Nam K H Li JChory  J (2004). BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiationin Arabidopsis. Development131(21): 5341–5351

[13]

Casamitjana-Martínez E Hofhuis H F Xu JLiu  C MHeidstra  RScheres B (2003). Root-specific CLE19 overexpression and the sol1/2 suppressors implicate a CLV-like pathwayin the control of Arabidopsis root meristem maintenance. Curr Biol13(16): 1435–1441

[14]

Chen M KWilson  R LPalme  KDitengou F A Shpak E D (2013). ERECTA family genes regulate auxin transport in the shoot apical meristemand forming leaf primordia. Plant Physiol162(4): 1978–1991

[15]

Clark S ERunning  M PMeyerowitz  E M (1993). CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development119(2): 397–418

[16]

Clark S ERunning  M PMeyerowitz  E M (1995). CLAVATA3 is a specific regulator of shoot and floral meristem development affectingthe same processes as CLAVATA1. Development121: 2057–2067

[17]

Clark S EWilliams  R WMeyerowitz  E M (1997). The CLAVATA1 gene encodes a putative receptorkinase that controls shoot and floral meristem size in Arabidopsis. Cell89(4): 575–585

[18]

Cock J MMcCormick  S (2001). A large family of genes that share homology with CLAVATA3. PlantPhysiol126(3): 939–942

[19]

Daum GMedzihradszky  ASuzaki T Lohmann J U (2014). A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci USA111(40): 14619–14624

[20]

DeYoung B JBickle  K LSchrage  K JMuskett  PPatel K Clark S E (2006). The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem functionin Arabidopsis. Plant J45(1): 1–16

[21]

DeYoung B JClark  S E (2008). BAM receptors regulate stem cell specification and organ developmentthrough complex interactions with CLAVATA signaling. Genetics180(2): 895–904

[22]

Diévart ADalal  MTax F E Lacey A D Huttly A Li JClark  S E (2003). CLAVATA1 dominant-negative alleles reveal functional overlap betweenmultiple receptor kinases that regulate meristem and organ development. Plant Cell15(5): 1198–1211

[23]

Dobrenel TCaldana  CHanson J Robaglia C Vincentz M Veit BMeyer  C (2016). Tor signaling and nutrient sensing. Ann Rev Plant Biol67 (1): 261

[24]

Doebley J FGaut  B SSmith  B D (2006). The molecular geneticsof crop domestication. Cell127(7): 1309–1321

[25]

Dolzblasz ANardmann  JClerici E Causier B van der Graaff E Chen JDavies  BWerr W Laux T (2016). Stem cell regulationby Arabidopsis WOX genes. Mol Plant9(7): 1028–1039

[26]

Durbak A RTax  F E (2011). CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well asin meristems. Genetics189(1): 177–194

[27]

Engstrom E MAndersen  C MGumulak-Smith  JHu J Orlova E Sozzani R Bowman J L (2011). Arabidopsis homologs of the petunia HAIRY MERISTEM gene are required for maintenanceof shoot and root indeterminacy. Plant Physiol155(2): 735–750

[28]

Etchells J PMishra  L SKumar  MCampbell L Turner S R (2015). Wood formation in trees is increased by manipulating PXY-regulated celldivision. Curr Biol25(8): 1050–1055

[29]

Etchells J PProvost  C MMishra  LTurner S R (2013). WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independentlyof any role in vascular organisation. Development140(10): 2224–2234

[30]

Etchells J PTurner  S R (2010). The PXY-CLE41 receptor ligand pair defines a multifunctional pathwaythat controls the rate and orientation of vascular cell division. Development137(5): 767–774

[31]

Fan CWu  YYang Q Yang YMeng  QZhang K Li JWang  JZhou Y (2014). A novel single-nucleotide mutation in a CLAVATA3 gene homolog controls a multilocularsilique trait in Brassica rapa L. MolPlant7(12): 1788–1792

[32]

Feng ZZhang  BDing W Liu XYang  D LWei  PCao F Zhu SZhang  FMao Y Zhu J K (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Res23(10): 1229–1232

[33]

Fisher KTurner  S (2007). PXY, a receptor-like kinase essential for maintaining polarity duringplant vascular-tissue development. Curr Biol17(12): 1061–1066

[34]

Fletcher J CBrand  URunning M P Simon R Meyerowitz E M (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science283(5409): 1911–1914

[35]

Furner I JPumfrey  J E (1992). Cell fate in the shoot apical meristem of Arabidopsis thaliana. Development115: 755–764

[36]

Gifford E M (1954). The shoot apex in angiosperms. Bot Rev20(8): 429–447

[37]

Goad D MZhu  CKellogg E A (2017). Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groupswith potentially shared function. New Phytol216(2):605–616

[38]

Gordon S PChickarmane  V SOhno  CMeyerowitz E M (2009). Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA106(38): 16529–16534

[39]

Grooteclaes M L Frisch S M (2000). Evidence for a function of CtBP in epithelial gene regulation andanoikis. Oncogene19(33): 3823–3828

[40]

Guo YHan  LHymes M Denver R Clark S E (2010). CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. Plant J63(6): 889–900

[41]

Han HZhang  GWu M Wang G (2016). Identification and characterization of the Populus trichocarpa CLE family. BMC Genomics17(1): 174

[42]

Hastwell A HGresshoff  P MFerguson  B J (2015). Genome-wide annotation and characterization of CLAVATA/ESR (CLE) peptide hormonesof soybean (Glycine max) and common bean (Phaseolus vulgaris), and their orthologues of Arabidopsis thaliana. J Exp Bot66(17): 5271–5287

[43]

Hirakawa YKondo  YFukuda H (2010). TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell22(8): 2618–2629

[44]

Hirakawa YShinohara  HKondo Y Inoue A Nakanomyo I Ogawa M Sawa SOhashi-Ito  KMatsubayashi Y Fukuda H (2008). Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system. Proc Natl Acad Sci USA105(39): 15208–15213

[45]

Ikeda MMitsuda  NOhme-Takagi M (2009). Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressorin stem cell regulation and as an activator in floral patterning. Plant Cell21(11): 3493–3505

[46]

Irish V FSussex  I M (1992). A fate map of the Arabidopsis embryonic shoot apical meristem. Development115: 745–753

[47]

Ishida TTabata  RYamada M Aida MMitsumasu  KFujiwara M Yamaguchi K Shigenobu S Higuchi M Tsuji H Shimamoto K Hasebe M Fukuda H Sawa S (2014). Heterotrimeric G proteins controlstem cell proliferation through CLAVATA signaling in Arabidopsis. EMBORep15(11): 1202–1209

[48]

Ito YNakanomyo  IMotose H Iwamoto K Sawa SDohmae  NFukuda H (2006). Dodeca-CLE peptides as suppressors of plant stem celldifferentiation. Science313(5788): 842–845

[49]

Je B IGruel  JLee Y K Bommert P Arevalo E D Eveland A L Wu QGoldshmidt  AMeeley R Bartlett M Komatsu M Sakai H Jönsson H Jackson D (2016). Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cellproliferation and yield traits. Nat Genet48(7): 785–791

[50]

Jeong STrotochaud  A EClark  S E (1999). The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stabilityof the CLAVATA1 receptor-like kinase. Plant Cell11(10): 1925–1934

[51]

Ji JStrable  JShimizu R Koenig D Sinha N Scanlon M J (2010). WOX4 promotes procambial development. Plant Physiol152(3): 1346–1356

[52]

Jun JFiume  ERoeder A H K Meng LSharma  V KOsmont  K SBaker  CHa C M Meyerowitz E M Feldman L J Fletcher J C (2010). Comprehensive analysis of CLE polypeptide signaling gene expression and overexpressionactivity in Arabidopsis. Plant Physiol154(4): 1721–1736

[53]

Kayes J MClark  S E (1998). CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development125(19): 3843–3851

[54]

Kieffer MStern  YCook H Clerici E Maulbetsch C Laux TDavies  B (2006). Analysis of the transcription factor WUSCHEL and its functional homologuein Antirrhinum reveals a potentialmechanism for their roles in meristem maintenance. Plant Cell18(3): 560–573

[55]

Kinoshita ABetsuyaku  SOsakabe Y Mizuno S Nagawa S Stahl Y Simon R Yamaguchi-Shinozaki K Fukuda H Sawa S (2010). RPK2 is an essential receptor-like kinase that transmitsthe CLV3 signal in Arabidopsis. Development137(22): 3911–3920

[56]

Kinoshita ASeo  MKamiya Y Sawa S (2015). Mystery in genetics: PUB4 gives a clue to the complexmechanism of CLV signaling pathway in the shoot apical meristem. Plant Signal Behav10(6): e1028707

[57]

Kondo TSawa  SKinoshita A Mizuno S Kakimoto T Fukuda H Sakagami Y (2006). A plant peptide encoded by CLV3 identified by in situMALDI-TOF MS analysis. Science313(5788): 845–848

[58]

Kondo YIto  TNakagami H Hirakawa Y Saito M Tamaki T Shirasu K Fukuda H (2014). Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDRsignalling. Nat Commun5: 3504

[59]

Kuittinen HAguadé  M (2000). Nucleotide variation at the CHALCONE ISOMERASE locusin Arabidopsis thaliana. Genetics155(2): 863–872

[60]

Laux TMayer  K F XBerger  JJürgens G (1996). The WUSCHEL gene is required for shoot and floral meristemintegrity in Arabidopsis. Development122(1): 87–96

[61]

Lease K AWalker  J C (2006). The Arabidopsis unannotated secretedpeptide database, a resource for plant peptidomics. Plant Physiol142(3): 831–838

[62]

Leibfried ATo  J P CBusch  WStehling S Kehle A Demar M Kieber J J Lohmann J U (2005). WUSCHEL controls meristem function by direct regulation of cytokinin-inducible responseregulators. Nature438(7071): 1172–1175

[63]

Li ZChakraborty  SXu G (2017). Differential CLE peptide perception by plant receptors implicated from structuraland functional analyses of TDIF-TDR interactions. PLoS One12(4): e0175317

[64]

Long J AOhno  CSmith Z R Meyerowitz E M (2006). TOPLESS regulates apical embryonic fate in Arabidopsis. Science312(5779): 1520–1523

[65]

Mandel TCandela  HLandau U Asis LZelinger  ECarles C C Williams L E (2016). Differential regulation of meristem size, morphology and organization by the ERECTA, CLAVATA and classIII HD-ZIP pathways. Development143(9): 1612–1622

[66]

Mandel TMoreau  FKutsher Y Fletcher J C Carles C C Eshed Williams L (2014). The ERECTA receptor kinase regulates Arabidopsis shoot apical meristem size, phyllotaxy and floral meristem identity. Development141(4): 830–841

[67]

Matsubayashi Y (2014). Posttranslationally modified small-peptidesignals in plants. Annu Rev Plant Biol65(1): 385–413

[68]

Mayer K F X Schoof H Haecker A Lenhard M Jürgens G Laux T (1998). Role of WUSCHEL in regulating stemcell fate in the Arabidopsis shoot meristem. Cell95(6): 805–815

[69]

McCallum C MComai  LGreene E A Henikoff S (2000). Targeting Induced Local Lesions IN Genomes (TILLING)for plant functional genomics. Plant Physiol123(2): 439–442

[70]

Meng LRuth  K CFletcher  J CFeldman  L (2010). The roles of different CLE domainsin Arabidopsis CLE polypeptideactivity and functional specificity. Mol Plant3(4): 760–772

[71]

Morita JKato  KNakane T Kondo Y Fukuda H Nishimasu H Ishitani R Nureki O (2016). Crystal structure of the plant receptor-like kinase TDR in complex with theTDIF peptide. Nat Comm7:12383

[72]

Müller RBleckmann  ASimon R (2008). The receptor kinase CORYNE of Arabidopsis transmits the stem cell-limiting signal CLAVATA3 independently of CLAVATA1. Plant Cell20(4): 934–946

[73]

Nekrasov VStaskawicz  BWeigel D Jones J D G Kamoun S (2013). Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol31(8): 691–693

[74]

Ni JClark  S E (2006). Evidence for functional conservation, sufficiency, and proteolyticprocessing of the CLAVATA3 CLE domain. Plant Physiol140(2): 726–733

[75]

Ni JGuo  YJin H Hartsell J Clark S E (2011). Characterization of a CLE processing activity. Plant Mol Biol75(1-2): 67–75

[76]

Nimchuk Z L (2017). CLAVATA1 controls distinct signalingoutputs that buffer shoot stem cell proliferation through a two-steptranscriptional compensation loop. PLoS Genet13(3): e1006681

[77]

Nimchuk Z LTarr  P TMeyerowitz  E M (2011a). An evolutionarilyconserved pseudokinase mediates stem cell production in plants. Plant Cell23(3): 851–854

[78]

Nimchuk Z LTarr  P TOhno  CQu X Meyerowitz E M (2011b). Plant stem cell signaling involves ligand-dependent trafficking of the CLAVATA1receptor kinase. Curr Biol21(5): 345–352

[79]

Nimchuk Z LZhou  YTarr P T Peterson B A Meyerowitz E M (2015). Plant stem cell maintenance by transcriptional cross-regulation of relatedreceptor kinases. Development142(6): 1043–1049

[80]

Oelkers KGoffard  NWeiller G F Gresshoff P M Mathesius U Frickey T (2008). Bioinformatic analysis of the CLE signaling peptide family. BMC Plant Biol8(1): 1

[81]

Ogawa MShinohara  HSakagami Y Matsubayashi Y (2008). Arabidopsis CLV3 peptide directlybinds CLV1 ectodomain. Science319(5861): 294

[82]

Ohta MMatsui  KHiratsu K Shinshi H Ohme-Takagi M (2001). Repression domains of class II ERF transcriptional repressors share an essentialmotif for active repression. Plant Cell13(8): 1959–1968

[83]

Ohyama KShinohara  HOgawa-Ohnishi M Matsubayashi Y (2009). A glycopeptide regulating stem cell fate in Arabidopsis thaliana. Nat Chem Biol5(8): 578–580

[84]

Perales MRodriguez  KSnipes S Yadav R K Diaz-Mendoza M Reddy G V (2016). Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. Proc Natl Acad Sci USA113(41): E6298–E6306

[85]

Pfeiffer AJanocha  DDong Y Medzihradszky A Schöne S Daum GSuzaki  TForner J Langenecker T Rempel E Schmid M Wirtz M Hell RLohmann  J U (2016). Integration of light and metabolic signals for stem cell activation at the shootapical meristem. eLife5: e17023

[86]

Poethig R S (1987). Clonal analysis of cell lineage patternsin plant development. Am J Bot74(4): 581–194

[87]

Poethig R SCoe  E H J Jr, Johri  M M (1986). Cell lineage patterns in maize Zea mays embryogenesis: A clonal analysis. Dev Biol117(2): 392–404

[88]

Poethig R SSussex  I M (1985a). The cellular parameters of leaf development in tobacco:a clonal analysis. Planta165(2): 170–184

[89]

Poethig R SSussex  I M (1985b). The developmental morphology and growth dynamics ofthe tobacco leaf. Planta165(2): 158–169

[90]

Prigge M JOtsuga  DAlonso J M Ecker J R Drews G N Clark S E (2005). Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct rolesin Arabidopsis development. Plant Cell17(1): 61–76

[91]

Reddy G VMeyerowitz  E M (2005). Stem-cell homeostasis and growth dynamics can be uncoupledin the Arabidopsis shoot apex. Science310(5748): 663–667

[92]

Rodriguez KPerales  MSnipes S Yadav R K Diaz-Mendoza M Reddy G V (2016). DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilizationcontrol WUSCHEL levels and spatial patterning. Proc Natl Acad Sci USA113(41): E6307–E6315

[93]

Rojo ESharma  V KKovaleva  VRaikhel N V Fletcher J C (2002). CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell14(5): 969–977

[94]

Satina SBlakeslee  A FAvery  A G (1940). Demonstration of the three germ layers in the shoot apex of Datura by means of inducedpolyploidy in periclinal chimeras. Am J Bot27(10): 895–905

[95]

Schoof HLenhard  MHaecker A Mayer K F X Jürgens G Laux T (2000). The stemcell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell100(6): 635–644

[96]

Schuster CGaillochet  CMedzihradszky A Busch W Daum GKrebs  MKehle A Lohmann J U (2014). A regulatory framework for shoot stem cell control integrating metabolic, transcriptional,and phytohormone signals. Dev Cell28(4): 438–449

[97]

Sharma V KRamirez  JFletcher J C (2003). The Arabidopsis CLV3-like (CLE) genes are expressedin diverse tissues and encode secreted proteins. Plant Mol Biol51(3): 415–425

[98]

Shimizu NIshida  TYamada M Shigenobu S Tabata R Kinoshita A Yamaguchi K Hasebe M Mitsumasu K Sawa S (2015). BAM 1 and RECEPTOR-LIKE PROTEIN KINASE 2 constitute a signaling pathwayand modulate CLE peptide-triggered growth inhibition in Arabidopsis root. New Phytol208(4): 1104–1113

[99]

Shinohara HMatsubayashi  Y (2013). Chemical synthesis of Arabidopsis CLV3 glycopeptide reveals the impact of hydroxyproline arabinosylation on peptide conformationand activity. Plant Cell Physiol54(3): 369–374

[100]

Shinohara HMatsubayashi  Y (2015). Reevaluation of the CLV3-receptor interaction in theshoot apical meristem: dissection of the CLV3 signaling pathway froma direct ligand-binding point of view. Plant J82(2): 328–336

[101]

Shiu S HBleecker  A B (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA98(19): 10763–10768

[102]

Smith Z RLong  J A (2010). Control of Arabidopsis apical-basal embryo polarity by antagonistic transcription factors. Nature464(7287): 423–426

[103]

Somssich MJe  B ISimon  RJackson D (2016). CLAVATA-WUSCHEL signaling in the shoot meristem. Development143(18): 3238–3248

[104]

Somssich MMa  QWeidtkamp-Peters S Stahl Y Felekyan S Bleckmann A Seidel C A M Simon R (2015). Real-time dynamics of peptide ligand-dependent receptor complex formationin planta. Sci Signal8(388): ra76

[105]

Song S KLee  M MClark  S E (2006). POL and PLL1 phosphatasesare CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development133(23): 4691–4698

[106]

Song X FXu  T TRen  S CLiu  C M (2013). Individual amino acid residues in CLV3 peptide contributeto its stability in vitro. Plant Signal Behav8(9): 8

[107]

Song X FYu  D LXu  T TRen  S CGuo  PLiu C M (2012). Contributions of individual amino acid residues to the endogenous CLV3 function in shoot apical meristemmaintenance in Arabidopsis. Mol Plant5(2): 515–523

[108]

Steeves T ASussex  I M (1989). Patterns in Plant Development. New York: Cambridge University Press.

[109]

Strabala T JPhillips  LWest M Stanbra L (2014). Bioinformatic and phylogenetic analysis of the CLAVATA3/EMBRYO-SURROUNDING REGION (CLE) and the CLE-LIKE signal peptide genes in the Pinophyta. BMC Plant Biol14(1): 47

[110]

Stuurman JJäggi  FKuhlemeier C (2002). Shoot meristem maintenance is controlled by a GRAS-gene mediated signalfrom differentiating cells. Genes Dev16(17): 2213–2218

[111]

Suer SAgusti  JSanchez P Schwarz M Greb T (2011). WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell23(9): 3247–3259

[112]

Sussex I M (1954). Experiments on the cause of dorsiventralityin leaves. Nature174(4425): 351–352

[113]

Szemenyei HHannon  MLong J A (2008). TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science319(5868): 1384–1386

[114]

Tavormina PDe Coninck  BNikonorova N De Smet I Cammue B P (2015). The plant peptidome: an expanding repertoire of structural featuresand biological functions. Plant Cell27(8): 2095–2118

[115]

To J P C Haberer G Ferreira F J Deruère J Mason M G Schaller G E Alonso J M Ecker J R Kieber J J (2004). Type-A Arabidopsis response regulators are partiallyredundant negative regulators of cytokinin signaling. Plant Cell16(3): 658–671

[116]

Trotochaud A E Hao TWu  GYang Z Clark S E (1999). The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complexthat includes KAPP and a Rho-related protein. Plant Cell11(3): 393–406

[117]

Uchida NShimada  MTasaka M (2013). ERECTA-family receptor kinases regulate stem cell homeostasis via buffering itscytokinin responsiveness in the shoot apical meristem. Plant Cell Physiol54(3): 343–351

[118]

Urano DJones  A M (2014). Heterotrimeric G protein-coupled signaling in plants. Annu Rev Plant Biol65(1): 365–384

[119]

Wang XMitchum  M GGao  BLi C Diab HBaum  T JHussey  R SDavis  E L (2005). A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR (CLE) of Arabidopsis thaliana. Mol Plant Pathol6(2): 187–191

[120]

Whitford RFernandez  ADe Groodt R Ortega E Hilson P (2008). Plant CLE peptides from two distinct functional classes synergisticallyinduce division of vascular cells. Proc Natl Acad Sci USA105(47): 18625–18630

[121]

Williams R WWilson  J MMeyerowitz  E M (1997). A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway. Proc Natl Acad Sci USA94(19): 10467–10472

[122]

Xu CLiberatore  K LMacAlister  C AHuang  ZChu Y H Jiang K Brooks C Ogawa-Ohnishi M Xiong G Pauly M Van Eck J Matsubayashi Y van der Knaap E Lippman Z B (2015). A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat Genet47(7): 784–792

[123]

Xu T TSong  X FRen  S CLiu  C M (2013). The sequence flanking the N-terminus of the CLV3 peptideis critical for its cleavage and activity in stem cell regulationin Arabidopsis. BMC Plant Biol13(1): 225

[124]

Yadav R KPerales  MGruel J Girke T Jönsson H Reddy G V (2011). WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. Genes Dev25(19): 2025–2030

[125]

Yadav R KPerales  MGruel J Ohno CHeisler  MGirke T Jönsson H Reddy G V (2013). Plant stem cell maintenance involves direct transcriptional repressionof differentiation program. Mol Syst Biol9(1): 654

[126]

Yamamoto RFujioka  SIwamoto K Demura T Takatsuto S Yoshida S Fukuda H (2007). Co-regulation of brassinosteroid biosynthesis-related genes during xylem cell differentiation. Plant Cell Physiol48(1): 74–83

[127]

Yue MLi  QZhang Y Zhao YZhang  ZBao S (2013). Histone H4R3 methylation catalyzed by SKB1/PRMT5 is required for maintaining shoot apical meristem. PLoS One8(12): e83258

[128]

Zhang HLin  XHan Z Qu L J Chai J (2016). Crystalstructure of PXY-TDIF complex reveals a conserved recognition mechanismamong CLE peptide-receptor pairs. Cell Res26(5): 543–555

[129]

Zhang ZTucker  EHermann M Laux T (2017). A molecular framework for the embryonic initiation ofshoot meristem stem cells. Dev Cell40(3): 264–277.e4

[130]

Zhou YLiu  XEngstrom E M Nimchuk Z L Pruneda-Paz J L Tarr P T Yan AKay  S AMeyerowitz  E M (2015). Control of plant stem cell function by conserved interacting transcriptionalregulators. Nature517(7534): 377–380

[131]

Zhu YWang  YLi R Song XWang  QHuang S Jin J B Liu C M Lin J (2010). Analysis of interactions among the CLAVATA3 receptors reveals a directinteraction between CLAVATA2 and CORYNE in Arabidopsis. Plant J61(2): 223–233

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag BerlinHeidelberg

AI Summary AI Mindmap
PDF (1130KB)

1961

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/