Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1

Pang-Kuo Lo , Benjamin Wolfson , Qun Zhou

Front. Biol. ›› 2016, Vol. 11 ›› Issue (6) : 413 -426.

PDF (451KB)
Front. Biol. ›› 2016, Vol. 11 ›› Issue (6) : 413 -426. DOI: 10.1007/s11515-016-1433-z
REVIEW
REVIEW

Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1

Author information +
History +
PDF (451KB)

Abstract

BACKGROUND: The majority of mammalian genomes have been found to be transcribed into non-coding RNAs. One category of non-coding RNAs is classified as long non-coding RNAs (lncRNAs) based on their transcript sizes larger than 200 nucleotides. Growing evidence has shown that lncRNAs are not junk transcripts and play regulatory roles in multiple aspects of biological processes. Dysregulation of lncRNA expression has also been linked to diseases, in particular cancer. Therefore, studies of lncRNAs have attracted significant interest in the field of medical research. Nuclear enriched abundant transcript 1 (NEAT1), a nuclear lncRNA, has recently emerged as a key regulator involved in various cellular processes, physiological responses, developmental processes, and disease development and progression.

OBJECTIVE: This review will summarize and discuss the most recent findings with regard to the roles of NEAT1 in the function of the nuclear paraspeckle, cellular pathways, and physiological responses and processes. Particularly, the most recently reported studies regarding the pathological roles of deregulated NEAT1 in cancer are highlighted in this review.

METHODS: We performed a systematic literature search using the Pubmed search engine. Studies published over the past 8 years (between January 2009 and August 2016) were the sources of literature review. The following keywords were used: “Nuclear enriched abundant transcript 1,” “NEAT1,” and “paraspeckles.”

RESULTS: The Pubmed search identified 34 articles related to the topic of the review. Among the identified literature, 13 articles report findings related to cellular functions of NEAT1 and eight articles are the investigations of physiological functions of NEAT1. The remaining 13 articles are studies of the roles of NEAT1 in cancers.

CONCLUSION: Recent advances in NEAT1 studies reveal the multifunctional roles of NEAT1 in various biological processes, which are beyond its role in nuclear paraspeckles. Recent studies also indicate that dysregulation of NEAT1 function contributes to the development and progression of various cancers. More investigations will be needed to address the detailed mechanisms regarding how NEAT1 executes its cellular and physiological functions and how NEAT1 dysregulation results in tumorigenesis, and to explore the potential of NEAT1 as a target in cancer diagnosis, prognosis and therapy.

Keywords

long non-coding RNAs (lncRNAs) / nuclear enriched abundant transcript 1 (NEAT1) / paraspeckles / microRNAs (miRNAs) / epigenetic regulation / cancer

Cite this article

Download citation ▾
Pang-Kuo Lo, Benjamin Wolfson, Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1. Front. Biol., 2016, 11(6): 413-426 DOI:10.1007/s11515-016-1433-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P, Boeckx B, Wijnhoven P W, Radaelli E, Vermi W, Leucci E, Lapouge G, Beck B, van den Oord J, Nakagawa S, Hirose T, Sablina A A, Lambrechts D, Aerts S, Blanpain C, Marine J C (2016). p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med, 22(8): 861–868

[2]

Arredouani M S, Lu B, Bhasin M, Eljanne M, Yue W, Mosquera J M, Bubley G J, Li V, Rubin M A, Libermann T A, Sanda M G (2009). Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin Cancer Res, 15(18): 5794–5802

[3]

Athanasiadis A, Rich A, Maas S (2004). Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol, 2(12): e391

[4]

Birney E, Stamatoyannopoulos J A, Dutta A, Guigó R, Gingeras T R, Margulies E H, Weng Z, Snyder M, Dermitzakis E T, Thurman R E, Kuehn M S, Taylor C M, Neph S, Koch C M, Asthana S, Malhotra A, Adzhubei I, Greenbaum J A, Andrews R M, Flicek P, Boyle P J, Cao H, Carter N P, Clelland G K, Davis S, Day N, Dhami P, Dillon S C, Dorschner M O, Fiegler H, Giresi P G, Goldy J, Hawrylycz M, Haydock A, Humbert R, James K D, Johnson B E, Johnson E M, Frum T T, Rosenzweig E R, Karnani N, Lee K, Lefebvre G C, Navas P A, Neri F, Parker S C, Sabo P J, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins F S, Dekker J, Lieb J D, Tullius T D, Crawford G E, Sunyaev S, Noble W S, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker I L, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch H A, Sekinger E A, Lagarde J, Abril J F, Shahab A, Flamm C, Fried C, Hackermüller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen J S, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson M C, Thomas D J, Weirauch M T, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan K G, Sung W K, Ooi H S, Chiu K P, Foissac S, Alioto T, Brent M, Pachter L, Tress M L, Valencia A, Choo S W, Choo C Y, Ucla C, Manzano C, Wyss C, Cheung E, Clark T G, Brown J B, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen C N, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick J S, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers R M, Rogers J, Stadler P F, Lowe T M, Wei C L, Ruan Y, Struhl K, Gerstein M, Antonarakis S E, Fu Y, Green E D, Karaöz U, Siepel A, Taylor J, Liefer L A, Wetterstrand K A, Good P J, Feingold E A, Guyer M S, Cooper G M, Asimenos G, Dewey C N, Hou M, Nikolaev S, Montoya-Burgos J I, Löytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang N R, Holmes I, Mullikin J C, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent W J, Stone E A, Batzoglou S, Goldman N, Hardison R C, Haussler D, Miller W, Sidow A, Trinklein N D, Zhang Z D, Barrera L, Stuart R, King D C, Ameur A, Enroth S, Bieda M C, Kim J, Bhinge A A, Jiang N, Liu J, Yao F, Vega V B, Lee C W, Ng P, Shahab A, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley M J, Inman D, Singer M A, Richmond T A, Munn K J, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler J C, Couttet P, Bruce A W, Dovey O M, Ellis P D, Langford C F, Nix D A, Euskirchen G, Hartman S, Urban A E, Kraus P, Van Calcar S, Heintzman N, Kim T H, Wang K, Qu C, Hon G, Luna R, Glass C K, Rosenfeld M G, Aldred S F, Cooper S J, Halees A, Lin J M, Shulha H P, Zhang X, Xu M, Haidar J N, Yu Y, Ruan Y, Iyer V R, Green R D, Wadelius C, Farnham P J, Ren B, Harte R A, Hinrichs A S, Trumbower H, Clawson H, Hillman-Jackson J, Zweig A S, Smith K, Thakkapallayil A, Barber G, Kuhn R M, Karolchik D, Armengol L, Bird C P, de Bakker P I, Kern A D, Lopez-Bigas N, Martin J D, Stranger B E, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrímsdóttir I B, Huppert J, Zody M C, Abecasis G R, Estivill X, Bouffard G G, Guan X, Hansen N F, Idol J R, Maduro V V, Maskeri B, McDowell J C, Park M, Thomas P J, Young A C, Blakesley R W, Muzny D M, Sodergren E, Wheeler D A, Worley K C, Jiang H, Weinstock G M, Gibbs R A, Graves T, Fulton R, Mardis E R, Wilson R K, Clamp M, Cuff J, Gnerre S, Jaffe D B, Chang J L, Lindblad-Toh K, Lander E S, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong P J, and the ENCODE Project Consortium, the NISC Comparative Sequencing Program, the Baylor College of Medicine Human Genome Sequencing Center, the Washington University Genome Sequencing Center, the Broad Institute, the Children’s Hospital Oakland Research Institute (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447(7146): 799–816

[5]

Bond C S, Fox A H (2009). Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol, 186(5): 637–644

[6]

Buckley N E, Mullan P B (2012). BRCA1--conductor of the breast stem cell orchestra: the role of BRCA1 in mammary gland development and identification of cell of origin of BRCA1 mutant breast cancer. Stem Cell Rev, 8(3): 982–993

[7]

Cardinale S, Cisterna B, Bonetti P, Aringhieri C, Biggiogera M, Barabino S M (2007). Subnuclear localization and dynamics of the Pre-mRNA 3′ end processing factor mammalian cleavage factor I 68-kDa subunit. Mol Biol Cell, 18(4): 1282–1292

[8]

Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk A M, Chiu K P, Choudhary V, Christoffels A, Clutterbuck D R, Crowe M L, Dalla E, Dalrymple B P, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher C F, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras T R, Gojobori T, Green R E, Gustincich S, Harbers M, Hayashi Y, Hensch T K, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan S P, Kruger A, Kummerfeld S K, Kurochkin IV, Lareau L F, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid J F, Ring B Z, Ringwald M, Rost B, Ruan Y, Salzberg S L, Sandelin A, Schneider C, Schönbach C, Sekiguchi K, Semple C A, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan S L, Tang S, Taylor MS, Tegner J, Teichmann S A, Ueda H R , van Nimwegen E, Verardo R, Wei C L, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond S M, Teasdale R D, Liu E T, Brusic V, Quackenbush J, Wahlestedt C, Mattick J S, Hume D A, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y; FANTOM Consortium.; RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group) (2005). The transcriptional landscape of the mammalian genome. Science, 309(5740): 1559–1563

[9]

Chai Y, Liu J, Zhang Z, Liu L (2016). HuR-regulated lncRNA NEAT1 stability in tumorigenesis and progression of ovarian cancer. Cancer Med, 5(7): 1588–1598

[10]

Chakravarty D, Sboner A, Nair S S, Giannopoulou E, Li R, Hennig S, Mosquera J M, Pauwels J, Park K, Kossai M, MacDonald T Y, Fontugne J, Erho N, Vergara I A, Ghadessi M, Davicioni E, Jenkins R B, Palanisamy N, Chen Z, Nakagawa S, Hirose T, Bander N H, Beltran H, Fox A H, Elemento O, Rubin M A (2014). The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun, 5: 5383

[11]

Chen L L, Carmichael G G (2009). Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell, 35(4): 467–478

[12]

Chen L L, Carmichael G G (2010). Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol, 22(3): 357–364

[13]

Chen L L, DeCerbo J N, Carmichael G G (2008). Alu element-mediated gene silencing. EMBO J, 27(12): 1694–1705

[14]

Chen X, Kong J, Ma Z, Gao S, Feng X (2015). Up regulation of the long non-coding RNA NEAT1 promotes esophageal squamous cell carcinoma cell progression and correlates with poor prognosis. Am J Cancer Res, 5(9): 2808–2815

[15]

Choudhry H, Albukhari A, Morotti M, Haider S, Moralli D, Smythies J, Schödel J, Green C M, Camps C, Buffa F, Ratcliffe P, Ragoussis J, Harris A L, Mole D R (2015). Tumor hypoxia induces nuclear paraspeckle formation through HIF-2α dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene, 34(34): 4546

[16]

Chujo T, Yamazaki T, Hirose T (2016). Architectural RNAs (arcRNAs): A class of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim Biophys Acta, 1859(1): 139–146

[17]

Clemson C M, Hutchinson J N, Sara S A, Ensminger A W, Fox A H, Chess A, Lawrence J B (2009). An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell, 33(6): 717–726

[18]

Cooper D R, Carter G, Li P, Patel R, Watson J E, Patel N A (2014). Long Non-Coding RNA NEAT1 Associates with SRp40 to Temporally Regulate PPARg2 Splicing during Adipogenesis in 3T3-L1 Cells. Genes (Basel), 5(4): 1050–1063

[19]

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles D G, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown J B, Lipovich L, Gonzalez J M, Thomas M, Davis C A, Shiekhattar R, Gingeras T R, Hubbard T J, Notredame C, Harrow J, Guigó R (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res, 22(9): 1775–1789

[20]

Doria M, Neri F, Gallo A, Farace M G, Michienzi A (2009). Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection. Nucleic Acids Res, 37(17): 5848–5858

[21]

Eidem T M, Kugel J F, Goodrich J A (2016). Noncoding RNAs: regulators of the mammalian transcription machinery. J Mol Biol, 428(12): 2652–2659

[22]

Foulkes W D (2004). BRCA1 functions as a breast stem cell regulator. J Med Genet, 41(1): 1–5

[23]

Fox A H, Bond C S, Lamond A I (2005). P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. Mol Biol Cell, 16(11): 5304–5315

[24]

Fox A H, Lam Y W, Leung A K, Lyon C E, Andersen J, Mann M, Lamond A I (2002). Paraspeckles: a novel nuclear domain. Curr Biol, 12(1): 13–25

[25]

Fu J W, Kong Y, Sun X (2016). Long noncoding RNA NEAT1 is an unfavorable prognostic factor and regulates migration and invasion in gastric cancer. J Cancer Res Clin Oncol, 142(7): 1571–1579

[26]

Gernapudi R, Wolfson B, Zhang Y, Yao Y, Yang P, Asahara H, Zhou Q (2015). MicroRNA 140 promotes expression of long noncoding RNA NEAT1 in adipogenesis. Mol Cell Biol, 36(1): 30–38

[27]

Guo S, Chen W, Luo Y, Ren F, Zhong T, Rong M, Dang Y, Feng Z, Chen G (2015). Clinical implication of long non-coding RNA NEAT1 expression in hepatocellular carcinoma patients. Int J Clin Exp Pathol, 8(5): 5395–5402

[28]

Guru S C, Agarwal S K, Manickam P, Olufemi S E, Crabtree J S, Weisemann J M, Kester M B, Kim Y S, Wang Y, Emmert-Buck M R, Liotta L A, Spiegel A M, Boguski M S, Roe B A, Collins F S, Marx S J, Burns L, Chandrasekharappa S C (1997). A transcript map for the 2.8-Mb region containing the multiple endocrine neoplasia type 1 locus. Genome Res, 7(7): 725–735

[29]

He C, Jiang B, Ma J, Li Q (2016). Aberrant NEAT1 expression is associated with clinical outcome in high grade glioma patients. APMIS, 124(3): 169–174

[30]

Hirose T, Virnicchi G, Tanigawa A, Naganuma T, Li R, Kimura H, Yokoi T, Nakagawa S, Bénard M, Fox A H, Pierron G (2014). NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell, 25(1): 169–183

[31]

Hutchinson J N, Ensminger A W, Clemson C M, Lynch C R, Lawrence J B, Chess A (2007). A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics, 8(1): 39

[32]

Imamura K, Imamachi N, Akizuki G, Kumakura M, Kawaguchi A, Nagata K, Kato A, Kawaguchi Y, Sato H, Yoneda M, Kai C, Yada T, Suzuki Y, Yamada T, Ozawa T, Kaneki K, Inoue T, Kobayashi M, Kodama T, Wada Y, Sekimizu K, Akimitsu N (2014). Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell, 53(3): 393–406

[33]

International Human Genome Sequencing Consortium (2004). Finishing the euchromatic sequence of the human genome. Nature, 431(7011): 931–945

[34]

Iyer M K, Niknafs Y S, Malik R, Singhal U, Sahu A, Hosono Y, Barrette T R, Prensner J R, Evans J R, Zhao S, Poliakov A, Cao X, Dhanasekaran S M, Wu Y M, Robinson D R, Beer D G, Feng F Y, Iyer H K, Chinnaiyan A M (2015). The landscape of long noncoding RNAs in the human transcriptome. Nat Genet, 47(3): 199–208

[35]

Jiang P, Wu X, Wang X, Huang W, Feng Q (2016). NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget, 7(28): 43337–43351

[36]

Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007). RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316(5830): 1484–1488

[37]

Ke H, Zhao L, Feng X, Xu H, Zou L, Yang Q, Su X, Peng L, Jiao B (2016). NEAT1 is required for survival of breast cancer cells through FUS and miR-548. Gene Regul Syst Bio, 10(Suppl 1): 11–17

[38]

Kellis M, Wold B, Snyder M P, Bernstein B E, Kundaje A, Marinov G K, Ward L D, Birney E, Crawford G E, Dekker J, Dunham I, Elnitski L L, Farnham P J, Feingold E A, Gerstein M, Giddings M C, Gilbert D M, Gingeras T R, Green E D, Guigo R, Hubbard T, Kent J, Lieb J D, Myers R M, Pazin M J, Ren B, Stamatoyannopoulos J A, Weng Z, White K P, Hardison R C (2014). Defining functional DNA elements in the human genome. Proc Natl Acad Sci USA, 111(17): 6131–6138

[39]

Kim D D, Kim T T, Walsh T, Kobayashi Y, Matise T C, Buyske S, Gabriel A (2004). Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res, 14(9): 1719–1725

[40]

Levanon E Y, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman Z Y, Shoshan A, Pollock S R, Sztybel D, Olshansky M, Rechavi G, Jantsch M F (2004). Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol, 22(8): 1001–1005

[41]

Lo P K, Zhang Y, Wolfson B, Gernapudi R, Yao Y, Duru N, Zhou Q (2016). Dysregulation of the BRCA1/long non-coding RNA NEAT1 signaling axis contributes to breast tumorigenesis. Oncotarget, (In press)

[42]

Lu Y, Li T, Wei G, Liu L, Chen Q, Xu L, Zhang K, Zeng D, Liao R (2016). The long non-coding RNA NEAT1 regulates epithelial to mesenchymal transition and radioresistance in through miR-204/ZEB1 axis in nasopharyngeal carcinoma. Tumour Biol, 37(9): 11733–11741

[43]

Ma Y, Liu L, Yan F, Wei W, Deng J, Sun J (2016). Enhanced expression of long non-coding RNA NEAT1 is associated with the progression of gastric adenocarcinomas. World J Surg Oncol, 14(1): 41

[44]

Mao Y S, Zhang B, Spector D L (2011). Biogenesis and function of nuclear bodies. Trends Genet, 27(8): 295–306

[45]

Mercer TR, Dinger ME, Mattick J S (2009). Long non-coding RNAs: insights into functions. Nature reviews, 10(3): 155–159

[46]

Naganuma T, Nakagawa S, Tanigawa A, Sasaki Y F, Goshima N, Hirose T (2012). Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J, 31(20): 4020–4034

[47]

Nakagawa S, Naganuma T, Shioi G, Hirose T (2011). Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol, 193(1): 31–39

[48]

Nakagawa S, Shimada M, Yanaka K, Mito M, Arai T, Takahashi E, Fujita Y, Fujimori T, Standaert L, Marine J C, Hirose T (2014). The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development, 141(23): 4618–4627

[49]

Nasr R, Guillemin M C, Ferhi O, Soilihi H, Peres L, Berthier C, Rousselot P, Robledo-Sarmiento M, Lallemand-Breitenbach V, Gourmel B, Vitoux D, Pandolfi P P, Rochette-Egly C, Zhu J, de Thé H (2008). Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med, 14(12): 1333–1342

[50]

Peng Y, Yu S, Li H, Xiang H, Peng J, Jiang S (2014). MicroRNAs: emerging roles in adipogenesis and obesity. Cell Signal, 26(9): 1888–1896

[51]

Platani M, Lamond A I (2004). Nuclear organisation and subnuclear bodies. Prog Mol Subcell Biol, 35: 1–22

[52]

Poomsawat S, Sanguansin S, Punyasingh J, Vejchapipat P, Punyarit P (2016). Expression of cdk6 in head and neck squamous cell carcinoma. Clin Oral Investig, 20(1): 57–63

[53]

Prasanth K V, Prasanth S G, Xuan Z, Hearn S, Freier S M, Bennett C F, Zhang M Q, Spector D L (2005). Regulating gene expression through RNA nuclear retention. Cell, 123(2): 249–263

[54]

Prasanth K V, Spector D L (2007). Eukaryotic regulatory RNAs: an answer to the ‘genome complexity’ conundrum. Genes Dev, 21(1): 11–42

[55]

Ricke W A, McPherson S J, Bianco J J, Cunha G R, Wang Y, Risbridger G P (2008). Prostatic hormonal carcinogenesis is mediated by in situ estrogen production and estrogen receptor alpha signaling. FASEB J, 22(5): 1512–1520

[56]

Sasaki Y T, Ideue T, Sano M, Mituyama T, Hirose T (2009). MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci USA, 106(8): 2525–2530

[57]

Schmitt A M, Chang H Y (2016). Long Noncoding RNAs in Cancer Pathways. Cancer Cell, 29(4): 452–463

[58]

Semenza G L (2010). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 29(5): 625–634

[59]

Setlur S R, Mertz K D, Hoshida Y, Demichelis F, Lupien M, Perner S, Sboner A, Pawitan Y, Andrén O, Johnson L A, Tang J, Adami H O, Calza S, Chinnaiyan A M, Rhodes D, Tomlins S, Fall K, Mucci L A, Kantoff P W, Stampfer M J, Andersson S O, Varenhorst E, Johansson J E, Brown M, Golub T R, Rubin M A (2008). Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. J Natl Cancer Inst, 100(11): 815–825

[60]

Simon M D, Wang C I, Kharchenko P V, West J A, Chapman B A, Alekseyenko A A, Borowsky M L, Kuroda M I, Kingston R E (2011). The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci USA, 108(51): 20497–20502

[61]

Souquere S, Beauclair G, Harper F, Fox A, Pierron G (2010). Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol Biol Cell, 21(22): 4020–4027

[62]

Standaert L, Adriaens C, Radaelli E, Van Keymeulen A, Blanpain C, Hirose T, Nakagawa S, Marine JC (2014). The long noncoding RNA Neat1 is required for mammary gland development and lactation. RNA (New York, NY, 20(12): 1844–1849

[63]

Sunwoo H, Dinger M E, Wilusz J E, Amaral P P, Mattick J S, Spector D L (2009). MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res, 19(3): 347–359

[64]

Wang K C, Chang H Y (2011). Molecular mechanisms of long noncoding RNAs. Mol Cell, 43(6): 904–914

[65]

Wang P, Wu T, Zhou H, Jin Q, He G, Yu H, Xuan L, Wang X, Tian L, Sun Y, Liu M, Qu L (2016). Long noncoding RNA NEAT1 promotes laryngeal squamous cell cancer through regulating miR-107/CDK6 pathway. J Exp Clin Cancer Res, 35(1): 22

[66]

Waterston R H, Lindblad-Toh K, Birney E, Rogers J, Abril J F, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis S E, Attwood J, Baertsch R, Bailey J, BarlowK, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent M R, Brown D G, Brown S D, Bult C, Burton J, Butler J, Campbell R D, Carninci P, Cawley S, Chiaromonte F, Chinwalla A T, Church D M, Clamp M, Clee C, Collins F S, Cook L L, Copley R R, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty K D, Deri J, Dermitzakis E T, Dewey C, Dickens N J, Diekhans M, Dodge S, Dubchak I, Dunn D M, Eddy S R, Elnitski L, Emes R D, Eswara P, Eyras E, Felsenfeld A, Fewell G A, Flicek P, Foley K, Frankel W N, Fulton L A, Fulton R S, Furey T S, Gage D, Gibbs R A, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves T A, Green E D, Gregory S, Guigó R, Guyer M, Hardison R C, Haussler D, Hayashizaki Y, Hillier L W, Hinrichs A, Hlavina W, HolzerT, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe D B, Johnson L S, Jones M, Jones T A, Joy A, Kamal M, Karlsson E K, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent W J, Kirby A, KolbeD L, Korf I, Kucherlapati R S, Kulbokas E J, Kulp D, Landers T, Leger J P, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott D R, Mardis E R, Matthews L, Mauceli E, Mayer J H, McCarthy M, McCombie W R, McLaren S, McLay K, McPherson J D, Meldrim J, Meredith B, Mesirov J P, Miller W, Miner T L, Mongin E, Montgomery K T, Morgan M, Mott R, Mullikin J C, Muzny D M, Nash W E, Nelson J O, Nhan M N, Nicol R, Ning Z, Nusbaum C, O’Connor M J, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin K H, Peterson J, Pevzner P, Plumb R, Pohl C S, Poliakov A, Ponce T C, Ponting C P, Potter S, Quail M, ReymondA, Roe B A, Roskin K M, Rubin E M, Rust A G, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz M S, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer J B, Slater G, Smit A, Smith D R, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson J P, Von Niederhausern A C, Wade C M, Wall M, Weber R J, Weiss R B, Wendl M C, West A P, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, WilliamsS, Wilson R K, Winter E, Worley K C, Wyman D, Yang S, Yang S P, Zdobnov E M, Zody M C, Lander E S, and the Mouse Genome Sequencing Consortium (2002). Initial sequencing and comparative analysis of the mouse genome. Nature, 420(6915): 520–562

[67]

West J A, Davis C P, Sunwoo H, Simon M D, Sadreyev R I, Wang P I, Tolstorukov M Y, Kingston R E (2014). The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell, 55(5): 791–802

[68]

Yamazaki T, Hirose T (2015). The building process of the functional paraspeckle with long non-coding RNAs. Front Biosci (Elite Ed), 7(1): 1–41

[69]

You J, Zhang Y, Liu B, Li Y, Fang N, Zu L, Li X, Zhou Q (2014). MicroRNA-449a inhibits cell growth in lung cancer and regulates long noncoding RNA nuclear enriched abundant transcript 1. Indian J Cancer, 51(7 Suppl 3): e77–e81

[70]

Zeng C, Xu Y, Xu L, Yu X, Cheng J, Yang L, Chen S, Li Y (2014). Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer, 14(1): 693

[71]

Zhang Q, Chen C Y, Yedavalli V S, Jeang K T (2013). NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. MBio, 4(1): e00596–e12

[72]

Zhang Z, Carmichael G G (2001). The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell, 106(4): 465–475

[73]

Zhen L, Yun-Hui L, Hong-Yu D, Jun M, Yi-Long Y (2016). Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis. Tumour Biol, 37(1): 673–683

[74]

Zhu J, Gianni M, Kopf E, Honore N, Chelbi-Alix M, Koken M, Quignon F, Rochette-Egly C, de The H (1999). Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc Natl Acad Sci U S A, 96(26): 14807–14812

[75]

Zolotukhin A S, Michalowski D, Bear J, Smulevitch S V, Traish A M, Peng R, Patton J, Shatsky I N, Felber B K (2003). PSF acts through the human immunodeficiency virus type 1 mRNA instability elements to regulate virus expression. Mol Cell Biol, 23(18): 6618–6630

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (451KB)

1450

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/