Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone
Gabrielle Rushing, Rebecca A. Ihrie
Neural stem cell heterogeneity through time and space in the ventricular-subventricular zone
BACKGROUND: The origin and classification of neural stem cells (NSCs) has been a subject of intense investigation for the past two decades. Efforts to categorize NSCs based on their location, function and expression have established that these cells are a heterogeneous pool in both the embryonic and adult brain. The discovery and additional characterization of adult NSCs has introduced the possibility of using these cells as a source for neuronal and glial replacement following injury or disease. To understand how one could manipulate NSC developmental programs for therapeutic use, additional work is needed to elucidate how NSCs are programmed and how signals during development are interpreted to determine cell fate.
OBJECTIVE: This review describes the identification, classification and characterization of NSCs within the large neurogenic niche of the ventricular-subventricular zone (V-SVZ).
METHODS: A literature search was conducted using Pubmed including the keywords “ventricular-subventricular zone,” “neural stem cell,” “heterogeneity,” “identity” and/or “single cell” to find relevant manuscripts to include within the review. A special focus was placed on more recent findings using single-cell level analyses on neural stem cells within their niche(s).
RESULTS: This review discusses over 20 research articles detailing findings on V-SVZ NSC heterogeneity, over 25 articles describing fate determinants of NSCs, and focuses on 8 recent publications using distinct single-cell analyses of neural stem cells including flow cytometry and RNA-seq. Additionally, over 60 manuscripts highlighting the markers expressed on cells within the NSC lineage are included in a chart divided by cell type.
CONCLUSIONS: Investigation of NSC heterogeneity and fate decisions is ongoing. Thus far, much research has been conducted in mice however, findings in human and other mammalian species are also discussed here. Implications of NSC heterogeneity established in the embryo for the properties of NSCs in the adult brain are explored, including how these cells may be redirected after injury or genetic manipulation.
ventricular-subventricular zone / neural stem cells / positional identity / single-cell / heterogeneity
[1] |
Aguirre A, Rubio M E, Gallo V (2010). Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature, 467(7313): 323–327
CrossRef
Pubmed
Google scholar
|
[2] |
Ahn S, Joyner A L (2005). In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature, 437(7060): 894–897
CrossRef
Pubmed
Google scholar
|
[3] |
Altman J (1962). Autoradiographic study of degenerative and regenerative proliferation of neuroglia cells with tritiated thymidine. Exp Neurol, 5(4): 302–318
CrossRef
Pubmed
Google scholar
|
[4] |
Altman J, Das G D (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol, 124(3): 319–335
CrossRef
Pubmed
Google scholar
|
[5] |
Alvarez-Buylla A, García-Verdugo J M, Tramontin A D (2001). A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci, 2(4): 287–293
CrossRef
Pubmed
Google scholar
|
[6] |
Alvarez-Buylla A, Seri B, Doetsch F (2002). Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull, 57(6): 751–758
CrossRef
Pubmed
Google scholar
|
[7] |
Anthony T E, Klein C, Fishell G, Heintz N (2004). Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron, 41(6): 881–890
CrossRef
Pubmed
Google scholar
|
[8] |
Azim K, Zweifel S, Klaus F, Yoshikawa K, Amrein I, Raineteau O (2013). Early decline in progenitor diversity in the marmoset lateral ventricle. Cereb Cortex, 23(4): 922–931
CrossRef
Pubmed
Google scholar
|
[9] |
Bannerman D M, Rawlins J N, McHugh S B, Deacon R M, Yee B K, Bast T, Zhang W N, Pothuizen H H, Feldon J (2004). Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev, 28(3): 273–283
CrossRef
Pubmed
Google scholar
|
[10] |
Barraud P, Thompson L, Kirik D, Björklund A, Parmar M (2005). Isolation and characterization of neural precursor cells from the Sox1-GFP reporter mouse. Eur J Neurosci, 22(7): 1555–1569
CrossRef
Pubmed
Google scholar
|
[11] |
Beckervordersandforth R, Tripathi P, Ninkovic J, Bayam E, Lepier A, Stempfhuber B, Kirchhoff F, Hirrlinger J, Haslinger A, Lie D C, Beckers J, Yoder B, Irmler M, Götz M (2010). In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell, 7(6): 744–758
CrossRef
Pubmed
Google scholar
|
[12] |
Bendall S C, Davis K L, Amir A D, Tadmor M D, Simonds E F, Chen T J, Shenfeld D K, Nolan G P, Pe’er D (2014). Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell, 157(3): 714–725
CrossRef
Pubmed
Google scholar
|
[13] |
Benner E J, Luciano D, Jo R, Abdi K, Paez-Gonzalez P, Sheng H, Warner D S, Liu C, Eroglu C, Kuo C T (2013). Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature, 497(7449): 369–373
CrossRef
Pubmed
Google scholar
|
[14] |
Bentivoglio M, Mazzarello P (1999). The history of radial glia. Brain Res Bull, 49(5): 305–315
CrossRef
Pubmed
Google scholar
|
[15] |
Bergmann O, Liebl J, Bernard S, Alkass K, Yeung M S, Steier P, Kutschera W, Johnson L, Landén M, Druid H, Spalding K L, Frisén J (2012). The age of olfactory bulb neurons in humans. Neuron, 74(4): 634–639
CrossRef
Pubmed
Google scholar
|
[16] |
Bernier P J, Bedard A, Vinet J, Levesque M, Parent A (2002). Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci USA, 99(17): 11464–11469
CrossRef
Pubmed
Google scholar
|
[17] |
Bhardwaj R D, Curtis M A, Spalding K L, Buchholz B A, Fink D, Björk-Eriksson T, Nordborg C, Gage F H, Druid H, Eriksson P S, Frisén J (2006). Neocortical neurogenesis in humans is restricted to development. Proc Natl Acad Sci USA, 103(33): 12564–12568
CrossRef
Pubmed
Google scholar
|
[18] |
Bignami A, Dahl D (1974). Astrocyte-specific protein and radial glia in the cerebral cortex of newborn rat. Nature, 252(5478): 55–56
CrossRef
Pubmed
Google scholar
|
[19] |
Bignami A, Eng L F, Dahl D, Uyeda C T (1972). Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res, 43(2): 429–435
CrossRef
Pubmed
Google scholar
|
[20] |
Breton-Provencher V, Lemasson M, Peralta M R 3rd, Saghatelyan A (2009). Interneurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors. J Neurosci, 29(48): 15245–15257
CrossRef
Pubmed
Google scholar
|
[21] |
Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell T M, Rubenstein J L, Ericson J (1999). Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature, 398(6728): 622–627
CrossRef
Pubmed
Google scholar
|
[22] |
Brown K N, Chen S, Han Z, Lu C H, Tan X, Zhang X J, Ding L, Lopez-Cruz A, Saur D, Anderson S A, Huang K, Shi S H (2011). Clonal production and organization of inhibitory interneurons in the neocortex. Science, 334(6055): 480–486
CrossRef
Pubmed
Google scholar
|
[23] |
Brus M, Meurisse M, Gheusi G, Keller M, Lledo P M, Lévy F (2013). Dynamics of olfactory and hippocampal neurogenesis in adult sheep. J Comp Neurol, 521(1): 169–188
CrossRef
Pubmed
Google scholar
|
[24] |
Burns K A, Ayoub A E, Breunig J J, Adhami F, Weng W L, Colbert M C, Rakic P, Kuan C Y (2007). Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia hypoxia. Cereb Cortex, 17(11): 2585–2592
CrossRef
Pubmed
Google scholar
|
[25] |
Calaora V, Chazal G, Nielsen P J, Rougon G, Moreau H (1996). mCD24 expression in the developing mouse brain and in zones of secondary neurogenesis in the adult. Neuroscience, 73(2): 581–594
CrossRef
Pubmed
Google scholar
|
[26] |
Calzolari F, Michel J, Baumgart E V, Theis F, Götz M, Ninkovic J (2015). Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nat Neurosci, 18(4): 490–492
CrossRef
Pubmed
Google scholar
|
[27] |
Cameron H A, McKay R D (2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol, 435(4): 406–417
CrossRef
Pubmed
Google scholar
|
[28] |
Cameron R S, Rakic P (1991). Glial cell lineage in the cerebral cortex: a review and synthesis. Glia, 4(2): 124–137
CrossRef
Pubmed
Google scholar
|
[29] |
Campbell K (2003). Dorsal-ventral patterning in the mammalian telencephalon. Curr Opin Neurobiol, 13(1): 50–56
CrossRef
Pubmed
Google scholar
|
[30] |
Capela A, Temple S (2002). LeX/ssea-1 is expressed by adult mouse CNS stem cells, identifying them as nonependymal. Neuron, 35(5): 865–875
CrossRef
Pubmed
Google scholar
|
[31] |
Chanas-Sacré G, Thiry M, Pirard S, Rogister B, Moonen G, Mbebi C, Verdière-Sahuqué M, Leprince P (2000). A 295-kDA intermediate filament-associated protein in radial glia and developing muscle cells in vivo and in vitro. Dev Dyn, 219(4): 514–525
CrossRef
Pubmed
Google scholar
|
[32] |
Chen X, Lepier A, Berninger B, Tolkovsky A M, Herbert J (2012). Cultured subventricular zone progenitor cells transduced with neurogenin-2 become mature glutamatergic neurons and integrate into the dentate gyrus. PLoS ONE, 7(2): e31547
CrossRef
Pubmed
Google scholar
|
[33] |
Christian K M, Song H, Ming G L (2014). Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci, 37(1): 243–262
CrossRef
Pubmed
Google scholar
|
[34] |
Chuong C M, Edelman G M (1984). Alterations in neural cell adhesion molecules during development of different regions of the nervous system. J Neurosci, 4(9): 2354–2368
Pubmed
|
[35] |
Codega P, Silva-Vargas V, Paul A, Maldonado-Soto A R, Deleo A M, Pastrana E, Doetsch F (2014). Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron, 82(3): 545–559
CrossRef
Pubmed
Google scholar
|
[36] |
Corti S, Nizzardo M, Nardini M, Donadoni C, Locatelli F, Papadimitriou D, Salani S, Del Bo R, Ghezzi S, Strazzer S, Bresolin N, Comi G P (2007). Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression. Exp Neurol, 205(2): 547–562
CrossRef
Pubmed
Google scholar
|
[37] |
Coskun V, Wu H, Blanchi B, Tsao S, Kim K, Zhao J, Biancotti J C, Hutnick L, Krueger R C Jr, Fan G, de Vellis J, Sun Y E (2008). CD133+ neural stem cells in the ependyma of mammalian postnatal forebrain. Proc Natl Acad Sci USA, 105(3): 1026–1031
CrossRef
Pubmed
Google scholar
|
[38] |
Curtis M A, Kam M, Nannmark U, Anderson M F, Axell M Z, Wikkelso C, Holtås S, van Roon-Mom W M, Björk-Eriksson T, Nordborg C, Frisén J, Dragunow M, Faull R L, Eriksson P S (2007). Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science, 315(5816): 1243–1249
CrossRef
Pubmed
Google scholar
|
[39] |
Dahl D, Rueger D C, Bignami A, Weber K, Osborn M (1981). Vimentin, the 57 000 molecular weight protein of fibroblast filaments, is the major cytoskeletal component in immature glia. Eur J Cell Biol, 24(2): 191–196
Pubmed
|
[40] |
Davis A A, Temple S (1994). A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature, 372(6503): 263–266
CrossRef
Pubmed
Google scholar
|
[41] |
Dayer A G, Cleaver K M, Abouantoun T, Cameron H A (2005). New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol, 168(3): 415–427
CrossRef
Pubmed
Google scholar
|
[42] |
Daynac M, Morizur L, Kortulewski T, Gauthier L R, Ruat M, Mouthon M A, Boussin F D (2015). Cell Sorting of Neural Stem and Progenitor Cells from the Adult Mouse Subventricular Zone and Live-imaging of their Cell Cycle Dynamics. J Vis Exp, (103)
Pubmed
|
[43] |
De Marchis S, Bovetti S, Carletti B, Hsieh Y C, Garzotto D, Peretto P, Fasolo A, Puche A C, Rossi F (2007). Generation of distinct types of periglomerular olfactory bulb interneurons during development and in adult mice: implication for intrinsic properties of the subventricular zone progenitor population. J Neurosci, 27(3): 657–664
CrossRef
Pubmed
Google scholar
|
[44] |
Delgado R N, Lim D A (2015). Embryonic Nkx2.1-expressing neural precursor cells contribute to the regional heterogeneity of adult V-SVZ neural stem cells. Dev Biol, 407(2): 265–274
CrossRef
Pubmed
Google scholar
|
[45] |
Deng W, Aimone J B, Gage F H (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci, 11(5): 339–350
CrossRef
Pubmed
Google scholar
|
[46] |
Didier M, Harandi M, Aguera M, Bancel B, Tardy M, Fages C, Calas A, Stagaard M, Møllgård K, Belin M F (1986). Differential immunocytochemical staining for glial fibrillary acidic (GFA) protein, S-100 protein and glutamine synthetase in the rat subcommissural organ, nonspecialized ventricular ependyma and adjacent neuropil. Cell Tissue Res, 245(2): 343–351
CrossRef
Pubmed
Google scholar
|
[47] |
Doetsch F (2003). The glial identity of neural stem cells. Nat Neurosci, 6(11): 1127–1134
CrossRef
Pubmed
Google scholar
|
[48] |
Doetsch F, Alvarez-Buylla A (1996). Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci USA, 93(25): 14895–14900
CrossRef
Pubmed
Google scholar
|
[49] |
Doetsch F, Caillé I, Lim D A, García-Verdugo J M, Alvarez-Buylla A (1999a). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97(6): 703–716
CrossRef
Pubmed
Google scholar
|
[50] |
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 17(13): 5046–5061
Pubmed
|
[51] |
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1999b). Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA, 96(20): 11619–11624
CrossRef
Pubmed
Google scholar
|
[52] |
Doetsch F, Petreanu L, Caille I, Garcia-Verdugo J M, Alvarez-Buylla A (2002). EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron, 36(6): 1021–1034
CrossRef
Pubmed
Google scholar
|
[53] |
Edwards M A, Yamamoto M, Caviness V S Jr (1990). Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker. Neuroscience, 36(1): 121–144
CrossRef
Pubmed
Google scholar
|
[54] |
Egger V, Urban N N (2006). Dynamic connectivity in the mitral cell-granule cell microcircuit. Semin Cell Dev Biol, 17(4): 424–432
CrossRef
Pubmed
Google scholar
|
[55] |
Ehninger D, Kempermann G (2003). Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cereb Cortex, 13(8): 845–851
CrossRef
Pubmed
Google scholar
|
[56] |
Ellis P, Fagan B M, Magness S T, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004). SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci, 26(2-4): 148–165
CrossRef
Pubmed
Google scholar
|
[57] |
Englund C, Fink A, Lau C, Pham D, Daza R A, Bulfone A, Kowalczyk T, Hevner R F (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci, 25(1): 247–251
CrossRef
Pubmed
Google scholar
|
[58] |
Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S (2004). Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci, 24(38): 8354–8365
CrossRef
Pubmed
Google scholar
|
[59] |
Ericson J, Briscoe J, Rashbass P, van Heyningen V, Jessell T M (1997a). Graded sonic hedgehog signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harb Symp Quant Biol, 62(1): 451–466
CrossRef
Pubmed
Google scholar
|
[60] |
Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A, van Heyningen V, Jessell T M, Briscoe J (1997b). Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell, 90(1): 169–180
CrossRef
Pubmed
Google scholar
|
[61] |
Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
CrossRef
Pubmed
Google scholar
|
[62] |
Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisén J (2014). Neurogenesis in the striatum of the adult human brain. Cell, 156(5): 1072–1083
CrossRef
Pubmed
Google scholar
|
[63] |
Fan G, Martinowich K, Chin M H, He F, Fouse S D, Hutnick L, Hattori D, Ge W, Shen Y, Wu H, ten Hoeve J, Shuai K, Sun Y E (2005). DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development, 132(15): 3345–3356
CrossRef
Pubmed
Google scholar
|
[64] |
Fanselow M S, Dong H W (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65(1): 7–19
CrossRef
Pubmed
Google scholar
|
[65] |
Feliciano D M, Bordey A (2013). Newborn cortical neurons: only for neonates? Trends Neurosci, 36(1): 51–61
CrossRef
Pubmed
Google scholar
|
[66] |
Feng L, Hatten M E, Heintz N (1994). Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron, 12(4): 895–908
CrossRef
Pubmed
Google scholar
|
[67] |
Ferri A L, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, Ottolenghi S, Pandolfi P P, Sala M, DeBiasi S, Nicolis S K (2004). Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development, 131(15): 3805–3819
CrossRef
Pubmed
Google scholar
|
[68] |
Florio M, Albert M, Taverna E, Namba T, Brandl H, Lewitus E, Haffner C, Sykes A, Wong F K, Peters J, Guhr E, Klemroth S, Prüfer K, Kelso J, Naumann R, Nüsslein I, Dahl A, Lachmann R, Pääbo S, Huttner W B (2015). Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science, 347(6229): 1465–1470
CrossRef
Pubmed
Google scholar
|
[69] |
Frantz G D, McConnell S K (1996). Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron, 17(1): 55–61
CrossRef
Pubmed
Google scholar
|
[70] |
Fuccillo M, Joyner A L, Fishell G (2006). Morphogen to mitogen: the multiple roles of hedgehog signalling in vertebrate neural development. Nat Rev Neurosci, 7(10): 772–783
CrossRef
Pubmed
Google scholar
|
[71] |
Fuentealba L C, Obernier K, Alvarez-Buylla A (2012). Adult neural stem cells bridge their niche. Cell Stem Cell, 10(6): 698–708
CrossRef
Pubmed
Google scholar
|
[72] |
Fuentealba L C, Rompani S B, Parraguez J I, Obernier K, Romero R, Cepko C L, Alvarez-Buylla A (2015). Embryonic Origin of Postnatal Neural Stem Cells. Cell, 161(7): 1644–1655
CrossRef
Pubmed
Google scholar
|
[73] |
Gage F H (2002). Neurogenesis in the adult brain. J Neurosci, 22(3): 612–613
Pubmed
|
[74] |
Galileo D S, Gray G E, Owens G C, Majors J, Sanes J R (1990). Neurons and glia arise from a common progenitor in chicken optic tectum: demonstration with two retroviruses and cell type-specific antibodies. Proc Natl Acad Sci USA, 87(1): 458–462
CrossRef
Pubmed
Google scholar
|
[75] |
Garcia A D, Doan N B, Imura T, Bush T G, Sofroniew M V (2004). GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci, 7(11): 1233–1241
CrossRef
Pubmed
Google scholar
|
[76] |
Garner C C, Brugg B, Matus A (1988). A 70-kilodalton microtubule-associated protein (MAP2c), related to MAP2. J Neurochem, 50(2): 609–615
CrossRef
Pubmed
Google scholar
|
[77] |
Giachino C, Basak O, Lugert S, Knuckles P, Obernier K, Fiorelli R, Frank S, Raineteau O, Alvarez-Buylla A, Taylor V (2014). Molecular diversity subdivides the adult forebrain neural stem cell population. Stem Cells, 32(1): 70–84
CrossRef
Pubmed
Google scholar
|
[78] |
Gil-Perotín S, Alvarez-Buylla A, García-Verdugo J M (2009). Identification and characterization of neural progenitor cells in the adult mammalian brain. Adv Anat Embryol Cell Biol, 203: 1–101, ix (ix.)
Pubmed
|
[79] |
Gleeson J G, Lin P T, Flanagan L A, Walsh C A (1999). Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron, 23(2): 257–271
CrossRef
Pubmed
Google scholar
|
[80] |
Goldman S A, Nottebohm F (1983). Neuronal production, migration, and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA, 80(8): 2390–2394
CrossRef
Pubmed
Google scholar
|
[81] |
Golds E E, Braun P E (1976). Organization of membrane proteins in the intact myelin sheath. Pyridoxal phosphate and salicylaldehyde as probes of myelin structure. J Biol Chem, 251(15): 4729–4735
Pubmed
|
[82] |
Gonzales-Roybal G, Lim D A (2013). Chromatin-based epigenetics of adult subventricular zone neural stem cells. Front Genet, 4: 194
CrossRef
Pubmed
Google scholar
|
[83] |
Gonzalez-Perez O, Alvarez-Buylla A (2011). Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Brain Res Rev, 67(1-2): 147–156
CrossRef
Pubmed
Google scholar
|
[84] |
Gonzalez-Perez O, Quiñones-Hinojosa A (2010). Dose-dependent effect of EGF on migration and differentiation of adult subventricular zone astrocytes. Glia, 58(8): 975–983
Pubmed
|
[85] |
Götz M, Stoykova A, Gruss P (1998). Pax6 controls radial glia differentiation in the cerebral cortex. Neuron, 21(5): 1031–1044
CrossRef
Pubmed
Google scholar
|
[86] |
Gould E, Vail N, Wagers M, Gross C G (2001). Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci USA, 98(19): 10910–10917
CrossRef
Pubmed
Google scholar
|
[87] |
Guerrero-Cázares H, Gonzalez-Perez O, Soriano-Navarro M, Zamora-Berridi G, García-Verdugo J M, Quinoñes-Hinojosa A (2011). Cytoarchitecture of the lateral ganglionic eminence and rostral extension of the lateral ventricle in the human fetal brain. J Comp Neurol, 519(6): 1165–1180
CrossRef
Pubmed
Google scholar
|
[88] |
Guillemot F (2005). Cellular and molecular control of neurogenesis in the mammalian telencephalon. Curr Opin Cell Biol, 17(6): 639–647
CrossRef
Pubmed
Google scholar
|
[89] |
Hack M A, Saghatelyan A, de Chevigny A, Pfeifer A, Ashery-Padan R, Lledo P M, Götz M (2005). Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci, 8(7): 865–872
CrossRef
Pubmed
Google scholar
|
[90] |
Hall A, Giese N A, Richardson W D (1996). Spinal cord oligodendrocytes develop from ventrally derived progenitor cells that express PDGF alpha-receptors. Development, 122(12): 4085–4094
Pubmed
|
[91] |
Hansen D V, Lui J H, Parker P R, Kriegstein A R (2010). Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature, 464(7288): 554–561
CrossRef
Pubmed
Google scholar
|
[92] |
Hart I K, Richardson W D, Heldin C H, Westermark B, Raff M C (1989). PDGF receptors on cells of the oligodendrocyte-type-2 astrocyte (O-2A) cell lineage. Development, 105(3): 595–603
Pubmed
|
[93] |
Hartfuss E, Galli R, Heins N, Götz M (2001). Characterization of CNS precursor subtypes and radial glia. Dev Biol, 229(1): 15–30
CrossRef
Pubmed
Google scholar
|
[94] |
Harwell C C, Fuentealba L C, Gonzalez-Cerrillo A, Parker P R, Gertz C C, Mazzola E, Garcia M T, Alvarez-Buylla A, Cepko C L, Kriegstein A R (2015). Wide Dispersion and Diversity of Clonally Related Inhibitory Interneurons. Neuron, 87(5): 999–1007
CrossRef
Pubmed
Google scholar
|
[95] |
Haubensak W, Attardo A, Denk W, Huttner W B (2004). Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA, 101(9): 3196–3201
CrossRef
Pubmed
Google scholar
|
[96] |
He F, Ge W, Martinowich K, Becker-Catania S, Coskun V, Zhu W, Wu H, Castro D, Guillemot F, Fan G, de Vellis J, Sun Y E (2005). A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis. Nat Neurosci, 8(5): 616–625
CrossRef
Pubmed
Google scholar
|
[97] |
Herholz K, Schopphoff H, Schmidt M, Mielke R, Eschner W, Scheidhauer K, Schicha H, Heiss W D, Ebmeier K (2002). Direct comparison of spatially normalized PET and SPECT scans in Alzheimer's disease. J Nucl Med, 43(1): 21–26
|
[98] |
Herrera D G, Garcia-Verdugo J M, Alvarez-Buylla A (1999). Adult-derived neural precursors transplanted into multiple regions in the adult brain. Ann Neurol, 46(6): 867–877
CrossRef
Pubmed
Google scholar
|
[99] |
Hevner R F (2006). From radial glia to pyramidal-projection neuron: transcription factor cascades in cerebral cortex development. Mol Neurobiol, 33(1): 33–50
CrossRef
Pubmed
Google scholar
|
[100] |
Hevner R F, Hodge R D, Daza R A, Englund C (2006). Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res, 55(3): 223–233
CrossRef
Pubmed
Google scholar
|
[101] |
His W (1904). Die Entwickelung des menschlichen Gehirns wahrend der esten Monte.Leipzig: Hirzel
|
[102] |
Hochstim C, Deneen B, Lukaszewicz A, Zhou Q, Anderson D J (2008). Identification of positionally distinct astrocyte subtypes whose identities are specified by a homeodomain code. Cell, 133(3): 510–522
CrossRef
Pubmed
Google scholar
|
[103] |
Hockfield S, McKay R D (1985). Identification of major cell classes in the developing mammalian nervous system. J Neurosci, 5(12): 3310–3328
Pubmed
|
[104] |
Huang L, DeVries G J, Bittman E L (1998). Photoperiod regulates neuronal bromodeoxyuridine labeling in the brain of a seasonally breeding mammal. J Neurobiol, 36(3): 410–420
CrossRef
Pubmed
Google scholar
|
[105] |
Ihrie R A, Shah J K, Harwell C C, Levine J H, Guinto C D, Lezameta M, Kriegstein A R, Alvarez-Buylla A (2011). Persistent sonic hedgehog signaling in adult brain determines neural stem cell positional identity. Neuron, 71(2): 250–262
CrossRef
Pubmed
Google scholar
|
[106] |
Ihrie R A, Alvarez-Buylla A (2009). Neural Stem Cells Disguised as Astrocytes. In: Astrocytes in (Patho)Physiology of the Nervous System, Parpura V, Haydon P G (Eds.). (Springer US), pp. 27–47
|
[107] |
Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H, Miyachi H, Fujiwara T, Ishidate F, Kageyama R (2013). Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science, 342(6163): 1203–1208
CrossRef
Pubmed
Google scholar
|
[108] |
Imayoshi I, Sakamoto M, Kageyama R (2011). Genetic methods to identify and manipulate newly born neurons in the adult brain. Front Neurosci, 5: 64
CrossRef
Pubmed
Google scholar
|
[109] |
Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R (2010). Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci, 30(9): 3489–3498
CrossRef
Pubmed
Google scholar
|
[110] |
Imura T, Kornblum H I, Sofroniew M V (2003). The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci, 23(7): 2824–2832
Pubmed
|
[111] |
Inta D, Alfonso J, von Engelhardt J, Kreuzberg M M, Meyer A H, van Hooft J A, Monyer H (2008). Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone. Proc Natl Acad Sci USA, 105(52): 20994–20999
CrossRef
Pubmed
Google scholar
|
[112] |
Irvin D K, Nakano I, Paucar A, Kornblum H I (2004). Patterns of Jagged1, Jagged2, Delta-like 1 and Delta-like 3 expression during late embryonic and postnatal brain development suggest multiple functional roles in progenitors and differentiated cells. J Neurosci Res, 75(3): 330–343
CrossRef
Pubmed
Google scholar
|
[113] |
Isaacson J S, Strowbridge B W (1998). Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron, 20(4): 749–761
CrossRef
Pubmed
Google scholar
|
[114] |
Jackson E L, Alvarez-Buylla A (2008). Characterization of adult neural stem cells and their relation to brain tumors. Cells Tissues Organs, 188(1-2): 212–224
CrossRef
Pubmed
Google scholar
|
[115] |
Johe K K, Hazel T G, Muller T, Dugich-Djordjevic M M, McKay R D (1996). Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev, 10(24): 3129–3140
CrossRef
Pubmed
Google scholar
|
[116] |
Kaplan M S, Hinds J W (1977). Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science, 197(4308): 1092–1094
CrossRef
Pubmed
Google scholar
|
[117] |
Kawaguchi A, Miyata T, Sawamoto K, Takashita N, Murayama A, Akamatsu W, Ogawa M, Okabe M, Tano Y, Goldman S A, Okano H (2001). Nestin-EGFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol Cell Neurosci, 17(2): 259–273
CrossRef
Pubmed
Google scholar
|
[118] |
Kirino T, Brightman M W, Oertel W H, Schmechel D E, Marangos P J (1983). Neuron-specific enolase as an index of neuronal regeneration and reinnervation. J Neurosci, 3(5): 915–923
Pubmed
|
[119] |
Kirschenbaum B, Doetsch F, Lois C, Alvarez-Buylla A (1999). Adult subventricular zone neuronal precursors continue to proliferate and migrate in the absence of the olfactory bulb. J Neurosci, 19(6): 2171–2180
Pubmed
|
[120] |
Kohwi M, Osumi N, Rubenstein J L, Alvarez-Buylla A (2005). Pax6 is required for making specific subpopulations of granule and periglomerular neurons in the olfactory bulb. J Neurosci, 25(30): 6997–7003
CrossRef
Pubmed
Google scholar
|
[121] |
Kohwi M, Petryniak M A, Long J E, Ekker M, Obata K, Yanagawa Y, Rubenstein J L, Alvarez-Buylla A (2007). A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors. J Neurosci, 27(26): 6878–6891
CrossRef
Pubmed
Google scholar
|
[122] |
Kokovay E, Goderie S, Wang Y, Lotz S, Lin G, Sun Y, Roysam B, Shen Q, Temple S (2010). Adult SVZ lineage cells home to and leave the vascular niche via differential responses to SDF1/CXCR4 signaling. Cell Stem Cell, 7(2): 163–173
CrossRef
Pubmed
Google scholar
|
[123] |
Kokovay E, Wang Y, Kusek G, Wurster R, Lederman P, Lowry N, Shen Q, Temple S (2012). VCAM1 is essential to maintain the structure of the SVZ niche and acts as an environmental sensor to regulate SVZ lineage progression. Cell Stem Cell, 11(2): 220–230
CrossRef
Pubmed
Google scholar
|
[124] |
Kopan R, Ilagan M X G (2009). The canonical Notch signaling pathway: unfolding the activation mechanism. Cell, 137(2): 216–233
CrossRef
Pubmed
Google scholar
|
[125] |
Kornack D R, Rakic P (2001a). Cell proliferation without neurogenesis in adult primate neocortex. Science, 294(5549): 2127–2130
CrossRef
Pubmed
Google scholar
|
[126] |
Kornack D R, Rakic P (2001b). The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA, 98(8): 4752–4757
CrossRef
Pubmed
Google scholar
|
[127] |
Kosaka K, Aika Y, Toida K, Heizmann C W, Hunziker W, Jacobowitz D M, Nagatsu I, Streit P, Visser T J, Kosaka T (1995). Chemically defined neuron groups and their subpopulations in the glomerular layer of the rat main olfactory bulb. Neurosci Res, 23(1): 73–88
CrossRef
Pubmed
Google scholar
|
[128] |
Kosaka K, Kosaka T (2005). synaptic organization of the glomerulus in the main olfactory bulb: compartments of the glomerulus and heterogeneity of the periglomerular cells. Anat Sci Int, 80(2): 80–90
CrossRef
Pubmed
Google scholar
|
[129] |
Kriegstein A, Alvarez-Buylla A (2009). The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci, 32(1): 149–184
CrossRef
Pubmed
Google scholar
|
[130] |
Kriegstein A R, Götz M (2003). Radial glia diversity: a matter of cell fate. Glia, 43(1): 37–43
CrossRef
Pubmed
Google scholar
|
[131] |
Laywell E D, Rakic P, Kukekov V G, Holland E C, Steindler D A (2000). Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA, 97(25): 13883–13888
CrossRef
Pubmed
Google scholar
|
[132] |
Lazarini F, Mouthon M A, Gheusi G, de Chaumont F, Olivo-Marin J C, Lamarque S, Abrous D N, Boussin F D, Lledo P M (2009). Cellular and behavioral effects of cranial irradiation of the subventricular zone in adult mice. PLoS ONE, 4(9): e7017
CrossRef
Pubmed
Google scholar
|
[133] |
Lehtinen M K, Zappaterra M W, Chen X, Yang Y J, Hill A D, Lun M, Maynard T, Gonzalez D, Kim S, Ye P, D’Ercole A J, Wong E T, LaMantia A S, Walsh C A (2011). The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron, 69(5): 893–905
CrossRef
Pubmed
Google scholar
|
[134] |
Lendahl U, Zimmerman L B, McKay R D (1990). CNS stem cells express a new class of intermediate filament protein. Cell, 60(4): 585–595
CrossRef
Pubmed
Google scholar
|
[135] |
Lepousez G, Valley M T, Lledo P M (2013). The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu Rev Physiol, 75(1): 339–363
CrossRef
Pubmed
Google scholar
|
[136] |
Levine J H, Simonds E F, Bendall S C, Davis K L, Amir A D, Tadmor M D, Litvin O, Fienberg H G, Jager A, Zunder E R, Finck R, Gedman A L, Radtke I, Downing J R, Pe’er D, Nolan G P (2015). Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell, 162(1): 184–197
CrossRef
Pubmed
Google scholar
|
[137] |
LeVine S M, Goldman J E (1988a). Embryonic divergence of oligodendrocyte and astrocyte lineages in developing rat cerebrum. J Neurosci, 8(11): 3992–4006
Pubmed
|
[138] |
LeVine S M, Goldman J E (1988b). Ultrastructural characteristics of GD3 ganglioside-positive immature glia in rat forebrain white matter. J Comp Neurol, 277(3): 456–464
CrossRef
Pubmed
Google scholar
|
[139] |
Levitt P, Cooper M L, Rakic P (1981). Coexistence of neuronal and glial precursor cells in the cerebral ventricular zone of the fetal monkey: an ultrastructural immunoperoxidase analysis. J Neurosci, 1(1): 27–39
Pubmed
|
[140] |
Li G, Fang L, Fernández G, Pleasure S J (2013). The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron, 78(4): 658–672
CrossRef
Pubmed
Google scholar
|
[141] |
Li L, Clevers H (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965): 542–545
CrossRef
Pubmed
Google scholar
|
[142] |
Li X, Sun C, Lin C, Ma T, Madhavan M C, Campbell K, Yang Z (2011). The transcription factor Sp8 is required for the production of parvalbumin-expressing interneurons in the olfactory bulb. J Neurosci, 31(23): 8450–8455
CrossRef
Pubmed
Google scholar
|
[143] |
Lim D A, Alvarez-Buylla A (1999). Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci USA, 96(13): 7526–7531
CrossRef
Pubmed
Google scholar
|
[144] |
Lim D A, Alvarez-Buylla A (2016). The Adult Ventricular-Subventricular Zone (V-SVZ) and Olfactory Bulb (OB) Neurogenesis. Cold Spring Harb Perspect Biol, 8(5): 8
CrossRef
Pubmed
Google scholar
|
[145] |
Lim D A, Huang Y C, Swigut T, Mirick A L, Garcia-Verdugo J M, Wysocka J, Ernst P, Alvarez-Buylla A (2009). Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature, 458(7237): 529–533
CrossRef
Pubmed
Google scholar
|
[146] |
Liu F, You Y, Li X, Ma T, Nie Y, Wei B, Li T, Lin H, Yang Z (2009). Brain injury does not alter the intrinsic differentiation potential of adult neuroblasts. J Neurosci, 29(16): 5075–5087
CrossRef
Pubmed
Google scholar
|
[147] |
Liu Y, Han S S, Wu Y, Tuohy T M, Xue H, Cai J, Back S A, Sherman L S, Fischer I, Rao M S (2004). CD44 expression identifies astrocyte-restricted precursor cells. Dev Biol, 276(1): 31–46
CrossRef
Pubmed
Google scholar
|
[148] |
Livneh Y, Adam Y, Mizrahi A (2014). Odor processing by adult-born neurons. Neuron, 81(5): 1097–1110
CrossRef
Pubmed
Google scholar
|
[149] |
Lledo P M, Alonso M, Grubb M S (2006). Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci, 7(3): 179–193
CrossRef
Pubmed
Google scholar
|
[150] |
Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A (2015). Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury. Cell Stem Cell, 17(3): 329–340
CrossRef
Pubmed
Google scholar
|
[151] |
Lois C, Alvarez-Buylla A (1993). Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci USA, 90(5): 2074–2077
CrossRef
Pubmed
Google scholar
|
[152] |
Lois C, García-Verdugo J M, Alvarez-Buylla A (1996). Chain migration of neuronal precursors. Science, 271(5251): 978–981
CrossRef
Pubmed
Google scholar
|
[153] |
Long J E, Garel S, Alvarez-Dolado M, Yoshikawa K, Osumi N, Alvarez-Buylla A, Rubenstein J L (2007). Dlx-dependent and-independent regulation of olfactory bulb interneuron differentiation. J Neurosci, 27(12): 3230–3243
CrossRef
Pubmed
Google scholar
|
[154] |
Longe O, Senior C, Rippon G (2009). The lateral and ventromedial prefrontal cortex work as a dynamic integrated system: evidence from FMRI connectivity analysis. J Cogn Neurosci, 21(1): 141–154
CrossRef
Pubmed
Google scholar
|
[155] |
Low V F, Faull R L, Bennet L, Gunn A J, Curtis M A (2013). Neurogenesis and progenitor cell distribution in the subgranular zone and subventricular zone of the adult sheep brain. Neuroscience, 244: 173–187
CrossRef
Pubmed
Google scholar
|
[156] |
Luo J, Daniels S B, Lennington J B, Notti R Q, Conover J C (2006). The aging neurogenic subventricular zone. Aging Cell, 5(2): 139–152
CrossRef
Pubmed
Google scholar
|
[157] |
Luo Y, Coskun V, Liang A, Yu J, Cheng L, Ge W, Shi Z, Zhang K, Li C, Cui Y, Lin H, Luo D, Wang J, Lin C, Dai Z, Zhu H, Zhang J, Liu J, Liu H, deVellis J, Horvath S, Sun Y E, Li S (2015). Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell, 161(5): 1175–1186
CrossRef
Pubmed
Google scholar
|
[158] |
Luzzati F, Peretto P, Aimar P, Ponti G, Fasolo A, Bonfanti L (2003). Glia-independent chains of neuroblasts through the subcortical parenchyma of the adult rabbit brain. Proc Natl Acad Sci USA, 100(22): 13036–13041
CrossRef
Pubmed
Google scholar
|
[159] |
Marzesco A M, Janich P, Wilsch-Bräuninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner W B (2005). Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci, 118(Pt 13): 2849–2858
CrossRef
Pubmed
Google scholar
|
[160] |
Maslov A Y, Barone T A, Plunkett R J, Pruitt S C (2004). Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci, 24(7): 1726–1733
CrossRef
Pubmed
Google scholar
|
[161] |
Maurice A (2007). Response to Comment on “Human Neuroblasts Migrate to the Olfactory Bulb via a Lateral Ventricular Extension”. Science, 318(5849): 393c
CrossRef
Google scholar
|
[162] |
Mayer C, Jaglin X H, Cobbs L V, Bandler R C, Streicher C, Cepko C L, Hippenmeyer S, Fishell G (2015). Clonally Related Forebrain Interneurons Disperse Broadly across Both Functional Areas and Structural Boundaries. Neuron, 87(5): 989–998
CrossRef
Pubmed
Google scholar
|
[163] |
McCarthy M, Turnbull D H, Walsh C A, Fishell G (2001). Telencephalic neural progenitors appear to be restricted to regional and glial fates before the onset of neurogenesis. J Neurosci, 21(17): 6772–6781
Pubmed
|
[164] |
McDermott K W, Lantos P L (1989). The distribution of glial fibrillary acidic protein and vimentin in postnatal marmoset (Callithrix jacchus) brain. Brain Res Dev Brain Res, 45(2): 169–177
CrossRef
Pubmed
Google scholar
|
[165] |
McDermott K W, Lantos P L (1990). Cell proliferation in the subependymal layer of the postnatal marmoset, Callithrix jacchus. Brain Res Dev Brain Res, 57(2): 269–277
CrossRef
Pubmed
Google scholar
|
[166] |
McMahon A P, Ingham P W, Tabin C J (2003). Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol, 53: 1–114
CrossRef
Pubmed
Google scholar
|
[167] |
Menn B, Garcia-Verdugo J M, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006). Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci, 26(30): 7907–7918
CrossRef
Pubmed
Google scholar
|
[168] |
Merkle F T, Fuentealba L C, Sanders T A, Magno L, Kessaris N, Alvarez-Buylla A (2014). Adult neural stem cells in distinct microdomains generate previously unknown interneuron types. Nat Neurosci, 17(2): 207–214
CrossRef
Pubmed
Google scholar
|
[169] |
Merkle F T, Mirzadeh Z, Alvarez-Buylla A (2007). Mosaic organization of neural stem cells in the adult brain. Science, 317(5836): 381–384
CrossRef
Pubmed
Google scholar
|
[170] |
Merkle F T, Tramontin A D, García-Verdugo J M, Alvarez-Buylla A (2004). Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci USA, 101(50): 17528–17532
CrossRef
Pubmed
Google scholar
|
[171] |
Mich J K, Signer R A, Nakada D, Pineda A, Burgess R J, Vue T Y, Johnson J E, Morrison S J (2014). Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. eLife, 3: e02669
CrossRef
Pubmed
Google scholar
|
[172] |
Milosevic A, Noctor S C, Martinez-Cerdeno V, Kriegstein A R, Goldman J E (2008). Progenitors from the postnatal forebrain subventricular zone differentiate into cerebellar-like interneurons and cerebellar-specific astrocytes upon transplantation. Mol Cell Neurosci, 39(3): 324–334
CrossRef
Pubmed
Google scholar
|
[173] |
Mirzadeh Z, Merkle F T, Soriano-Navarro M, Garcia-Verdugo J M, Alvarez-Buylla A (2008). Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell, 3(3): 265–278
CrossRef
Pubmed
Google scholar
|
[174] |
Misson J P, Edwards M A, Yamamoto M, Caviness V S Jr (1988). Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker. Brain Res Dev Brain Res, 44(1): 95–108
CrossRef
Pubmed
Google scholar
|
[175] |
Molofsky A V, Slutsky S G, Joseph N M, He S, Pardal R, Krishnamurthy J, Sharpless N E, Morrison S J (2006). Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature, 443(7110): 448–452
CrossRef
Pubmed
Google scholar
|
[176] |
Molyneaux B J, Arlotta P, Menezes J R, Macklis J D (2007). Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci, 8(6): 427–437
CrossRef
Pubmed
Google scholar
|
[177] |
Moreno M M, Linster C, Escanilla O, Sacquet J, Didier A, Mandairon N (2009). Olfactory perceptual learning requires adult neurogenesis. Proc Natl Acad Sci USA, 106(42): 17980–17985
CrossRef
Pubmed
Google scholar
|
[178] |
Mori T, Buffo A, Götz M (2005). The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. Curr Top Dev Biol, 69: 67–99
CrossRef
Pubmed
Google scholar
|
[179] |
Morshead C M, Garcia A D, Sofroniew M V, van Der Kooy D (2003). The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur J Neurosci, 18(1): 76–84
CrossRef
Pubmed
Google scholar
|
[180] |
Morshead C M, Reynolds B A, Craig C G, McBurney M W, Staines W A, Morassutti D, Weiss S, van der Kooy D (1994). Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron, 13(5): 1071–1082
CrossRef
Pubmed
Google scholar
|
[181] |
Mullen R J, Buck C R, Smith A M (1992). NeuN, a neuronal specific nuclear protein in vertebrates. Development, 116(1): 201–211
Pubmed
|
[182] |
Nedelec J, Pierres M, Moreau H, Barbet J, Naquet P, Faivre-Sarrailh C, Rougon G (1992). Isolation and characterization of a novel glycosyl-phosphatidylinositol-anchored glycoconjugate expressed by developing neurons. Eur J Biochem, 203(3): 433–442
|
[183] |
Nishiyama A, Lin X H, Giese N, Heldin C H, Stallcup W B (1996). Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain. J Neurosci Res, 43(3): 299–314
CrossRef
Pubmed
Google scholar
|
[184] |
Nissant A, Bardy C, Katagiri H, Murray K, Lledo P M (2009). Adult neurogenesis promotes synaptic plasticity in the olfactory bulb. Nat Neurosci, 12(6): 728–730
CrossRef
Pubmed
Google scholar
|
[185] |
Niu W, Zang T, Zou Y, Fang S, Smith D K, Bachoo R, Zhang C L (2013). In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol, 15(10): 1164–1175
CrossRef
Pubmed
Google scholar
|
[186] |
Noctor S C, Flint A C, Weissman T A, Wong W S, Clinton B K, Kriegstein A R (2002). Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci, 22(8): 3161–3173
Pubmed
|
[187] |
Noctor S C, Martínez-Cerdeño V, Ivic L, Kriegstein A R (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci, 7(2): 136–144
CrossRef
Pubmed
Google scholar
|
[188] |
Noctor S C, Martinez-Cerdeno, V, Kriegstein A R (2007). Neural stem and progenitor cells in cortical development. Novartis Found Symp, 288: 59–73; discussion 73–58, 96–58
|
[189] |
Noctor S C, Martínez-Cerdeño V, Kriegstein A R (2008). Distinct behaviors of neural stem and progenitor cells underlie cortical neurogenesis. J Comp Neurol, 508(1): 28–44
CrossRef
Pubmed
Google scholar
|
[190] |
Omlin F X, Webster H D, Palkovits C G, Cohen S R (1982). Immunocytochemical localization of basic protein in major dense line regions of central and peripheral myelin. J Cell Biol, 95(1): 242–248
CrossRef
Pubmed
Google scholar
|
[191] |
Ong W Y, Levine J M (1999). A light and electron microscopic study of NG2 chondroitin sulfate proteoglycan-positive oligodendrocyte precursor cells in the normal and kainate-lesioned rat hippocampus. Neuroscience, 92(1): 83–95
CrossRef
Pubmed
Google scholar
|
[192] |
Paez-Gonzalez P, Abdi K, Luciano D, Liu Y, Soriano-Navarro M, Rawlins E, Bennett V, Garcia-Verdugo J M, Kuo C T (2011). Ank3-dependent SVZ niche assembly is required for the continued production of new neurons. Neuron, 71(1): 61–75
CrossRef
Pubmed
Google scholar
|
[193] |
Paredes M F, Sorrells S F, Garcia-Verdugo J M, Alvarez-Buylla A (2016). Brain size and limits to adult neurogenesis. J Comp Neurol, 524(3): 646–664
CrossRef
Pubmed
Google scholar
|
[194] |
Parras C M, Galli R, Britz O, Soares S, Galichet C, Battiste J, Johnson J E, Nakafuku M, Vescovi A, Guillemot F (2004). Mash1 specifies neurons and oligodendrocytes in the postnatal brain. EMBO J, 23(22): 4495–4505
CrossRef
Pubmed
Google scholar
|
[195] |
Pastrana E, Cheng L C, Doetsch F (2009). Simultaneous prospective purification of adult subventricular zone neural stem cells and their progeny. Proc Natl Acad Sci USA, 106(15): 6387–6392
CrossRef
Pubmed
Google scholar
|
[196] |
Pencea V, Bingaman K D, Freedman L J, Luskin M B (2001). Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol, 172(1): 1–16
CrossRef
Pubmed
Google scholar
|
[197] |
Peretto P, Merighi A, Fasolo A, Bonfanti L (1997). Glial tubes in the rostral migratory stream of the adult rat. Brain Res Bull, 42(1): 9–21
CrossRef
Pubmed
Google scholar
|
[198] |
Pérez-Martín M, Cifuentes M, Grondona J M, Bermúdez-Silva F J, Arrabal P M, Pérez-Fígares J M, Jiménez A J, García-Segura L M, Férnandez-Llebrez P, Fernandez-Llebrez P, the P. Fernández-Llebrez (2003). Neurogenesis in explants from the walls of the lateral ventricle of adult bovine brain: role of endogenous IGF-1 as a survival factor. Eur J Neurosci, 17(2): 205–211
CrossRef
Pubmed
Google scholar
|
[199] |
Petreanu L, Alvarez-Buylla A (2002). Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J Neurosci, 22(14): 6106–6113
Pubmed
|
[200] |
Picard-Riera N, Decker L, Delarasse C, Goude K, Nait-Oumesmar B, Liblau R, Pham-Dinh D, Baron-Van Evercooren A (2002). Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice. Proc Natl Acad Sci USA, 99(20): 13211–13216
CrossRef
Pubmed
Google scholar
|
[201] |
Pilaz L J, McMahon J J, Miller E E, Lennox A L, Suzuki A, Salmon E, Silver D L (2016). Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain. Neuron, 89(1): 83–99
CrossRef
Pubmed
Google scholar
|
[202] |
Pinto L, Mader M T, Irmler M, Gentilini M, Santoni F, Drechsel D, Blum R, Stahl R, Bulfone A, Malatesta P, Beckers J, Götz M (2008). Prospective isolation of functionally distinct radial glial subtypes—lineage and transcriptome analysis. Mol Cell Neurosci, 38(1): 15–42
CrossRef
Pubmed
Google scholar
|
[203] |
Pixley S K, de Vellis J (1984). Transition between immature radial glia and mature astrocytes studied with a monoclonal antibody to vimentin. Brain Res, 317(2): 201–209
CrossRef
Pubmed
Google scholar
|
[204] |
Poduslo J F, Braun P E (1975). Topographical arrangement of membrane proteins in the intact myelin sheath. Lactoperoxidase incorproation of iodine into myelin surface proteins. J Biol Chem, 250(3): 1099–1105
Pubmed
|
[205] |
Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez-Buylla A (2013). Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proc Natl Acad Sci USA, 110(11): E1045–E1054
CrossRef
Pubmed
Google scholar
|
[206] |
Price J L, Powell T P (1970). The mitral and short axon cells of the olfactory bulb. J Cell Sci, 7(3): 631–651
Pubmed
|
[207] |
Pringle N P, Mudhar H S, Collarini E J, Richardson W D (1992). PDGF receptors in the rat CNS: during late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage. Development, 115(2): 535–551
Pubmed
|
[208] |
Puelles L, Rubenstein J L (2003). Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci, 26(9): 469–476
CrossRef
Pubmed
Google scholar
|
[209] |
Purves D (2012). Neuroscience, 5th edn (Sunderland, Mass.: Sinauer Associates)
|
[210] |
Qian X, Goderie S K, Shen Q, Stern J H, Temple S (1998). Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development, 125(16): 3143–3152
Pubmed
|
[211] |
Quarles R H, Trapp B D (1984). Localization of myelin-associated glycoprotein. J Neurochem, 43(6): 1773–1777
CrossRef
Pubmed
Google scholar
|
[212] |
Rakic P (1988). Specification of cerebral cortical areas. Science, 241(4862): 170–176
CrossRef
Pubmed
Google scholar
|
[213] |
Rakic P (2006). A century of progress in corticoneurogenesis: from silver impregnation to genetic engineering. Cereb Cortex, 16(Suppl 1): i3–i17
CrossRef
Pubmed
Google scholar
|
[214] |
Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan R C, Melton D A (2002). “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science, 298(5593): 597–600
CrossRef
Pubmed
Google scholar
|
[215] |
Ramos A D, Andersen R E, Liu S J, Nowakowski T J, Hong S J, Gertz C C, Salinas R D, Zarabi H, Kriegstein A R, Lim D A (2015). The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell, 16(4): 439–447
CrossRef
Pubmed
Google scholar
|
[216] |
Reid C B, Liang I, Walsh C (1995). Systematic widespread clonal organization in cerebral cortex. Neuron, 15(2): 299–310
CrossRef
Pubmed
Google scholar
|
[217] |
Reynolds B A, Weiss S (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255(5052): 1707–1710
CrossRef
Pubmed
Google scholar
|
[218] |
Roccio M, Schmitter D, Knobloch M, Okawa Y, Sage D, Lutolf M P (2013). Predicting stem cell fate changes by differential cell cycle progression patterns. Development, 140(2): 459–470
CrossRef
Pubmed
Google scholar
|
[219] |
Rochefort C, Gheusi G, Vincent J D, Lledo P M (2002). Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci, 22(7): 2679–2689
Pubmed
|
[220] |
Rodríguez-Pérez L M, Pérez-Martín M, Jiménez A J, Fernández-Llebrez P (2003). Immunocytochemical characterisation of the wall of the bovine lateral ventricle. Cell Tissue Res, 314(3): 325–335
CrossRef
Pubmed
Google scholar
|
[221] |
Rougon G, Alterman L A, Dennis K, Guo X J, Kinnon C (1991). The murine heat-stable antigen: a differentiation antigen expressed in both the hematolymphoid and neural cell lineages. Eur J Immunol, 21(6): 1397–1402
CrossRef
Pubmed
Google scholar
|
[222] |
Sakamoto M, Ieki N, Miyoshi G, Mochimaru D, Miyachi H, Imura T, Yamaguchi M, Fishell G, Mori K, Kageyama R, Imayoshi I (2014a). Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning. J Neurosci, 34(17): 5788–5799
CrossRef
Pubmed
Google scholar
|
[223] |
Sakamoto M, Kageyama R, Imayoshi I (2014b). The functional significance of newly born neurons integrated into olfactory bulb circuits. Front Neurosci, 8: 121
CrossRef
Pubmed
Google scholar
|
[224] |
Samanta J, Grund E M, Silva H M, Lafaille J J, Fishell G, Salzer J L (2015). Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination. Nature, 526(7573): 448–452
CrossRef
Pubmed
Google scholar
|
[225] |
Sanai N, Berger M S, Garcia-Verdugo J M, Alvarez-Buylla A (2007). Comment on “Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension”. Science, 318(5849): 393, author reply 393
CrossRef
Pubmed
Google scholar
|
[226] |
Sanai N, Nguyen T, Ihrie R A, Mirzadeh Z, Tsai H H, Wong M, Gupta N, Berger M S, Huang E, Garcia-Verdugo J M, Rowitch D H, Alvarez-Buylla A (2011). Corridors of migrating neurons in the human brain and their decline during infancy. Nature, 478(7369): 382–386
CrossRef
Pubmed
Google scholar
|
[227] |
Sanai N, Tramontin A D, Quiñones-Hinojosa A, Barbaro N M, Gupta N, Kunwar S, Lawton M T, McDermott M W, Parsa A T, Manuel-García Verdugo J, Berger M S, Alvarez-Buylla A (2004). Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature, 427(6976): 740–744
CrossRef
Pubmed
Google scholar
|
[228] |
Sawamoto K, Hirota Y, Alfaro-Cervello C, Soriano-Navarro M, He X, Hayakawa-Yano Y, Yamada M, Hikishima K, Tabata H, Iwanami A, Nakajima K, Toyama Y, Itoh T, Alvarez-Buylla A, Garcia-Verdugo J M, Okano H (2011). Cellular composition and organization of the subventricular zone and rostral migratory stream in the adult and neonatal common marmoset brain. J Comp Neurol, 519(4): 690–713
CrossRef
Pubmed
Google scholar
|
[229] |
Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin J A, Yamada M, Spassky N, Murcia N S, Garcia-Verdugo J M, Marin O, Rubenstein J L, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006). New neurons follow the flow of cerebrospinal fluid in the adult brain. Science, 311(5761): 629–632
CrossRef
Pubmed
Google scholar
|
[230] |
Schmechel D E, Marangos P J (1983). Neuron specific enolase as a marker or differentiation in neurons and neuroendocine cells. In: McKelvey J, Ba J, ed. Current Methods in Cellular Neurobiology. New York: John Wiley & Sons. pp 1–62
|
[231] |
Schmechel D E, Rakic P (1979). A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol (Berl), 156(2): 115–152
CrossRef
Pubmed
Google scholar
|
[232] |
Schnitzer J, Schachner M (1981). Characterization of isolated mouse cerebellar cell populations in vitro. J Neuroimmunol, 1(4): 457–470
CrossRef
Pubmed
Google scholar
|
[233] |
Shen Q, Goderie S K, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 304(5675): 1338–1340
CrossRef
Pubmed
Google scholar
|
[234] |
Shen Q, Wang Y, Kokovay E, Lin G, Chuang S M, Goderie S K, Roysam B, Temple S (2008). Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell, 3(3): 289–300
CrossRef
Pubmed
Google scholar
|
[235] |
Shibata T, Yamada K, Watanabe M, Ikenaka K, Wada K, Tanaka K, Inoue Y (1997). Glutamate transporter GLAST is expressed in the radial glia-astrocyte lineage of developing mouse spinal cord. J Neurosci, 17(23): 9212–9219
Pubmed
|
[236] |
Shin J, Berg D A, Zhu Y, Shin J Y, Song J, Bonaguidi M A, Enikolopov G, Nauen D W, Christian K M, Ming G L, Song H (2015). Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell, 17(3): 360–372
CrossRef
Pubmed
Google scholar
|
[237] |
Sidman R L, Miale I L, Feder N (1959). Cell proliferation and migration in the primitive ependymal zone: an autoradiographic study of histogenesis in the nervous system. Exp Neurol, 1(4): 322–333
CrossRef
Pubmed
Google scholar
|
[238] |
Sohn J, Orosco L, Guo F, Chung S H, Bannerman P, Mills Ko E, Zarbalis K, Deng W, Pleasure D (2015). The subventricular zone continues to generate corpus callosum and rostral migratory stream astroglia in normal adult mice. J Neurosci, 35(9): 3756–3763
CrossRef
Pubmed
Google scholar
|
[239] |
Sommer I, Schachner M (1981). Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol, 83(2): 311–327
CrossRef
Pubmed
Google scholar
|
[240] |
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
CrossRef
Pubmed
Google scholar
|
[241] |
Spassky N, Merkle F T, Flames N, Tramontin A D, García-Verdugo J M, Alvarez-Buylla A (2005). Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci, 25(1): 10–18
CrossRef
Pubmed
Google scholar
|
[242] |
Stallcup W B, Beasley L (1987). Bipotential glial precursor cells of the optic nerve express the NG2 proteoglycan. J Neurosci, 7(9): 2737–2744
Pubmed
|
[243] |
Stühmer T, Puelles L, Ekker M, Rubenstein J L (2002). Expression from a Dlx gene enhancer marks adult mouse cortical GABAergic neurons. Cereb Cortex, 12(1): 75–85
CrossRef
Pubmed
Google scholar
|
[244] |
Sultan S, Mandairon N, Kermen F, Garcia S, Sacquet J, Didier A (2010). Learning-dependent neurogenesis in the olfactory bulb determines long-term olfactory memory. FASEB J, 24(7): 2355–2363. doi: 10.1096/fj.09-151456
|
[245] |
Sunabori T, Tokunaga A, Nagai T, Sawamoto K, Okabe M, Miyawaki A, Matsuzaki Y, Miyata T, Okano H (2008). Cell-cycle-specific nestin expression coordinates with morphological changes in embryonic cortical neural progenitors. J Cell Sci, 121(Pt 8): 1204–1212
CrossRef
Pubmed
Google scholar
|
[246] |
Szatkowska I, Szymańska O, Grabowska A (2004). The role of the human ventromedial prefrontal cortex in memory for contextual information. Neurosci Lett, 364(2): 71–75
CrossRef
Pubmed
Google scholar
|
[247] |
Temple S (2001). The development of neural stem cells. Nature, 414(6859): 112–117
CrossRef
Pubmed
Google scholar
|
[248] |
Tong C K, Fuentealba L C, Shah J K, Lindquist R A, Ihrie R A, Guinto C D, Rodas-Rodriguez J L, Alvarez-Buylla A (2015). A Dorsal SHH-Dependent Domain in the V-SVZ Produces Large Numbers of Oligodendroglial Lineage Cells in the Postnatal Brain. Stem Cell Rep, 5(4): 461–470
CrossRef
Pubmed
Google scholar
|
[249] |
Uchida N, Buck D W, He D, Reitsma M J, Masek M, Phan T V, Tsukamoto A S, Gage F H, Weissman I L (2000). Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA, 97(26): 14720–14725
CrossRef
Pubmed
Google scholar
|
[250] |
Ullensvang K, Lehre K P, Storm-Mathisen J, Danbolt N C (1997). Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT. Eur J Neurosci, 9(8): 1646–1655
CrossRef
Pubmed
Google scholar
|
[251] |
Ventura R E, Goldman J E (2007). Dorsal radial glia generate olfactory bulb interneurons in the postnatal murine brain. J Neurosci, 27(16): 4297–4302
CrossRef
Pubmed
Google scholar
|
[252] |
Voigt T (1989). Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol, 289(1): 74–88
CrossRef
Pubmed
Google scholar
|
[253] |
Waclaw R R, Allen Z J 2nd, Bell S M, Erdélyi F, Szabó G, Potter S S, Campbell K (2006). The zinc finger transcription factor Sp8 regulates the generation and diversity of olfactory bulb interneurons. Neuron, 49(4): 503–516
CrossRef
Pubmed
Google scholar
|
[254] |
Walker A S, Goings G E, Kim Y, Miller R J, Chenn A, Szele F G (2010). Nestin reporter transgene labels multiple central nervous system precursor cells. Neural Plast, 2010: 894374
CrossRef
Pubmed
Google scholar
|
[255] |
Walsh C, Cepko C L (1988). Clonally related cortical cells show several migration patterns. Science, 241(4871): 1342–1345
CrossRef
Pubmed
Google scholar
|
[256] |
Walsh C, Cepko C L (1992). Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science, 255(5043): 434–440
CrossRef
Pubmed
Google scholar
|
[257] |
Walsh C, Cepko C L (1993). Clonal dispersion in proliferative layers of developing cerebral cortex. Nature, 362(6421): 632–635
CrossRef
Pubmed
Google scholar
|
[258] |
Wang C, Liu F, Liu Y Y, Zhao C H, You Y, Wang L, Zhang J, Wei B, Ma T, Zhang Q, Zhang Y, Chen R, Song H, Yang Z (2011). Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell Res, 21(11): 1534–1550
CrossRef
Pubmed
Google scholar
|
[259] |
Wang D D, Bordey A (2008). The astrocyte odyssey. Prog Neurobiol, 86(4): 342–367
Pubmed
|
[260] |
Ware M L, Tavazoie S F, Reid C B, Walsh C A (1999). Coexistence of widespread clones and large radial clones in early embryonic ferret cortex. Cereb Cortex, 9(6): 636–645
CrossRef
Pubmed
Google scholar
|
[261] |
Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson A C, Reynolds B A (1996). Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci, 16(23): 7599–7609
Pubmed
|
[262] |
Wichterle H, Garcia-Verdugo J M, Herrera D G, Alvarez-Buylla A (1999). Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci, 2(5): 461–466
CrossRef
Pubmed
Google scholar
|
[263] |
Willaime-Morawek S, Seaberg R M, Batista C, Labbé E, Attisano L, Gorski J A, Jones K R, Kam A, Morshead C M, van der Kooy D (2006). Embryonic cortical neural stem cells migrate ventrally and persist as postnatal striatal stem cells. J Cell Biol, 175(1): 159–168
CrossRef
Pubmed
Google scholar
|
[264] |
Young K M, Fogarty M, Kessaris N, Richardson W D (2007). Subventricular zone stem cells are heterogeneous with respect to their embryonic origins and neurogenic fates in the adult olfactory bulb. J Neurosci, 27(31): 8286–8296
CrossRef
Pubmed
Google scholar
|
[265] |
Zappaterra M D, Lisgo S N, Lindsay S, Gygi S P, Walsh C A, Ballif B A (2007). A comparative proteomic analysis of human and rat embryonic cerebrospinal fluid. J Proteome Res, 6(9): 3537–3548
CrossRef
Pubmed
Google scholar
|
[266] |
Zappone M V, Galli R, Catena R, Meani N, De Biasi S, Mattei E, Tiveron C, Vescovi A L, Lovell-Badge R, Ottolenghi S, Nicolis S K (2000). Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development, 127(11): 2367–2382
Pubmed
|
[267] |
Zecevic N (2004). Specific characteristic of radial glia in the human fetal telencephalon. Glia, 48(1): 27–35
CrossRef
Pubmed
Google scholar
|
[268] |
Zecevic N, Chen Y, Filipovic R (2005). Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol, 491(2): 109–122
CrossRef
Pubmed
Google scholar
|
[269] |
Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |