Function of Polycomb repressive complexes in stem cells

Jin He

PDF(823 KB)
PDF(823 KB)
Front. Biol. ›› 2016, Vol. 11 ›› Issue (2) : 65-74. DOI: 10.1007/s11515-016-1399-x
REVIEW
REVIEW

Function of Polycomb repressive complexes in stem cells

Author information +
History +

Abstract

Stem cells are unique cell populations identified in a variety of normal tissues and some cancers. Maintenance of stem cell pools is essential for normal development, tissue homeostasis, and tumorigenesis. Recent studies have revealed that Polycomb repressive complexes (PRCs) play a central role in maintaining stem cells by repressing cellular senescence and differentiation. Here, we will review recent findings on dynamic composition of PRC complexes and sub-complexes, how PRCs are recruited to chromatin, and their functional roles in maintaining self-renewal of stem cells. Furthermore, we will discuss how PRCs, CpG islands (CGIs), the INK4A/ARF/INK4B locus, and developmental genes form a hierarchical regulatory axis that is utilized by a variety of stem cells to maintain their self-renewal and identities.

Keywords

Polycomb repressive complexes / gene silencing / CpG islands / stem cells / self-renewal

Cite this article

Download citation ▾
Jin He. Function of Polycomb repressive complexes in stem cells. Front. Biol., 2016, 11(2): 65‒74 https://doi.org/10.1007/s11515-016-1399-x

References

[1]
Abraham B J, Cui K, Tang Q, Zhao K (2013). Dynamic regulation of epigenomic landscapes during hematopoiesis. BMC Genomics, 14(1): 193
CrossRef Google scholar
[2]
Ballare C, Lange M, Lapinaite A, Martin G M, Morey L, Pascual G, Liefke R, Simon B, Shi Y, Gozani O, Carlomagno T, Benitah S A, Di Croce L (2012). Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nat Struct Mol Biol, 19(12): 1257–1265
CrossRef Google scholar
[3]
Bernstein B E, Mikkelsen T S, Xie X, Kamal M, Huebert D J, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber S L, Lander E S (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125(2): 315–326
CrossRef Google scholar
[4]
Blackledge N P, Farcas A M, Kondo T, King H W, McGouran J F, Hanssen L L, Ito S, Cooper S, Kondo K, Koseki Y, Ishikura T, Long H K, Sheahan T W, Brockdorff N, Kessler B M, Koseki H, Klose R J (2014). Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell, 157(6): 1445–1459
CrossRef Google scholar
[5]
Cai L, Rothbart S B, Lu R, Xu B, Chen W Y, Tripathy A, Rockowitz S, Zheng D, Patel D J, Allis C D, Strahl B D, Song J, Wang G G (2013). An H3K36 methylation-engaging Tudor motif of polycomb-like proteins mediates PRC2 complex targeting. Mol Cell, 49(3): 571–582
CrossRef Google scholar
[6]
Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones R S, Zhang Y (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science, 298(5595): 1039–1043
CrossRef Google scholar
[7]
Chan C S, Rastelli L, Pirrotta V (1994). A Polycomb response element in the Ubx gene that determines an epigenetically inherited state of repression. EMBO J, 13: 2553–2564
[8]
Cui K, Zang C, Roh T Y, Schones D E, Childs R W, Peng W, Zhao K (2009). Chromatin signatures inmultipotent humanhematopoietic stem cells indicatethefate of bivalent genes during differentiation. Cell Stem Cell, 4(1): 80–93
CrossRef Google scholar
[9]
Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V (2002). Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell, 111(2): 185–196
CrossRef Google scholar
[10]
de Napoles M, Mermoud J E, Wakao R, Tang Y A, Endoh M, Appanah R, Nesterova T B, Silva J, Otte A P, Vidal M, Koseki H, Brockdorff N (2004). Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell, 7(5): 663–676
CrossRef Google scholar
[11]
Deaton A M, Bird A (2011). CpG islands and the regulation of transcription. Genes Dev, 25(10): 1010–1022
CrossRef Google scholar
[12]
Dietrich N, Lerdrup M, Landt E, Agrawal-Singh S, Bak M, Tommerup N, Rappsilber J, Sodersten E, Hansen K (2012). REST-mediated recruitment of polycomb repressor complexes in mammalian cells. PLoS Genet, 8(3): e1002494
CrossRef Google scholar
[13]
Endoh M, Endo T A, Endoh T, Isono K, Sharif J, Ohara O, Toyoda T, Ito T, Eskeland R, Bickmore W A, Vidal M, Bernstein B E, Koseki H (2012). Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. PLoS Genet, 8(7): e1002774
CrossRef Google scholar
[14]
Eskeland R, Freyer E, Leeb M, Wutz A, Bickmore W A (2010a). Histone acetylation and the maintenance of chromatin compaction by Polycomb repressive complexes. Cold Spring Harb Symp Quant Biol, 75(0): 71–78
CrossRef Google scholar
[15]
Eskeland R, Leeb M, Grimes G R, Kress C, Boyle S, Sproul D, Gilbert N, Fan Y, Skoultchi A I, Wutz A, Bickmore W A (2010b). Ring1B compacts chromatin structure and represses gene expression independent of histone ubiquitination. Mol Cell, 38(3): 452–464
CrossRef Google scholar
[16]
Evans M J, Kaufman M H (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819): 154–156
CrossRef Google scholar
[17]
Farcas A M, Blackledge N P, Sudbery I, Long H K, McGouran J F, Rose N R, Lee S, Sims D, Cerase A, Sheahan T W, Koseki H, Brockdorff N, Ponting C P, Kessler B M, Klose R J (2012). KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. eLife, 1: e00205
CrossRef Google scholar
[18]
Fischle W, Wang Y, Jacobs S A, Kim Y, Allis C D, Khorasanizadeh S (2003). Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev, 17(15): 1870–1881
CrossRef Google scholar
[19]
Gao Z, Lee P, Stafford J M, von Schimmelmann M, Schaefer A, Reinberg D (2014). An AUTS2-Polycomb complex activates gene expression in the CNS. Nature, 516(7531): 349–354
CrossRef Google scholar
[20]
Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, Kluger Y, Reinberg D (2012). PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell, 45(3): 344–356
CrossRef Google scholar
[21]
Gaytan de Ayala Alonso A, Gutierrez L, Fritsch C, Papp B, Beuchle D, Muller J (2007). A genetic screen identifies novel polycomb group genes in <?Pub Caret?>Drosophila. Genetics, 176(4): 2099–2108
CrossRef Google scholar
[22]
Grau D J, Antao J M, Kingston R E (2010). Functional dissection of Polycomb repressive complex 1 reveals the importance of a charged domain. Cold Spring Harb Symp Quant Biol, 75(0): 61–70
CrossRef Google scholar
[23]
He J, Kallin E M, Tsukada Y, Zhang Y (2008). The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat Struct Mol Biol, 15(11): 1169–1175
CrossRef Google scholar
[24]
He J, Nguyen A T, Zhang Y (2011). KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood, 117(14): 3869–3880
CrossRef Google scholar
[25]
He J, Shen L, Wan M, Taranova O, Wu H, Zhang Y (2013). Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat Cell Biol, 15(4): 373–384
CrossRef Google scholar
[26]
Hidalgo I, Herrera-Merchan A, Ligos J M, Carramolino L, Nunez J, Martinez F, Dominguez O, Torres M, Gonzalez S (2012). Ezh1 is required for hematopoietic stem cell maintenance and prevents senescence-like cell cycle arrest. Cell Stem Cell, 11(5): 649–662
CrossRef Google scholar
[27]
Jiao L, Liu X (2015). Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science, 350(6258): aac4383
CrossRef Google scholar
[28]
Kim H, Kang K, Kim J (2009). AEBP2 as a potential targeting protein for Polycomb Repression Complex PRC2. Nucleic Acids Res, 37(9): 2940–2950
CrossRef Google scholar
[29]
Kim W Y, Sharpless N E (2006). The regulation of INK4/ARF in cancer and aging. Cell, 127(2): 265–275
CrossRef Google scholar
[30]
Klauke K, Radulovic V, Broekhuis M, Weersing E, Zwart E, Olthof S, Ritsema M, Bruggeman S, Wu X, Helin K, Bystrykh L, de Haan G (2013). Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation. Nat Cell Biol, 15(4): 353–362
CrossRef Google scholar
[31]
Kreso A, Dick J E (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14(3): 275–291
CrossRef Google scholar
[32]
Ku M, Koche R P, Rheinbay E, Mendenhall E M, Endoh M, Mikkelsen T S, Presser A, Nusbaum C, Xie X, Chi A S, Adli M, Kasif S, Ptaszek L M, Cowan C A, Lander E S, Koseki H, Bernstein B E (2008). Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet, 4(10): e1000242
CrossRef Google scholar
[33]
Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002). Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev, 16(22): 2893–2905
CrossRef Google scholar
[34]
Lessard J, Sauvageau G (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 423(6937): 255–260
CrossRef Google scholar
[35]
Lewis E B (1978). A gene complex controlling segmentation in Drosophila. Nature, 276(5688): 565–570
CrossRef Google scholar
[36]
Li G, Margueron R, Ku M, Chambon P, Bernstein B E, Reinberg D (2010). Jarid2 and PRC2, partners in regulating gene expression. Genes Dev, 24(4): 368–380
CrossRef Google scholar
[37]
Liang G, He J, Zhang Y (2012). Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nat Cell Biol, 14(5): 457–466
CrossRef Google scholar
[38]
Long H K, Blackledge N P, Klose R J (2013). ZF-CxxC domain-containing proteins, CpG islands and the chromatin connection. Biochem Soc Trans, 41(3): 727–740
CrossRef Google scholar
[39]
Luis N M, Morey L, Di Croce L, Benitah S A (2012). Polycomb in stem cells: PRC1 branches out. Cell Stem Cell, 11(1): 16–21
CrossRef Google scholar
[40]
Martin G R (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 78(12): 7634–7638
CrossRef Google scholar
[41]
Mendenhall E M, Koche R P, Truong T, Zhou V W, Issac B, Chi A S, Ku M, Bernstein B E (2010). GC-rich sequence elements recruit PRC2 in mammalian ES cells. PLoS Genet, 6(12): e1001244
CrossRef Google scholar
[42]
Mikkelsen T S, Ku M, Jaffe D B, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim T K, Koche R P, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander E S, Bernstein B E (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 448(7153): 553–560
CrossRef Google scholar
[43]
Min J, Zhang Y, Xu R M (2003). Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev, 17(15): 1823–1828
CrossRef Google scholar
[44]
Mochizuki-Kashio M, Mishima Y, Miyagi S, Negishi M, Saraya A, Konuma T, Shinga J, Koseki H, Iwama A (2011). Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells. Blood, 118(25): 6553–6561
CrossRef Google scholar
[45]
Mohd-Sarip A, Cleard F, Mishra R K, Karch F, Verrijzer C P (2005). Synergistic recognition of an epigenetic DNA element by Pleiohomeotic and a Polycomb core complex. Genes Dev, 19(15): 1755–1760
CrossRef Google scholar
[46]
Mohd-Sarip A, Venturini F, Chalkley G E, Verrijzer C P (2002). Pleiohomeotic can link polycomb to DNA and mediate transcriptional repression. Mol Cell Biol, 22(21): 7473–7483
CrossRef Google scholar
[47]
Molofsky A V, He S, Bydon M, Morrison S J, Pardal R (2005). Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev, 19(12): 1432–1437
CrossRef Google scholar
[48]
Molofsky A V, Pardal R, Iwashita T, Park I K, Clarke M F, Morrison S J (2003). Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature, 425(6961): 962–967
CrossRef Google scholar
[49]
Muller J, Hart C M, Francis N J, Vargas M L, Sengupta A, Wild B, Miller E L, O'Connor M B, Kingston R E, Simon J A (2002). Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell, 111(2): 197–208
CrossRef Google scholar
[50]
Nusslein-Volhard C, Kluding H, Jurgens G (1985). Genes affecting the segmental subdivision of the Drosophila embryo. Cold Spring Harb Symp Quant Biol, 50(0): 145–154
CrossRef Google scholar
[51]
Onder T T, Kara N, Cherry A, Sinha A U, Zhu N, Bernt K M, Cahan P, Marcarci B O, Unternaehrer J, Gupta P B, Lander E S, Armstrong S A, Daley G Q (2012). Chromatin-modifying enzymes as modulators of reprogramming. Nature, 483(7391): 598–602
CrossRef Google scholar
[52]
Park I K, Qian D, Kiel M, Becker M W, Pihalja M, Weissman I L, Morrison S J, Clarke M F (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423(6937): 302–305
CrossRef Google scholar
[53]
Pasini D, Bracken A P, Hansen J B, Capillo M, Helin K (2007). The polycomb group protein Suz12 is required for embryonic stemcell differentiation. Mol Cell Biol, 27(10): 3769–3779
CrossRef Google scholar
[54]
Pasini D, Cloos P A, Walfridsson J, Olsson L, Bukowski J P, Johansen J V, Bak M, Tommerup N, Rappsilber J, Helin K (2010). JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature, 464(7286): 306–310
CrossRef Google scholar
[55]
Pereira J D, Sansom S N, Smith J, Dobenecker M W, Tarakhovsky A, Livesey F J (2010). Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc Natl Acad Sci USA, 107(36): 15957–15962
CrossRef Google scholar
[56]
Pfau R, Tzatsos A, Kampranis S C, Serebrennikova O B, Bear S E, Tsichlis P N (2008). Members of a family of JmjC domain-containing oncoproteins immortalize embryonic fibroblasts via aJmjC domain-dependent process. Proc Natl Acad Sci USA, 105(6): 1907–1912
CrossRef Google scholar
[57]
Poux S, Melfi R, Pirrotta V (2001). Establishment of Polycomb silencing requires a transient interaction between PC and ESC. Genes Dev, 15(19): 2509–2514
CrossRef Google scholar
[58]
Ren X, Kerppola T K (2011). REST interacts with Cbx proteins and regulates polycomb repressive complex 1 occupancy at RE1 elements. Mol Cell Biol, 31(10): 2100–2110
CrossRef Google scholar
[59]
Riising E M, Comet I, Leblanc B, Wu X, Johansen J V, Helin K (2014). Gene silencing triggers polycomb repressive complex 2 recruitment to CpG islands genome wide. Mol Cell, 55(3): 347–360
CrossRef Google scholar
[60]
Rinn J L, Kertesz M, Wang J K, Squazzo S L, Xu X, Brugmann S A, Goodnough L H, Helms J A, Farnham P J, Segal E, Chang H Y (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7): 1311–1323
CrossRef Google scholar
[61]
Roman-Trufero M, Mendez-Gomez H R, Perez C, Hijikata A, Fujimura Y, Endo T, Koseki H, Vicario-Abejon C, Vidal M (2009). Maintenance of undifferentiated state and self-renewal of embryonic neural stem cells by Polycomb protein Ring1B. Stem Cells, 27(7): 15591570
CrossRef Google scholar
[62]
Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, Bezstarosti K, Taylor S, Ura H, Koide H, Wutz A, Vidal M, Elderkin S, Brockdorff N (2012). RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. Cell, 148(4): 664–678
CrossRef Google scholar
[63]
Thornton S R, Butty V L, Levine S S, Boyer L A (2014). Polycomb Repressive Complex 2 regulates lineage fidelity during embryonic stem cell differentiation. PLoS ONE, 9(10): e110498
CrossRef Google scholar
[64]
Ueda K, Yoshimi A, Kagoya Y, Nishikawa S, Marquez V E, Nakagawa M, Kurokawa M (2014). Inhibition of histone methyltransferase EZH2 depletes leukemia stem cell of mixed lineage leukemia fusion leukemia through upregulation of p16. Cancer Sci, 105: 512–519
[65]
Utikal J, Polo J M, Stadtfeld M, Maherali N, Kulalert W, Walsh R M, Khalil A, Rheinwald J G, Hochedlinger K (2009). Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature, 460(7259): 1145–1148
CrossRef Google scholar
[66]
van den Boom V, Rozenveld-Geugien M, Bonardi F, Malanga D, van Gosliga D, Heijink A M, Viglietto G, Morrone G, Fusetti F, Vellenga E, Schuringa J J (2013). Nonredundant and locus-specific gene repression functions of PRC1 paralog family members in human hematopoietic stem/progenitor cells. Blood, 121(13): 2452–2461
CrossRef Google scholar
[67]
van der Stoop P, Boutsma E A, Hulsman D, Noback S, Heimerikx M, Kerkhoven R M, Voncken J W, Wessels L F, van Lohuizen M (2008). Ubiquitin E3 ligase Ring1b/Rnf2 of polycomb repressive complex 1 contributes to stable maintenance of mouse embryonic stem cells. PLoS ONE, 3(5): e2235
CrossRef Google scholar
[68]
Walker E, Chang W Y, Hunkapiller J, Cagney G, Garcha K, Torchia J, Krogan N J, Reiter J F, Stanford W L (2010). Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell, 6(2): 153–166
CrossRef Google scholar
[69]
Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones R S, Zhang Y (2004a). Role of histone H2A ubiquitination in Polycomb silencing. Nature, 431(7010): 873–878
CrossRef Google scholar
[70]
Wang L, Brown J L, Cao R, Zhang Y, Kassis J A, Jones R S (2004b). Hierarchical recruitment of polycomb group silencing complexes. Mol Cell, 14(5): 637–646
CrossRef Google scholar
[71]
Woo C J, Kharchenko P V, Daheron L, Park P J, Kingston R E (2010). A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell, 140(1): 99–110
CrossRef Google scholar
[72]
Wu X, Johansen J V, Helin K (2013). Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Mol Cell, 49(6): 1134–1146
CrossRef Google scholar
[73]
Xie H, Xu J, Hsu J H, Nguyen M, Fujiwara Y, Peng C, Orkin S H (2014). Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner. Cell Stem Cell, 14(1): 68–80
CrossRef Google scholar
[74]
Xu B, On D M, Ma A, Parton T, Konze K D, Pattenden S G, Allison D F, Cai L, Rockowitz S, Liu S, Liu Y, Li F, Vedadi M, Frye S V, Garcia B A, Zheng D, Jin J, Wang G G (2015). Selective inhibition of EZH2 and EZH1 enzymatic activity by a small molecule suppresses MLL-rearranged leukemia. Blood, 125(2): 346–357
CrossRef Google scholar
[75]
Xu K, Wu Z J, Groner A C, He H H, Cai C, Lis R T, Wu X, Stack E C, Loda M, Liu T, Xu H, Cato L, Thornton J E, Gregory R I, Morrissey C, Vessella R L, Montironi R, Magi-Galluzzi C, Kantoff P W, Balk S P, Liu X S, Brown M (2012). EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent. Science, 338(6113): 1465–1469
CrossRef Google scholar
[76]
Ying Q L, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008). The ground state of embryonic stem cell self-renewal. Nature, 453(7194): 519–523
CrossRef Google scholar
[77]
Yu M, Mazor T, Huang H, Huang H T, Kathrein K L, Woo A J, Chouinard C R, Labadorf A, Akie T E, Moran T B, Xie H, Zacharek S, Taniuchi I, Roeder R G, Kim C F, Zon L I, Fraenkel E, Cantor A B (2012). Direct recruitment of polycomb repressive complex 1 to chromatin by core binding transcription factors. Mol Cell, 45(3): 330–343
CrossRef Google scholar
[78]
Yuan J, Takeuchi M, Negishi M, Oguro H, Ichikawa H, Iwama A (2011). Bmi1 is essential for leukemic reprogramming of myeloid progenitor cells. Leukemia, 25(8): 1335–1343
CrossRef Google scholar
[79]
Zhang Z, Jones A, Sun C W, Li C, Chang C W, Joo H Y, Dai Q, Mysliwiec M R, Wu L C, Guo Y, Yang W, Liu K, Pawlik K M, Erdjument-Bromage H, Tempst P, Lee Y, Min J, Townes T M, Wang H (2011). PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprogramming. Stem Cells, 29(2): 229–240
CrossRef Google scholar
[80]
Zhao J, Sun B K, Erwin J A, Song J J, Lee J T (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 322(5902): 750–756
CrossRef Google scholar

Compliance with ethics guidelines

This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(823 KB)

Accesses

Citations

Detail

Sections
Recommended

/