Transcription factor Pitx3 mutant mice as a model for Parkinson’s disease
Fu-Ming Zhou, Li Li, Juming Yue, John A. Dani
Transcription factor Pitx3 mutant mice as a model for Parkinson’s disease
BACKGROUND: Parkinsonʼs disease (PD) is a common, age-dependent degenerative neurological disorder impairing motor control function and cognition. A key pathology of PD is a degeneration of the nigrostriatal dopamine system, leading to a severe dopamine denervation in the striatum and dynsfunction of the striatal neural circuits.
OBJECTIVE: To better understand the pathophysiology of the nigrostriatal dopamine denervation and to discover better treatments, animal PD models are needed.
METHODS: The authors’ original research on the transcription factor Pitx3 null mutant mice and the relevant literature were reviewed.
RESULTS: An important feature of an animal PD model is the severe, PD-like nigrostriatal dopamine denervation. This feature is provided in the transcription factor Pitx3 null mutant mice. These mice have a severe and bilateral nigral dopamine neuron loss and dopamine denervation in the dorsal striatum, while the dopamine neuron loss in the ventral tegmental area and dopamine denervation in the ventral striatum are moderate, creating a dorsal-ventral dopamine loss gradient and mimicking the dopamine denervation pattern in PD. Pitx3 null mice show motor function deficits in the balance beam and pole tests and these deficits are reversed by L-3,4-dihydroxyphenylalanine (L-dopa). These mice also show impaired cognitive functions as indicated by reduced motor learning and avoidance memory. L-dopa, D1 agonists and, to a lesser extent, D2 agonists, induce normal horizontal movements (walking) and also dyskinesia-like movements consisting of vertical body trunk movements and waving paw movements.
CONCLUSIONS: The easy-to-maintain Pitx3 null mice with an autogenic, consistent and gradient dopamine denervation are a convenient and suitable mouse model to study the consequences of dopamine loss in PD and to test dopaminergic replacement therapies for PD.
Animal model / basal ganglia / L-3 / 4-dihydroxyphenylalanine (L-dopa) / dopamine receptor supersensitivity / 6-hydroxydopamine (6-OHDA) / Parkinson’s disease / Pitx3 / striatum / substantia nigra
[1] |
Aarsland D, Bronnick K, Williams-Gray C, Weintraub D, Marder K, Kulisevsky J, Burn D, Barone P, Pagonabarraga J, Allcock L, Santangelo G, Foltynie T, Janvin C, Larsen J P, Barker R A, Emre M (2010). Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology, 75(12): 1062–1069
CrossRef
Pubmed
Google scholar
|
[2] |
Aarsland D, Kurz M W (2010). The epidemiology of dementia associated with Parkinson disease. J Neurol Sci, 289(1-2): 18–22
CrossRef
Pubmed
Google scholar
|
[3] |
Alexander G E, DeLong M R, Strick P L (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci, 9(1): 357–381
CrossRef
Pubmed
Google scholar
|
[4] |
Ardayfio P, Moon J, Leung K K, Youn-Hwang D, Kim K S (2008). Impaired learning and memory in Pitx3 deficient aphakia mice: a genetic model for striatum-dependent cognitive symptoms in Parkinson’s disease. Neurobiol Dis, 31(3): 406–412
CrossRef
Pubmed
Google scholar
|
[5] |
Bagga V, Dunnett S B, Fricker R A (2015). The 6-OHDA mouse model of Parkinson’s disease- Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions. Behav Brain Res, 288: 107–117
CrossRef
Pubmed
Google scholar
|
[6] |
Ballard P A, Tetrud J W, Langston J W (1985). Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology, 35(7): 949–956
CrossRef
Pubmed
Google scholar
|
[7] |
Bastide M F, Meissner W G, Picconi B, Fasano S, Fernagut P O, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko W K, Simola N, Morelli M, Groc L, Rodriguez M C, Gurevich E V, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman A R, Kang U J, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E (2015). Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol, 132: 96–168
CrossRef
Pubmed
Google scholar
|
[8] |
Bateup H S, Santini E, Shen W, Birnbaum S, Valjent E, Surmeier D J, Fisone G, Nestler E J, Greengard P (2010). Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci USA, 107(33): 14845–14850
CrossRef
Pubmed
Google scholar
|
[9] |
Beaulieu-Boire I, Lang A E (2015). Behavioral effects of levodopa. Mov Disord, 30(1): 90–102
CrossRef
Pubmed
Google scholar
|
[10] |
Beeler J A, Cao Z F, Kheirbek M A, Zhuang X (2009). Loss of cocaine locomotor response in Pitx3-deficient mice lacking a nigrostriatal pathway. Neuropsychopharmacology, 34(5): 1149–1161
CrossRef
Pubmed
Google scholar
|
[11] |
Bidinost C, Matsumoto M, Chung D, Salem N, Zhang K, Stockton D W, Khoury A, Megarbane A, Bejjani B A, Traboulsi E I (2006). Heterozygous and homozygous mutations in PITX3 in a large Lebanese family with posterior polar cataracts and neurodevelopmental abnormalities. Invest Ophthalmol Vis Sci, 47(4): 1274–1280
CrossRef
Pubmed
Google scholar
|
[12] |
Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004). Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res, 318(1): 121–134
CrossRef
Pubmed
Google scholar
|
[13] |
Carlsson A (2001). A half-century of neurotransmitter research: impact on neurology and psychiatry. Nobel lecture. Biosci Rep, 21(6): 691–710
CrossRef
Pubmed
Google scholar
|
[14] |
Chen L, Xie Z, Turkson S, Zhuang X (2015). A53T human -synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J Neurosci, 35: 890–905
Pubmed
|
[15] |
Chesselet MF, Richter F (2011). Modelling of Parkinson’s disease in mice. Lancet Neurol, 10:1108–18
Pubmed
|
[16] |
Chiken S, Sato A, Ohta C, Kurokawa M, Arai S, Maeshima J, Sunayama-Morita T, Sasaoka T, Nambu A(2015). Dopamine D1 receptor-mediated transmission maintains information flow through the cortico-striato-entopeduncular direct pathway to release movements. Cereb Cortex, 25:4885–97
Pubmed
|
[17] |
Chu H Y, Atherton J F, Wokosin D, Surmeier D J, Bevan M D (2015). Heterosynaptic regulation of external globus pallidus inputs to the subthalamic nucleus by the motor cortex. Neuron, 85(2): 364–376
CrossRef
Pubmed
Google scholar
|
[18] |
Coelho M, Ferreira J J (2012). Late-stage Parkinson disease. Nat Rev Neurol, 8(8):435–42
Pubmed
|
[19] |
Cools R, Barker R A, Sahakian B J, Robbins T W (2001). Mechanisms of cognitive set flexibility in Parkinson’s disease. Brain, 124:2503–2512
Pubmed
|
[20] |
Ciliax B J, Drash G W, Staley J K, Haber S, Mobley C J, Miller G W, Mufson E J, Mash D C, Levey A I (1999). Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol, 409(1): 38–56
CrossRef
Pubmed
Google scholar
|
[21] |
Damier P, Hirsch E C, Agid Y, Graybiel A M (1999). The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain, 122(Pt 8): 1437–1448
CrossRef
Pubmed
Google scholar
|
[22] |
Darvas M, Palmiter R D (2009). Restriction of dopamine signaling to the dorsolateral striatum is sufficient for many cognitive behaviors. Proc Natl Acad Sci USA, 106(34): 14664–14669
CrossRef
Pubmed
Google scholar
|
[23] |
de Lau L M, Breteler M M (2006). Epidemiology of Parkinson’s disease. Lancet Neurol, 5(6): 525–535
CrossRef
Pubmed
Google scholar
|
[24] |
Del Tredici K, Braak H (2016). Review: Sporadic Parkinson’s disease: development and distribution of α-synuclein pathology. Neuropathol Appl Neurobiol, 42(1): 33–50
CrossRef
Pubmed
Google scholar
|
[25] |
Deng Y, Lanciego J, Kerkerian-Le-Goff L, Coulon P, Salin P, Kachidian P, Lei W, Del Mar N, Reiner A (2015). Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats. Front Syst Neurosci, 9: 51
CrossRef
Pubmed
Google scholar
|
[26] |
Ding S, Li L, Zhou F M (2015). Nigral dopamine loss induces a global upregulation of presynaptic dopamine D1 receptor facilitation of the striatonigral GABAergic output. J Neurophysiol, 113(6): 1697–1711
CrossRef
Pubmed
Google scholar
|
[27] |
Ding Y, Restrepo J, Won L, Hwang D Y, Kim K S, Kang U J (2007). Chronic 3,4-dihydroxyphenylalanine treatment induces dyskinesia in aphakia mice, a novel genetic model of Parkinson’s disease. Neurobiol Dis, 27(1): 11–23
CrossRef
Pubmed
Google scholar
|
[28] |
Ding Y, Won L, Britt J P, Lim S A, McGehee D S, Kang U J (2011). Enhanced striatal cholinergic neuronal activity mediates L-DOPA-induced dyskinesia in parkinsonian mice. Proc Natl Acad Sci USA, 108(2): 840–845
CrossRef
Pubmed
Google scholar
|
[29] |
Doig N M, Moss J, Bolam J P (2010). Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci, 30(44): 14610–14618
CrossRef
Pubmed
Google scholar
|
[30] |
Doucet J P, Nakabeppu Y, Bedard P J, Hope B T, Nestler E J, Jasmin B J, Chen J S, Iadarola M J, St-Jean M, Wigle N, Blanchet P, Grondin R, Robertson G S (1996). Chronic alterations in dopaminergic neurotransmission produce a persistent elevation of deltaFosB-like protein(s) in both the rodent and primate striatum. Eur J Neurosci, 8(2): 365–381
CrossRef
Pubmed
Google scholar
|
[31] |
Durieux P F, Bearzatto B, Guiducci S, Buch T, Waisman A, Zoli M, Schiffmann S N, de Kerchove d’Exaerde A (2009). D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat Neurosci, 12(4): 393–395
CrossRef
Pubmed
Google scholar
|
[32] |
Durieux P F, Schiffmann S N, de Kerchove d’Exaerde A (2012). Differential regulation of motor control and response to dopaminergic drugs by D1R and D2R neurons in distinct dorsal striatum subregions. EMBO J, 31(3): 640–653
CrossRef
Pubmed
Google scholar
|
[33] |
Ekstrand M I, Terzioglu M, Galter D, Zhu S, Hofstetter C, Lindqvist E, Thams S, Bergstrand A, Hansson F S, Trifunovic A, Hoffer B, Cullheim S, Mohammed A H, Olson L, Larsson N G (2007). Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA, 104(4): 1325–1330
CrossRef
Pubmed
Google scholar
|
[34] |
Fahn S (2015). The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Mov Disord, 30(1): 4–18
CrossRef
Pubmed
Google scholar
|
[35] |
Francis T C, Chandra R, Friend D M, Finkel E, Dayrit G, Miranda J, Brooks J M, Iñiguez S D, O'Donnell P, Kravitz A, Lobo M K (2015) Nucleus accumbens medium spiny neuron subtypes mediate depression-related outcomes to social defeat stress. Biol Psychiatry, 77: 212–22
Pubmed
|
[36] |
Franco V, Turner R S (2012). Testing the contributions of striatal dopamine loss to the genesis of parkinsonian signs. Neurobiol Dis, 47(1): 114–125
CrossRef
Pubmed
Google scholar
|
[37] |
Friend D M, Kravitz A V (2014). Working together: basal ganglia pathways in action selection. Trends Neurosci, 37(6): 301–303
CrossRef
Pubmed
Google scholar
|
[38] |
Galati S, Stanzione P, D’Angelo V, Fedele E, Marzetti F, Sancesario G, Procopio T, Stefani A (2009). The pharmacological blockade of medial forebrain bundle induces an acute pathological synchronization of the cortico-subthalamic nucleus-globus pallidus pathway. J Physiol, 587(Pt 18): 4405–4423
CrossRef
Pubmed
Google scholar
|
[39] |
Gellhaar S, Marcellino D, Abrams M B, Galter D (2015). Chronic L-DOPA induces hyperactivity, normalization of gait and dyskinetic behavior in MitoPark mice. Genes Brain Behav, 14(3): 260–270
CrossRef
Pubmed
Google scholar
|
[40] |
Gerfen C R, Bolam J P (2010) The neuroanatomical organization of the basal ganglia. In: Steiner H, Tseng K Y (eds). Handbook of Basal Ganglia Structure and Function. Academic Press. Pages 3–28
|
[41] |
German D C, Manaye K F (1993). Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. J Comp Neurol, 331(3): 297–309
CrossRef
Pubmed
Google scholar
|
[42] |
Glajch K E, Fleming S M, Surmeier D J, Osten P (2012). Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson’s disease. Behav Brain Res, 230(2): 309–316
CrossRef
Pubmed
Google scholar
|
[43] |
Glass M, Dragunow M, Faull R L (2000). The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience, 97(3): 505–519
CrossRef
Pubmed
Google scholar
|
[44] |
Goedert M, Spillantini M G, Del Tredici K, Braak H (2013). 100 years of Lewy pathology. Nat Rev Neurol, 9(1): 13–24
CrossRef
Pubmed
Google scholar
|
[45] |
Golden J P, Demaro J A 3rd, Knoten A, Hoshi M, Pehek E, Johnson E M Jr, Gereau R W 4th, Jain S (2013). Dopamine-dependent compensation maintains motor behavior in mice with developmental ablation of dopaminergic neurons. J Neurosci, 33(43): 17095–17107
CrossRef
Pubmed
Google scholar
|
[46] |
Gotham A M, Brown R G, Marsden C D (1988). ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain, 111(Pt 2): 299–321
CrossRef
Pubmed
Google scholar
|
[47] |
Graybiel A M, Grafton S T (2015). The striatum: where skills and habits meet. Cold Spring Harb Perspect Biol, 7(8): a021691
CrossRef
Pubmed
Google scholar
|
[48] |
Guo Y, Le W D, Jankovic J, Yang H R, Xu H B, Xie W J, Song Z, Deng H (2011). Systematic genetic analysis of the PITX3 gene in patients with Parkinson disease. Mov Disord, 26(9): 1729–1732
CrossRef
Pubmed
Google scholar
|
[49] |
Haber S N (2016). Corticostriatal circuitry. Dialogues Clin Neurosci, 18(1): 7–21
Pubmed
|
[50] |
Haber S N, Knutson B (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1): 4–26
CrossRef
Pubmed
Google scholar
|
[51] |
Hardman C D, Henderson J M, Finkelstein D I, Horne M K, Paxinos G, Halliday G M (2002). Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol, 445(3): 238–255
CrossRef
Pubmed
Google scholar
|
[52] |
Hikosaka O, Takikawa Y, Kawagoe R (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev, 80(3): 953–978
Pubmed
|
[53] |
Hornykiewicz O (1998). Biochemical aspects of Parkinson’s disease. Neurology, 51(2 Suppl 2): S2–S9
CrossRef
Pubmed
Google scholar
|
[54] |
Hornykiewicz O (2001). Chemical neuroanatomy of the basal ganglia—normal and in Parkinson’s disease. J Chem Neuroanat, 22(1-2): 3–12
CrossRef
Pubmed
Google scholar
|
[55] |
Huerta-Ocampo I, Mena-Segovia J, Bolam J P (2014). Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Struct Funct, 219(5): 1787–1800
CrossRef
Pubmed
Google scholar
|
[56] |
Hurd Y L, Suzuki M, Sedvall G C (2001). D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat, 22(1-2): 127–137
CrossRef
Pubmed
Google scholar
|
[57] |
Hwang D Y, Ardayfio P, Kang U J, Semina E V, Kim K S (2003). Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol Brain Res, 114(2): 123–131
CrossRef
Pubmed
Google scholar
|
[58] |
Hwang D Y, Fleming S M, Ardayfio P, Moran-Gates T, Kim H, Tarazi F I, Chesselet M F, Kim K S (2005). 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson’s disease. J Neurosci, 25(8): 2132–2137
CrossRef
Pubmed
Google scholar
|
[59] |
Ikemoto S, Yang C, Tan A (2015). Basal ganglia circuit loops, dopamine and motivation: A review and enquiry. Behav Brain Res, 290: 17–31
CrossRef
Pubmed
Google scholar
|
[60] |
Jiménez-Jiménez F J, García-Martín E, Alonso-Navarro H, Agúndez J A ( 2014). PITX3 and risk for Parkinson’s disease: a systematic review and meta-analysis. Eur Neurol,71(1–2):49–56
Pubmed
|
[61] |
Katzenschlager R, Head J, Schrag A, Ben-Shlomo Y, Evans A, Lees A J, the Parkinson’s Disease Research Group of the United Kingdom (2008). Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology, 71(7): 474–480
CrossRef
Pubmed
Google scholar
|
[62] |
Kirik D, Rosenblad C, Björklund A (1998). Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol, 152(2): 259–277
CrossRef
Pubmed
Google scholar
|
[62a] |
Kish S J, Shannak K, Hornykiewicz O (1988). Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med, 318(14): 876–880
|
[63] |
Kita H, Kita T (2011). Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia. J Neurosci, 31(28): 10311–10322
CrossRef
Pubmed
Google scholar
|
[64] |
Kordower J H, Olanow C W, Dodiya H B, Chu Y, Beach T G, Adler C H, Halliday G M, Bartus R T (2013). Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain, 136(Pt 8): 2419–2431
CrossRef
Pubmed
Google scholar
|
[65] |
Korotkova T M, Ponomarenko A A, Haas H L, Sergeeva O A (2005) Differential expression of the homeobox gene Pitx3 in midbrain dopaminergic neurons. Eur J Neurosci. 22:1287–93
Pubmed
|
[66] |
Kravitz A V, Freeze B S, Parker P R, Kay K, Thwin M T, Deisseroth K, Kreitzer A C (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466(7306): 622–626
CrossRef
Pubmed
Google scholar
|
[67] |
Lane E L, Cheetham S C, Jenner P (2006). Does contraversive circling in the 6-OHDA-lesioned rat indicate an ability to induce motor complications as well as therapeutic effects in Parkinson’s disease? Exp Neurol, 197(2): 284–290
CrossRef
Pubmed
Google scholar
|
[68] |
Le W, Zhang L, Xie W, Li S, Dani J A (2015). Pitx3 deficiency produces decreased dopamine signaling and induces motor deficits in Pitx3(-/-) mice. Neurobiol Aging, 36(12): 3314–3320
CrossRef
Pubmed
Google scholar
|
[69] |
Lee C S, Sauer H, Bjorklund A (1996). Dopaminergic neuronal degeneration and motor impairments following axon terminal lesion by instrastriatal 6-hydroxydopamine in the rat. Neuroscience, 72(3): 641–653
CrossRef
Pubmed
Google scholar
|
[70] |
Lees A J, Tolosa E, Olanow C W (2015). Four pioneers of L-dopa treatment: Arvid Carlsson, Oleh Hornykiewicz, George Cotzias, and Melvin Yahr. Mov Disord, 30(1): 19–36
CrossRef
Pubmed
Google scholar
|
[71] |
Lemos J C, Friend D M, Kaplan A R, Shin J H, Rubinstein M, Kravitz A V, Alvarez V A (2016). Enhanced GABA Transmission Drives Bradykinesia Following Loss of Dopamine D2 Receptor Signaling. Neuron, 90(4): 824–838
CrossRef
Pubmed
Google scholar
|
[72] |
Levey A I, Hersch S M, Rye D B, Sunahara R K, Niznik H B, Kitt C A, Price D L, Maggio R, Brann M R, Ciliax B J (1993). Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A. 90:8861–8865
Pubmed
|
[73] |
Lewis D A, Melchitzky D S, Sesack S R, Whitehead R E, Auh S, Sampson A (2001). Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol, 432(1): 119–136
CrossRef
Pubmed
Google scholar
|
[74] |
Li L, Qiu G, Ding S, Zhou F M (2013). Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice. Brain Res, 1491: 236–250
CrossRef
Pubmed
Google scholar
|
[75] |
Li L, Zhou F M (2013). Parallel dopamine D1 receptor activity dependence of l-Dopa-induced normal movement and dyskinesia in mice. Neuroscience, 236: 66–76
CrossRef
Pubmed
Google scholar
|
[76] |
Lobo M K, Zaman S, Damez-Werno D M, Koo J W, Bagot R C, DiNieri J A, Nugent A, Finkel E, Chaudhury D, Chandra R, Riberio E, Rabkin J, Mouzon E, Cachope R, Cheer J F, Han M H, Dietz D M, Self D W, Hurd Y L, Vialou V, Nestler E J (2013). DFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci, 33(47): 18381–18395
CrossRef
Pubmed
Google scholar
|
[77] |
Luk K C, Rymar V V, van den Munckhof P, Nicolau S, Steriade C, Bifsha P, Drouin J, Sadikot A F (2013). The transcription factor Pitx3 is expressed selectively in midbrain dopaminergic neurons susceptible to neurodegenerative stress. J Neurochem, 125(6): 932–943
CrossRef
Pubmed
Google scholar
|
[78] |
Marin C, Rodriguez-Oroz M C, Obeso J A (2006). Motor complications in Parkinson’s disease and the clinical significance of rotational behavior in the rat: have we wasted our time? Exp Neurol, 197(2): 269–274
CrossRef
Pubmed
Google scholar
|
[79] |
Matsuda W, Furuta T, Nakamura K C, Hioki H, Fujiyama F, Arai R, Kaneko T (2009). Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci, 29(2): 444–453
CrossRef
Pubmed
Google scholar
|
[80] |
McCann H, Cartwright H, Halliday G M (2016). Neuropathology of α-synuclein propagation and braak hypothesis. Mov Disord, 31(2): 152–160
CrossRef
Pubmed
Google scholar
|
[81] |
McRitchie D A, Cartwright H R, Halliday G M (1997). Specific A10 dopaminergic nuclei in the midbrain degenerate in Parkinson’s disease. Exp Neurol, 144(1): 202–213
CrossRef
Pubmed
Google scholar
|
[82] |
Mitchell I J, Cooper A J, Griffiths M R (1999). The selective vulnerability of striatopallidal neurons. Prog Neurobiol, 59(6): 691–719
CrossRef
Pubmed
Google scholar
|
[83] |
Nambu A (2008). Seven problems on the basal ganglia. Curr Opin Neurobiol, 18(6): 595–604
CrossRef
Pubmed
Google scholar
|
[84] |
Nambu A (2011). Somatotopic organization of the primate Basal Ganglia. Front Neuroanat, 5: 26
CrossRef
Pubmed
Google scholar
|
[85] |
Nelson E L, Liang C L, Sinton C M, German D C (1996). Midbrain dopaminergic neurons in the mouse: computer-assisted mapping. J Comp Neurol, 369(3): 361–371
CrossRef
Pubmed
Google scholar
|
[86] |
Nunes I, Tovmasian L T, Silva R M, Burke R E, Goff S P (2003). Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA, 100(7): 4245–4250
CrossRef
Pubmed
Google scholar
|
[87] |
Nutt J G, Chung K A, Holford N H (2010). Dyskinesia and the antiparkinsonian response always temporally coincide: a retrospective study. Neurology, 74(15): 1191–1197
CrossRef
Pubmed
Google scholar
|
[88] |
Obeso J A, Rodriguez-Oroz M C, Stamelou M, Bhatia K P, Burn D J (2014). The expanding universe of disorders of the basal ganglia. Lancet, 384(9942): 523–531
CrossRef
Pubmed
Google scholar
|
[89] |
Olanow C W, Stern M B, Sethi K (2009). The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology, 72(21 Suppl 4): S1–S136
CrossRef
Pubmed
Google scholar
|
[90] |
Oorschot D E (1996). Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J Comp Neurol, 366(4): 580–599
CrossRef
Pubmed
Google scholar
|
[91] |
Oorschot D E (2010). Cell types in the different nuclei of the basal ganglia. In: Steiner H, Tseng K Y (Eds.), Handbook of Basal Ganglia Structure and Function. London: Academic Press, pp. 63–74
|
[92] |
Parkinson J (1817). An essay on shaking palsy. Originally published by Sherwood, Neely, and Jones (London, 1817), reprinted in J Neuropsychiatry Clin Neurosci. 2002 Spring; 14:223–36
Pubmed
|
[93] |
Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz M C, Lehericy S, Bergman H, Agid Y, DeLong M R, Obeso J A (2010). Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci, 11(11): 760–772
CrossRef
Pubmed
Google scholar
|
[94] |
Révy D, Jaouen F, Salin P, Melon C, Chabbert D, Tafi E, Concetta L, Langa F, Amalric M, Kerkerian-Le Goff L, Marie H, Beurrier C (2014). Cellular and behavioral outcomes of dorsal striatonigral neuron ablation: new insights into striatal functions. Neuropsychopharmacology, 39(11): 2662–2672
CrossRef
Pubmed
Google scholar
|
[95] |
Reyes S, Fu Y, Double K L, Cottam V, Thompson L H, Kirik D, Paxinos G, Watson C, Cooper H M, Halliday G M (2013). Trophic factors differentiate dopamine neurons vulnerable to Parkinson’s disease. Neurobiol Aging, 34(3): 873–886
CrossRef
Pubmed
Google scholar
|
[96] |
Robbins T W, Cools R (2014). Cognitive deficits in Parkinson’s disease: a cognitive neuroscience perspective. Mov Disord, 29(5): 597–607
CrossRef
Pubmed
Google scholar
|
[97] |
Rothwell P E, Fuccillo M V, Maxeiner S, Hayton S J, Gokce O, Lim B K, Fowler S C, Malenka R C, Südhof T C (2014). Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell, 158(1): 198–212
CrossRef
Pubmed
Google scholar
|
[98] |
Samii A, Nutt J G, Ransom B R (2004). Parkinson’s disease. Lancet, 363(9423): 1783–1793
CrossRef
Pubmed
Google scholar
|
[99] |
Sano H, Chiken S, Hikida T, Kobayashi K, Nambu A (2013). Signals through the striatopallidal indirect pathway stop movements by phasic excitation in the substantia nigra. J Neurosci, 33(17): 7583–7594
CrossRef
Pubmed
Google scholar
|
[100] |
Sano H, Yasoshima Y, Matsushita N, Kaneko T, Kohno K, Pastan I, Kobayashi K (2003). Conditional ablation of striatal neuronal types containing dopamine D2 receptor disturbs coordination of basal ganglia function. J Neurosci, 23(27): 9078–9088
Pubmed
|
[101] |
Schwarting R K, Huston J P (1996). The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol, 50(2-3): 275–331
CrossRef
Pubmed
Google scholar
|
[102] |
Semina E V, Ferrell R E, Mintz-Hittner H A, Bitoun P, Alward W L, Reiter R S, Funkhauser C, Daack-Hirsch S, Murray J C (1998). A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet, 19(2): 167–170
CrossRef
Pubmed
Google scholar
|
[103] |
Semina E V, Murray J C, Reiter R, Hrstka R F, Graw J (2000). Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum Mol Genet, 9(11): 1575–1585
CrossRef
Pubmed
Google scholar
|
[104] |
Semina E V, Reiter R S, Murray J C (1997). Isolation of a new homeobox gene belonging to the Pitx/Rieg family: expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum Mol Genet, 6(12): 2109–2116
CrossRef
Pubmed
Google scholar
|
[105] |
Sesack S R, Grace A A (2010). Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology, 35(1): 27–47
CrossRef
Pubmed
Google scholar
|
[106] |
Siepel F J, Brønnick K S, Booij J, Ravina B M, Lebedev A V, Pereira J B, Grüner R, Aarsland D (2014). Cognitive executive impairment and dopaminergic deficits in de novo Parkinson’s disease. Mov Disord, 29(14): 1802–1808
CrossRef
Pubmed
Google scholar
|
[107] |
Simpson E H, Kellendonk C, Kandel E (2010). A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron, 65(5): 585–596
CrossRef
Pubmed
Google scholar
|
[108] |
Smidt M P, Smits S M, Bouwmeester H, Hamers F P, van der Linden A J, Hellemons A J, Graw J, Burbach J P (2004). Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development, 131(5): 1145–1155
CrossRef
Pubmed
Google scholar
|
[109] |
Smidt M P, van Schaick H S, Lanctôt C, Tremblay J J, Cox J J, van der Kleij A A, Wolterink G, Drouin J, Burbach J P (1997). A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci U S A. 94:13305–13310
Pubmed
|
[110] |
Smith Y, Galvan A, Ellender T J, Doig N, Villalba R M, Huerta-Ocampo I, Wichmann T, Bolam J P (2014). The thalamostriatal system in normal and diseased states. Front Syst Neurosci, 8: 5
CrossRef
Pubmed
Google scholar
|
[111] |
Smits S M, Burbach J P, Smidt M P (2006). Developmental origin and fate of meso-diencephalic dopamine neurons. Prog Neurobiol, 78(1): 1–16
CrossRef
Pubmed
Google scholar
|
[112] |
Stern Y, Langston J W (1985). Intellectual changes in patients with MPTP-induced parkinsonism. Neurology, 35(10): 1506–1509
CrossRef
Pubmed
Google scholar
|
[113] |
Stern Y, Tetrud J W, Martin W R, Kutner S J, Langston J W (1990). Cognitive change following MPTP exposure. Neurology, 40(2): 261–264
CrossRef
Pubmed
Google scholar
|
[114] |
Svenningsson P, Westman E, Ballard C, Aarsland D (2012). Cognitive impairment in patients with Parkinson’s disease: diagnosis, biomarkers, and treatment. Lancet Neurol, 11(8): 697–707
CrossRef
Pubmed
Google scholar
|
[115] |
Thiele S L, Warre R, Khademullah C S, Fahana N, Lo C, Lam D, Talwar S, Johnston T H, Brotchie J M, Nash J E (2011). Generation of a model of L-DOPA-induced dyskinesia in two different mouse strains. J Neurosci Methods, 197(2): 193–208
CrossRef
Pubmed
Google scholar
|
[116] |
Tremblay L, Worbe Y, Thobois S, Sgambato-Faure V, Féger J (2015). Selective dysfunction of basal ganglia subterritories: From movement to behavioral disorders. Mov Disord, 30(9): 1155–1170
CrossRef
Pubmed
Google scholar
|
[117] |
Ungerstedt U (1971). Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl, 367(S367): 95–122
CrossRef
Pubmed
Google scholar
|
[118] |
van den Munckhof P, Luk K C, Ste-Marie L, Montgomery J, Blanchet P J, Sadikot A F, Drouin J (2003). Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development, 130(11): 2535–2542
CrossRef
Pubmed
Google scholar
|
[118a] |
van den Munckhof P, Gilbert F, Chamberland M, Lévesque D, Drouin J. (2006). Striatal neuroadaptation and rescue of locomotor deficit by L-dopa in aphakia mice, a model of Parkinson's disease. J Neurochem, 96(1): 160–170
|
[119] |
Varnum D S, Stevens L C (1968). Aphakia, a new mutation in the mouse. J Hered, 59(2): 147–150
Pubmed
|
[120] |
Walker F O (2007). Huntington’s disease. Lancet, 369(9557): 218–228
CrossRef
Pubmed
Google scholar
|
[121] |
Wei W, Li L, Yu G, Ding S, Li C, Zhou F M (2013). Supersensitive presynaptic dopamine D2 receptor inhibition of the striatopallidal projection in nigrostriatal dopamine-deficient mice. J Neurophysiol, 110(9): 2203–2216
CrossRef
Pubmed
Google scholar
|
[122] |
Weintraub D, Simuni T, Caspell-Garcia C, Coffey C, Lasch S, Siderowf A, Aarsland D, Barone P, Burn D, Chahine L M, Eberling J, Espay A J, Foster E D, Leverenz J B, Litvan I, Richard I, Troyer M D, Hawkins K A, and the Parkinson’s Progression Markers Initiative (2015). Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Mov Disord, 30(7): 919–927
CrossRef
Pubmed
Google scholar
|
[123] |
Willard A M, Bouchard R S, Gittis A H (2015). Differential degradation of motor deficits during gradual dopamine depletion with 6-hydroxydopamine in mice. Neuroscience, 301: 254–267
CrossRef
Pubmed
Google scholar
|
[124] |
Yarnall A J, Breen D P, Duncan G W, Khoo T K, Coleman S Y, Firbank M J, Nombela C, Winder-Rhodes S, Evans J R, Rowe J B, Mollenhauer B, Kruse N, Hudson G, Chinnery P F, O’Brien J T, Robbins T W, Wesnes K, Brooks D J, Barker R A, Burn D J, and the ICICLE-PD Study Group (2014). Characterizing mild cognitive impairment in incident Parkinson disease: the ICICLE-PD study. Neurology, 82(4): 308–316
CrossRef
Pubmed
Google scholar
|
[125] |
Yung K K, Bolam J P, Smith A D, Hersch S M, Ciliax B J, Levey A I (1995). Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience, 65(3): 709–730
CrossRef
Pubmed
Google scholar
|
[126] |
Zhou F M (2016). The Substantia Nigra Pars Reticulata. In: Steiner H, K Tseng (eds.). Handbook of Basal Ganglia Structure and Function. pp. 293–316. Elsevier.
|
[127] |
Zhou Q Y, Palmiter R D (1995). Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell, 83(7): 1197–1209
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |