Thiamine deficiency perturbed energy metabolism enzymes in brain mitochondrial fraction of Swiss mice

Anupama Sharma , Renu Bist , Surender Singh

Front. Biol. ›› 2017, Vol. 12 ›› Issue (4) : 290 -297.

PDF (676KB)
Front. Biol. ›› 2017, Vol. 12 ›› Issue (4) : 290 -297. DOI: 10.1007/s11515-017-1457-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Thiamine deficiency perturbed energy metabolism enzymes in brain mitochondrial fraction of Swiss mice

Author information +
History +
PDF (676KB)

Abstract

BACKGROUND: Thiamine is an essential cofactor associated with several enzymes in energy metabolism and its deficiency may lead to neurological deficits. Current research evaluated the biochemical and molecular changes in TCA cycle enzymes using the mitochondrial fraction of the brain following thiamine deficiency (TD) in mice.

METHODS: The investigation was carried out on Swiss mice (6-8 week old) allocated into three groups. First group was control; second and third group were made thiamine deficient for 8 and 10 days.

RESULTS: Current study showed that alpha-ketoglutarate dehydrogenase (KGDHC) (thiamine-dependent enzyme) level found to be significantly reduced in experimental groups as compared to control group. In comparison to control group, a significant decrease in the succinate dehydrogenase (SDH) activity was calculated in group II and group III (p<0.0001) mice. Diminished enzymatic activity of fumarase and MDH enzyme in thiamine deficient groups exposed for 8 and 10 days was calculated as compared to control group. The expression analysis of different genes governing TCA cycle enzymes in different experimental groups showed that there was a negotiable change in the expression of fumarase and DLD (dihydrolipoyl dehydrogenase- E3 subunit of KGDHC) whereas a declined in the expression of SDH and two subunits of KGDHC i.e. OGDH (2-oxoglutarate dehydrogenase- E1 subunit of KGDHC) and DLST (dihydrolipoyllysine-residue succinyltransferase- E2 subunit of KGDHC) was observed as compared to control group.

CONCLUSIONS: Hence, current findings strongly entail that TD promotes alteration in energy metabolism in brain mitochondria which will decline the neuronal progression which may lead to neurodegenerative diseases such as Alzheimer’s diseases.

Keywords

thiamine / brain / TCA cycle enzymes / mitochondrial dysfunction

Cite this article

Download citation ▾
Anupama Sharma, Renu Bist, Surender Singh. Thiamine deficiency perturbed energy metabolism enzymes in brain mitochondrial fraction of Swiss mice. Front. Biol., 2017, 12(4): 290-297 DOI:10.1007/s11515-017-1457-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bist RMisra  SBhatt D K  (2010). Inhibition of lindane-induced toxicity using alpha-lipoic acid and vitamin E in the brain of Mus musculus. Protoplasma242(1-4): 49–53

[2]

Bogdan A S (1983). Effect of small amounts of 2,4-dichlorophenoxyacetic acid derivatives on thiamine and riboflavin metabolism in the animal body. Vopr Pitan, (2): 59–62 

[3]

Bubber PKe  Z JGibson  G E (2004). Tricarboxylic acid cycle enzymes following thiamine deficiency. Neurochem Int45(7): 1021–1028

[4]

Capettini L S Cortes S F Gomes M A Silva G A Pesquero J L Lopes M J Teixeira M M Lemos V S  (2008). Neuronal nitric oxide synthase-derived hydrogen peroxide is a major endothelium-dependent relaxing factor. Am J Physiol Heart Circ Physiol295(6): H2503–H2511

[5]

Dror VEliash  SRehavi M Assaf Y Biton I E Fattal-Valevski A  (2010). Neurodegeneration in thiamine deficient rats-A longitudinal MRI study. Brain Res1308: 176–184

[6]

Eliash SDror  VCohen S Rehavi M  (2009). Neuroprotection by rasagiline in thiamine deficient rats. Brain Res1256: 138–148

[7]

Gibson G EBlass  J P (2007). Thiamine-dependent processes and treatment strategies in neurodegeneration. Antioxid Redox Signal9(10): 1605–1619

[8]

Gibson G EHirsch  J ACirio  R TJordan  B DFonzetti  PElder J  (2013). Abnormal thiamine-dependent processes in Alzheimer’s Disease. Lessons from diabetes. Mol Cell Neurosci55: 17–25

[9]

Gibson G EKsiezak-Reding  HSheu K F Mykytyn V Blass J P  (1984). Correlation of enzymatic, metabolic, and behavioral deficits in thiamin deficiency and its reversal. Neurochem Res9(6): 803–814

[10]

Gibson G EPark  L CSheu  K FBlass  J PCalingasan  N Y (2000). The alpha-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem Int36(2): 97–112

[11]

Gibson G ESheu  K FBlass  J PBaker  ACarlson K C Harding B Perrino P  (1988). Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol45(8): 836–840

[12]

Gibson G EStarkov  ABlass J P Ratan R R Beal M F  (2010). Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases. Biochim Biophys Acta1802(1): 122–134

[13]

Hill R LBradshaw  R A (1969) Fumarase. In: Lowenstein, J.M. (Ed.). Methods Enzymol13: 91–92

[14]

Ke Z JDeGiorgio  L AVolpe  B TGibson  G E (2003). Reversal of thiamine deficiency-induced neurodegeneration. J Neuropathol Exp Neurol62(2): 195–207

[15]

Kitto G B (1969) Intra and extra mitochondrial malate dehydrogenases from chicken heart. Methods Enzymol13: 106–116

[16]

Kruse MNavarro  DDesjardins P Butterworth R F  (2004). Increased brain endothelial nitric oxide synthase expression in thiamine deficiency: relationship to selective vulnerability. Neurochem Int45(1): 49–56

[17]

Liu DKe  ZLuo J  (2016) Thiamine deficiency and neurodegeneration: The Interplay among oxidative stress, endoplasmic reticulum stress, autophagy. J Mol Neurobiol

[18]

Lyubarev A EKurganov  B I (1989). Supramolecular organization of tricarboxylic acid cycle enzymes. Biosystems22(2): 91–102

[19]

Mailloux RJBeriault  RLemire J Singh R Chenier D R  (2007). The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS One8 Suppl e690: 1–10

[20]

Mergenthaler PLindauer  UDienel G A Meisel A  (2013). Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci36(10): 587–597

[21]

Nakano KMatuda  SYamanaka T Tsubouchi H Nakagawa S Titani K Ohta SMiyata  T (1991). Purification and molecular cloning of succinyltransferase of the rat alpha-ketoglutarate dehydrogenase complex. Absence of a sequence motif of the putative E3 and/or E1 binding site. J Biol Chem266(28): 19013–19017

[22]

Nose YTakahashi  KNakamura A  (1976). Thiamine diphosphate-dependent enzyme status due to thiamine deficiency in rat liver. J Nutr Sci Vitaminol (Tokyo)22(SUPPL): 51–55

[23]

Park L C H Zhang H Sheu K F R Calingasan N Y Kristal B S Lindsay J G Gibson G E  (1999). Metabolic impairment induces oxidative stress, compromises inflammatory responses, and inactivates a key mitochondrial enzyme in microglia. J Neurochem72(5): 1948–1958

[24]

Rutter JWinge  D RSchiffman  J D (2010). Succinate dehydrogenase- Assembly, regulation and role in human disease. Mitochondrion10(4): 393–401

[25]

Shaikh A STamloorkar  H LYasmeen  R (2012). Malate dehydrogenase activity post exposure recovery from lead intoxicated fresh water fish Anabas testudineus. Int J Biomed Advan Res3(Suppl 2): 118–121

[26]

Sharma ABist  R (2014). Thiamine deprivation disturbs cholinergic system and oxidative stress in liver of Mus musculus. Int J Pharm Pharma Sci Sci6: 139–143

[27]

Sharma ABist  RBubber P  (2013). Thiamine deficiency induces oxidative stress in brain mitochondria of Mus musculus. J Physiol Biochem69(3): 539–546

[28]

Sheu K FCalingasan  N YLindsay  J GGibson  G E (1998). Immunochemical characterization of the deficiency of the alpha-ketoglutarate dehydrogenase complex in thiamine-deficient rat brain. J Neurochem70(3): 1143–1150

[29]

Shi QChen  H LXu  HGibson G E  (2005). Reduction in the E2k subunit of the alpha-ketoglutarate dehydrogenase complex has effects independent of complex activity. J Biol Chem280(12): 10888–10896

[30]

Singer TPKearney  E BKenney W C  (1973). Succinate dehydrogenase. Adv Enzymol·Relat Areas Mol Biol37: 189–272.

[31]

Sorbi SBird  E DBlass  J P (1983). Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol13(1): 72–78

[32]

Tretter LAdam-Vizi  V (2000). Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci20(24): 8972–8979

[33]

Troncoso J CJohnston  M VHess  K MGriffin  J WPrice  D L (1981). Model of Wernicke’s encephalopathy. Arch Neurol38(6): 350–354

[34]

Vélot CMixon  M BTeige  MSrere P A  (1997). Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon. Biochemistry36(47): 14271–14276

[35]

Vermulst MBielas  J HLoeb  L A (2008). Quantification of random mutations in the mitochondrial genome. Methods46(4): 263–268

[36]

Zastre J ASweet  R LHanberry B S Ye S (2013). Linking vitamin B1 with cancer cell metabolism. Cancer Metabl, 1–16

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (676KB)

846

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/