Functional role of metalloproteins in genome stability
Chunqiang Zhang, Fan Zhang, Ping Zhou, Caiguo Zhang
Functional role of metalloproteins in genome stability
Cells contain a large number of metalloproteins that commonly harbor at least one metal ion cofactor. In metalloproteins, metal ions are usually coordinated by oxygen, sulfur, or nitrogen centers belonging to amino acid residues in the protein. The presence of the metal ion in metalloproteins allows them to take part in diverse biological processes, such as genome stability, metabolic catalysis, and cell cycle progression. Clinically, alteration of the function of metalloproteins in mammals is genetically associated with diseases characterized by DNA damage and repair defects. The present review focuses on the current perspectives of metal ion homeostasis in different organisms and summarizes the most recent understanding on magnesium, copper, iron, and manganese-containing proteins and their functional involvement in the maintenance of genome stability.
metalloprotein / ROS / DNA damage / DNA repair / iron / copper
[1] |
Abraham J, Balbo S, Crabb D, Brooks P J (2011). Alcohol metabolism in human cells causes DNA damage and activates the Fanconi anemia-breast cancer susceptibility (FA-BRCA) DNA damage response network. Alcohol Clin Exp Res, 35(12): 2113–2120
CrossRef
Pubmed
Google scholar
|
[2] |
Acharya N, Johnson R E, Prakash S, Prakash L (2006). Complex formation with Rev1 enhances the proficiency of Saccharomyces cerevisiae DNA polymerase zeta for mismatch extension and for extension opposite from DNA lesions. Mol Cell Biol, 26(24): 9555–9563
CrossRef
Pubmed
Google scholar
|
[3] |
Aleshin A E, Zeng C, Bourenkov G P, Bartunik H D, Fromm H J, Honzatko R B (1998). The mechanism of regulation of hexokinase: new insights from the crystal structure of recombinant human brain hexokinase complexed with glucose and glucose-6-phosphate. Structure, 6(1): 39–50
CrossRef
Pubmed
Google scholar
|
[4] |
Ambani L M, Van Woert M H, Murphy S (1975). Brain peroxidase and catalase in Parkinson disease. Arch Neurol, 32(2): 114–118
CrossRef
Pubmed
Google scholar
|
[5] |
An X, Zhang C, Sclafani R A, Seligman P, Huang M (2015). The late-annotated small ORF LSO1 is a target gene of the iron regulon of Saccharomyces cerevisiae. MicrobiologyOpen, 4(6): 941–951
CrossRef
Pubmed
Google scholar
|
[6] |
Ansley D M, Wang B (2013). Oxidative stress and myocardial injury in the diabetic heart. J Pathol, 229(2): 232–241
CrossRef
Pubmed
Google scholar
|
[7] |
Arigony A L, de Oliveira I M, Machado M, Bordin D L, Bergter L, Prá D, Henriques J A (2013). The influence of micronutrients in cell culture: a reflection on viability and genomic stability. BioMed Res Int, 2013: 597282
CrossRef
Pubmed
Google scholar
|
[8] |
Bachelard H S (1971). Allosteric activation of brain hexokinase by magnesium ions and by magnesium ion—adenosine triphosphate complex. Biochem J, 125(1): 249–254
CrossRef
Pubmed
Google scholar
|
[9] |
Banci L, Bertini I (2013). Metallomics and the cell: some definitions and general comments. Met Ions Life Sci, 12: 1–13
CrossRef
Pubmed
Google scholar
|
[10] |
Barbosa L F, Cerqueira F M, Macedo A F, Garcia C C, Angeli J P, Schumacher R I, Sogayar M C, Augusto O, Carrì M T, Di Mascio P, Medeiros M H (2010). Increased SOD1 association with chromatin, DNA damage, p53 activation, and apoptosis in a cellular model of SOD1-linked ALS. Biochim Biophys Acta, 1802(5): 462–471
CrossRef
Pubmed
Google scholar
|
[11] |
Behrend L, Mohr A, Dick T, Zwacka R M (2005). Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol Cell Biol, 25(17): 7758–7769
CrossRef
Pubmed
Google scholar
|
[12] |
Brosh R M Jr (2013). DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer, 13(8): 542–558
CrossRef
Pubmed
Google scholar
|
[13] |
Brown D R (2010). Metalloproteins and neuronal death. Metallomics, 2(3): 186–194
CrossRef
Pubmed
Google scholar
|
[14] |
Brunori M, Giuffrè A, Sarti P (2005). Cytochrome c oxidase, ligands and electrons. J Inorg Biochem, 99(1): 324–336
CrossRef
Pubmed
Google scholar
|
[15] |
Candas D, Li J J (2014). MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal, 20(10): 1599–1617
CrossRef
Pubmed
Google scholar
|
[16] |
Cappelli E, Carrozzino F, Abbondandolo A, Frosina G (1999). The DNA helicases acting in nucleotide excision repair, XPD, CSB and XPB, are not required for PCNA-dependent repair of abasic sites. Eur J Biochem, 259(1-2): 325–330
CrossRef
Pubmed
Google scholar
|
[17] |
Cárdenas M L, Cornish-Bowden A, Ureta T (1998). Evolution and regulatory role of the hexokinases. Biochim Biophys Acta, 1401(3): 242–264
CrossRef
Pubmed
Google scholar
|
[18] |
Cejka P, Cannavo E, Polaczek P, Masuda-Sasa T, Pokharel S, Campbell J L, Kowalczykowski S C (2010). DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature, 467(7311): 112–116
CrossRef
Pubmed
Google scholar
|
[19] |
Chen Z, Sui J, Zhang F, Zhang C (2015). Cullin family proteins and tumorigenesis: genetic association and molecular mechanisms. J Cancer, 6(3): 233–242
CrossRef
Pubmed
Google scholar
|
[20] |
Chung J Y, Kim H J, Kim M (2015). The protective effect of growth hormone on Cu/Zn superoxide dismutase-mutant motor neurons. BMC Neurosci, 16(1): 1
CrossRef
Pubmed
Google scholar
|
[21] |
Cooper C E, Torres J, Sharpe M A, Wilson M T (1997). Nitric oxide ejects electrons from the binuclear centre of cytochrome c oxidase by reacting with oxidised copper: a general mechanism for the interaction of copper proteins with nitric oxide? FEBS Lett, 414(2): 281–284
CrossRef
Pubmed
Google scholar
|
[22] |
Cruciat C M, Brunner S, Baumann F, Neupert W, Stuart R A (2000). The cytochrome bc1 and cytochrome c oxidase complexes associate to form a single supracomplex in yeast mitochondria. J Biol Chem, 275(24): 18093–18098
CrossRef
Pubmed
Google scholar
|
[23] |
D’Agnillo F, Wood F, Porras C, Macdonald V W, Alayash A I (2000). Effects of hypoxia and glutathione depletion on hemoglobin- and myoglobin-mediated oxidative stress toward endothelium. Biochim Biophys Acta, 1495(2): 150–159
Pubmed
|
[24] |
Dlouhy A C, Outten C E (2013). The iron metallome in eukaryotic organisms. Met Ions Life Sci, 12: 241–278
CrossRef
Pubmed
Google scholar
|
[25] |
Dong K, Addinall S G, Lydall D, Rutherford J C (2013). The yeast copper response is regulated by DNA damage. Mol Cell Biol, 33(20): 4041–4050
CrossRef
Pubmed
Google scholar
|
[26] |
Doublié S, Tabor S, Long A M, Richardson C C, Ellenberger T (1998). Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature, 391(6664): 251–258
CrossRef
Pubmed
Google scholar
|
[27] |
Dowling D P, Di Costanzo L, Gennadios H A, Christianson D W (2008). Evolution of the arginase fold and functional diversity. Cell Mol Life Sci, 65(13): 2039–2055
CrossRef
Pubmed
Google scholar
|
[28] |
Edenberg H J (2007). The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health, 30(1): 5–13
Pubmed
|
[29] |
Eide D J (2006). Zinc transporters and the cellular trafficking of zinc. Biochim Biophys Acta, 1763(7): 711–722
CrossRef
Pubmed
Google scholar
|
[30] |
El Mjiyad N, Caro-Maldonado A, Ramírez-Peinado S, Muñoz-Pinedo C (2011). Sugar-free approaches to cancer cell killing. Oncogene, 30(3): 253–264
CrossRef
Pubmed
Google scholar
|
[31] |
Elmore S (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol, 35(4): 495–516
CrossRef
Pubmed
Google scholar
|
[32] |
Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V (2012). Role of apoptosis in disease. Aging (Albany, NY), 4(5): 330–349
CrossRef
Pubmed
Google scholar
|
[33] |
Franklin R B, Ma J, Zou J, Guan Z, Kukoyi B I, Feng P, Costello L C (2003). Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J Inorg Biochem, 96(2-3): 435–442
CrossRef
Pubmed
Google scholar
|
[34] |
Frey A G, Bird A J, Evans-Galea M V, Blankman E, Winge D R, Eide D J (2011). Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator. PLoS ONE, 6(7): e22535
CrossRef
Pubmed
Google scholar
|
[35] |
Gardner A F, Kelman Z (2014). DNA polymerases in biotechnology. Front Microbiol, 5: 659
CrossRef
Pubmed
Google scholar
|
[36] |
Gari K, León Ortiz A M, Borel V, Flynn H, Skehel J M, Boulton S J (2012). MMS19 links cytoplasmic iron-sulfur cluster assembly to DNA metabolism. Science, 337(6091): 243–245
CrossRef
Pubmed
Google scholar
|
[37] |
Garry D J, Mammen P P (2007). Molecular insights into the functional role of myoglobin. Adv Exp Med Biol, 618: 181–193
CrossRef
Pubmed
Google scholar
|
[38] |
Glorieux C, Auquier J, Dejeans N, Sid B, Demoulin J B, Bertrand L, Verrax J, Calderon P B (2014). Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway. Biochem Pharmacol, 89(2): 217–223
CrossRef
Pubmed
Google scholar
|
[39] |
Goodarzi M, Moosavi-Movahedi A A, Habibi-Rezaei M, Shourian M, Ghourchian H, Ahmad F, Farhadi M, Saboury A A, Sheibani N (2014). Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species. Spectrochim Acta A Mol Biomol Spectrosc, 130: 561–567
CrossRef
Pubmed
Google scholar
|
[40] |
Góth L (2008). Catalase deficiency and type 2 diabetes. Diabetes Care, 31(12): e93
CrossRef
Pubmed
Google scholar
|
[41] |
Gottlob K, Majewski N, Kennedy S, Kandel E, Robey R B, Hay N (2001). Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev, 15(11): 1406–1418
CrossRef
Pubmed
Google scholar
|
[42] |
Gourianov N, Kluger R (2003). Cross-linked bis-hemoglobins: connections and oxygen binding. J Am Chem Soc, 125(36): 10885–10892
CrossRef
Pubmed
Google scholar
|
[43] |
Gwanyanya A, Amuzescu B, Zakharov S I, Macianskiene R, Sipido K R, Bolotina V M, Vereecke J, Mubagwa K (2004). Magnesium-inhibited, TRPM6/7-like channel in cardiac myocytes: permeation of divalent cations and pH-mediated regulation. J Physiol, 559(Pt 3): 761–776
CrossRef
Pubmed
Google scholar
|
[44] |
Harper J W, Elledge S J (2007). The DNA damage response: ten years after. Mol Cell, 28(5): 739–745
CrossRef
Pubmed
Google scholar
|
[45] |
Hartwig A (2001). Role of magnesium in genomic stability. Mutat Res, 475(1-2): 113–121
CrossRef
Pubmed
Google scholar
|
[46] |
Holzer A K, Samimi G, Katano K, Naerdemann W, Lin X, Safaei R, Howell S B (2004). The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Mol Pharmacol, 66(4): 817–823
CrossRef
Pubmed
Google scholar
|
[47] |
Horn D, Barrientos A (2008). Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life, 60(7): 421–429
CrossRef
Pubmed
Google scholar
|
[48] |
Huttemann M, Lee I, Grossman L I, Doan J W, Sanderson T H (2012). Phosphorylation of mammalian cytochrome c and cytochrome c oxidase in the regulation of cell destiny: respiration, apoptosis, and human disease.AdvExp Med Biol, 748: 237–264
|
[49] |
Jacobo-Molina A, Ding J, Nanni R G, Clark A D Jr, Lu X, Tantillo C, Williams R L, Kamer G, Ferris A L, Clark P (1993). Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc Natl Acad Sci USA, 90(13): 6320–6324
CrossRef
Pubmed
Google scholar
|
[50] |
Jiang N, Tan N S, Ho B, Ding J L (2007). Respiratory protein-generated reactive oxygen species as an antimicrobial strategy. Nat Immunol, 8(10): 1114–1122
CrossRef
Pubmed
Google scholar
|
[51] |
Johnson D C, Dean D R, Smith A D, Johnson M K (2005). Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem, 74(1): 247–281
CrossRef
Pubmed
Google scholar
|
[52] |
Kaji A, Colowick S P (1965). Adenosine triphosphatase activity of yeast hexokinase and its relation to the mechanism of the hexokinase reaction. J Biol Chem, 240(11): 4454–4462
Pubmed
|
[53] |
Kamga C, Krishnamurthy S, Shiva S (2012). Myoglobin and mitochondria: a relationship bound by oxygen and nitric oxide. Nitric Oxide, 26(4): 251–258
CrossRef
Pubmed
Google scholar
|
[54] |
Kang M Y, Kim H B, Piao C, Lee K H, Hyun J W, Chang I Y, You H J (2013). The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death Differ, 20(1): 117–129
CrossRef
Pubmed
Google scholar
|
[55] |
Kee Y, D’Andrea A D (2010). Expanded roles of the Fanconi anemia pathway in preserving genomic stability. Genes Dev, 24(16): 1680–1694
CrossRef
Pubmed
Google scholar
|
[56] |
Kelley E E, Khoo N K, Hundley N J, Malik U Z, Freeman B A, Tarpey M M (2010). Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med, 48(4): 493–498
CrossRef
Pubmed
Google scholar
|
[57] |
Keyer K, Imlay J A (1996). Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci USA, 93(24): 13635–13640
CrossRef
Pubmed
Google scholar
|
[58] |
Kim J, Kil I S, Seok Y M, Yang E S, Kim D K, Lim D G, Park J W, Bonventre J V, Park K M (2006). Orchiectomy attenuates post-ischemic oxidative stress and ischemia/reperfusion injury in mice. A role for manganese superoxide dismutase. J Biol Chem, 281(29): 20349–20356
CrossRef
Pubmed
Google scholar
|
[59] |
Kim M, Lim J H, Ahn C S, Park K, Kim G T, Kim W T, Pai H S (2006). Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell, 18(9): 2341–2355
CrossRef
Pubmed
Google scholar
|
[60] |
Kim S J, Cheresh P, Williams D, Cheng Y, Ridge K, Schumacker P T, Weitzman S, Bohr V A, Kamp D W (2014). Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells. J Biol Chem, 289(9): 6165–6176
CrossRef
Pubmed
Google scholar
|
[61] |
Lange S S, Takata K, Wood R D (2011). DNA polymerases and cancer. Nat Rev Cancer, 11(2): 96–110
CrossRef
Pubmed
Google scholar
|
[62] |
Lee B S, Bi L, Garfinkel D J, Bailis A M (2000). Nucleotide excision repair/TFIIH helicases RAD3 and SSL2 inhibit short-sequence recombination and Ty1 retrotransposition by similar mechanisms. Mol Cell Biol, 20(7): 2436–2445
CrossRef
Pubmed
Google scholar
|
[63] |
Li J, Liu J, Wang G, Cha J Y, Li G, Chen S, Li Z, Guo J, Zhang C, Yang Y, Kim W Y, Yun D J, Schumaker K S, Chen Z, Guo Y (2015). A chaperone function of NO CATALASE ACTIVITY1 is required to maintain catalase activity and for multiple stress responses in Arabidopsis. Plant Cell, 27(3): 908–925
CrossRef
Pubmed
Google scholar
|
[64] |
Li Y, Huang T T, Carlson E J, Melov S, Ursell P C, Olson J L, Noble L J, Yoshimura M P, Berger C, Chan P H, Wallace D C, Epstein C J (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet, 11(4): 376–381
CrossRef
Pubmed
Google scholar
|
[65] |
Li Y, Mitaxov V, Waksman G (1999). Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation. Proc Natl Acad Sci USA, 96(17): 9491–9496
CrossRef
Pubmed
Google scholar
|
[66] |
Lill R, Hoffmann B, Molik S, Pierik A J, Rietzschel N, Stehling O, Uzarska M A, Webert H, Wilbrecht C, Mühlenhoff U (2012). The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta, 1823(9): 1491–1508
CrossRef
Pubmed
Google scholar
|
[67] |
Ling H, Boudsocq F, Woodgate R, Yang W (2001). Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell, 107(1): 91–102
CrossRef
Pubmed
Google scholar
|
[68] |
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y (2014). Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev, 114(8): 4366–4469
CrossRef
Pubmed
Google scholar
|
[69] |
Lohman T M (1992). Escherichia coli DNA helicases: mechanisms of DNA unwinding. Mol Microbiol, 6(1): 5–14
CrossRef
Pubmed
Google scholar
|
[70] |
Ma Z, Jacobsen F E, Giedroc D P (2009). Coordination chemistry of bacterial metal transport and sensing. Chem Rev, 109(10): 4644–4681
CrossRef
Pubmed
Google scholar
|
[71] |
Maret W (2010). Metalloproteomics, metalloproteomes, and the annotation of metalloproteins. Metallomics, 2(2): 117–125
CrossRef
Pubmed
Google scholar
|
[72] |
Meyer A S, Blandino M, Spratt T E (2004). Escherichia coli DNA polymerase I (Klenow fragment) uses a hydrogen-bonding fork from Arg668 to the primer terminus and incoming deoxynucleotide triphosphate to catalyze DNA replication. J Biol Chem, 279(32): 33043–33046
CrossRef
Pubmed
Google scholar
|
[73] |
Miyabe I, Kunkel T A, Carr A M (2011). The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet, 7(12): e1002407
CrossRef
Pubmed
Google scholar
|
[74] |
Moltedo B, Faunes F, Haussmann D, De Ioannes P, De Ioannes A E, Puente J, Becker M I (2006). Immunotherapeutic effect of Concholepas hemocyanin in the murine bladder cancer model: evidence for conserved antitumor properties among hemocyanins. J Urol, 176(6 Pt 1): 2690–2695
CrossRef
Pubmed
Google scholar
|
[75] |
Moreira L G, Pereira L C, Drummond P R, De Mesquita J F (2013). Structural and functional analysis of human SOD1 in amyotrophic lateral sclerosis. PLoS ONE, 8(12): e81979
CrossRef
Pubmed
Google scholar
|
[76] |
Mori M (2007). Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr, 137(6 Suppl 2): 1616S–1620S
Pubmed
|
[77] |
Mulichak A M, Wilson J E, Padmanabhan K, Garavito R M (1998). The structure of mammalian hexokinase-1. Nat Struct Biol, 5(7): 555–560
CrossRef
Pubmed
Google scholar
|
[78] |
Nakano K, Bálint E, Ashcroft M, Vousden K H (2000). A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene, 19(37): 4283–4289
CrossRef
Pubmed
Google scholar
|
[79] |
Netz D J, Stith C M, Stümpfig M, Köpf G, Vogel D, Genau H M, Stodola J L, Lill R, Burgers P M, Pierik A J (2012). Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol, 8(1): 125–132
CrossRef
Pubmed
Google scholar
|
[80] |
Nishitoh H, Kadowaki H, Nagai A, Maruyama T, Yokota T, Fukutomi H, Noguchi T, Matsuzawa A, Takeda K, Ichijo H (2008). ALS-linked mutant SOD1 induces ER stress- and ASK1-dependent motor neuron death by targeting Derlin-1. Genes Dev, 22(11): 1451–1464
CrossRef
Pubmed
Google scholar
|
[81] |
Öhrvik H, Nose Y, Wood L K, Kim B E, Gleber S C, Ralle M, Thiele D J (2013). Ctr2 regulates biogenesis of a cleaved form of mammalian Ctr1 metal transporter lacking the copper- and cisplatin-binding ecto-domain. Proc Natl Acad Sci USA, 110(46): E4279–E4288
CrossRef
Pubmed
Google scholar
|
[82] |
Pasinelli P, Belford M E, Lennon N, Bacskai B J, Hyman B T, Trotti D, Brown R H Jr (2004). Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron, 43(1): 19–30
CrossRef
Pubmed
Google scholar
|
[83] |
Peers G, Price N M (2006). Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature, 441(7091): 341–344
CrossRef
Pubmed
Google scholar
|
[84] |
Peng J, Stevenson F F, Doctrow S R, Andersen J K (2005). Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease. J Biol Chem, 280(32): 29194–29198
CrossRef
Pubmed
Google scholar
|
[85] |
Plotnikov E Y, Chupyrkina A A, Pevzner I B, Isaev N K, Zorov D B (2009). Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney’s mitochondria. Biochim Biophys Acta, 1792(8): 796–803
CrossRef
Pubmed
Google scholar
|
[86] |
Purich D L, Fromm H J (1972). Activation of brain hexokinase by magnesium ions and by magnesium ion—adenosine triphosphate complex. Biochem J, 130(1): 63–69
CrossRef
Pubmed
Google scholar
|
[87] |
Ravet K, Pilon M (2013). Copper and iron homeostasis in plants: the challenges of oxidative stress. Antioxid Redox Signal, 19(9): 919–932
CrossRef
Pubmed
Google scholar
|
[88] |
Rodrigo R, Libuy M, Feliú F, Hasson D (2013). Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. Dis Markers, 35(6): 773–790
CrossRef
Pubmed
Google scholar
|
[89] |
Rolfs A, Hediger M A (1999). Metal ion transporters in mammals: structure, function and pathological implications. J Physiol, 518(Pt 1): 1–12
CrossRef
Pubmed
Google scholar
|
[90] |
Rouault T A (2012). Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease. Dis Model Mech, 5(2): 155–164
CrossRef
Pubmed
Google scholar
|
[91] |
Rouault T A (2015). Iron-sulfur proteins hiding in plain sight. Nat Chem Biol, 11(7): 442–445
CrossRef
Pubmed
Google scholar
|
[92] |
Sanvisens N, Romero A M, An X, Zhang C, de Llanos R, Martínez-Pastor M T, Bañó M C, Huang M, Puig S (2014). Yeast Dun1 kinase regulates ribonucleotide reductase inhibitor Sml1 in response to iron deficiency. Mol Cell Biol, 34(17): 3259–3271
CrossRef
Pubmed
Google scholar
|
[93] |
Sarker M M, Zhong M (2014). Keyhole limpet hemocyanin augmented the killing activity, cytokine production and proliferation of NK cells, and inhibited the proliferation of Meth A sarcoma cells in vitro. Indian J Pharmacol, 46(1): 40–45
CrossRef
Pubmed
Google scholar
|
[94] |
Sawaya M R, Prasad R, Wilson S H, Kraut J, Pelletier H (1997). Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry, 36(37): 11205–11215
CrossRef
Pubmed
Google scholar
|
[95] |
Schiavone J R, Hassan H M (1988). The role of redox in the regulation of manganese-containing superoxide dismutase biosynthesis in Escherichia coli. J BiolChem, 263: 4269–4273. Li Y, Huang T T, Carlson E J, Melov S, Ursell P C, Olson J L, Noble L J, Yoshimura M P, Berger C, Chan P H, Wallace D C, Epstein C J (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet, 11: 376–381
|
[96] |
Schlieper G, Kim J H, Molojavyi A, Jacoby C, Laussmann T, Flögel U, Gödecke A, Schrader J (2004). Adaptation of the myoglobin knockout mouse to hypoxic stress. Am J Physiol Regul Integr Comp Physiol, 286(4): R786–R792
CrossRef
Pubmed
Google scholar
|
[97] |
Schumacher S B, Stucki M, Hübscher U (2000). The N-terminal region of DNA polymerase delta catalytic subunit is necessary for holoenzyme function. Nucleic Acids Res, 28(2): 620–625
CrossRef
Pubmed
Google scholar
|
[98] |
Scudiero R, Trinchella F, Riggio M, Parisi E (2007). Structure and expression of genes involved in transport and storage of iron in red-blooded and hemoglobin-less antarctic notothenioids. Gene, 397(1-2): 1–11
CrossRef
Pubmed
Google scholar
|
[99] |
Shah N, Inoue A, Woo Lee S, Beishline K, Lahti J M, Noguchi E (2013). Roles of ChlR1 DNA helicase in replication recovery from DNA damage. Exp Cell Res, 319(14): 2244–2253
CrossRef
Pubmed
Google scholar
|
[100] |
Shapleigh J P, Hosler J P, Tecklenburg M M, Kim Y, Babcock G T, Gennis R B, Ferguson-Miller S (1992). Definition of the catalytic site of cytochrome c oxidase: specific ligands of heme a and the heme a3-CuB center. Proc Natl Acad Sci USA, 89(11): 4786–4790
CrossRef
Pubmed
Google scholar
|
[101] |
Shefner J M, Reaume A G, Flood D G, Scott R W, Kowall N W, Ferrante R J, Siwek D F, Upton-Rice M, Brown R H Jr (1999). Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy. Neurology, 53(6): 1239–1246
CrossRef
Pubmed
Google scholar
|
[102] |
Shleev S, Tkac J, Christenson A, Ruzgas T, Yaropolov A I, Whittaker J W, Gorton L (2005). Direct electron transfer between copper-containing proteins and electrodes. Biosens Bioelectron, 20(12): 2517–2554
CrossRef
Pubmed
Google scholar
|
[103] |
Sipos K, Lange H, Fekete Z, Ullmann P, Lill R, Kispal G (2002). Maturation of cytosolic iron-sulfur proteins requires glutathione. J Biol Chem, 277(30): 26944–26949
CrossRef
Pubmed
Google scholar
|
[104] |
Sivakamavalli J, Vaseeharan B (2015). Enzymatic elucidation of haemocyanin from Kuruma shrimp Marsupenaeus japonicus and its molecular recognition mechanism towards pathogens. J Biomol Struct Dyn, 33(6): 1302–1314
CrossRef
Pubmed
Google scholar
|
[105] |
Soo K Y, Atkin J D, Horne M K, Nagley P (2009). Recruitment of mitochondria into apoptotic signaling correlates with the presence of inclusions formed by amyotrophic lateral sclerosis-associated SOD1 mutations. J Neurochem, 108(3): 578–590
CrossRef
Pubmed
Google scholar
|
[106] |
Srinivasan S, Avadhani N G (2012). Cytochrome c oxidase dysfunction in oxidative stress. Free Radic Biol Med, 53(6): 1252–1263
CrossRef
Pubmed
Google scholar
|
[107] |
Stehling O, Mascarenhas J, Vashisht A A, Sheftel A D, Niggemeyer B, Rösser R, Pierik A J, Wohlschlegel J A, Lill R (2013). Human CIA2A-FAM96A and CIA2B-FAM96B integrate iron homeostasis and maturation of different subsets of cytosolic-nuclear iron-sulfur proteins. Cell Metab, 18(2): 187–198
CrossRef
Pubmed
Google scholar
|
[108] |
Stehling O, Vashisht A A, Mascarenhas J, Jonsson Z O, Sharma T, Netz D J, Pierik A J, Wohlschlegel J A, Lill R (2012). MMS19 assembles iron-sulfur proteins required for DNA metabolism and genomic integrity. Science, 337(6091): 195–199
CrossRef
Pubmed
Google scholar
|
[109] |
Sutton M D, Walker G C (2001). Managing DNA polymerases: coordinating DNA replication, DNA repair, and DNA recombination. Proc Natl Acad Sci USA, 98(15): 8342–8349
CrossRef
Pubmed
Google scholar
|
[110] |
Tafuri F, Ronchi D, Magri F, Comi G P, Corti S (2015). SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front Cell Neurosci, 9: 336
CrossRef
Pubmed
Google scholar
|
[111] |
Torti S V, Torti F M (2013). Iron and cancer: more ore to be mined. Nat Rev Cancer, 13(5): 342–355
CrossRef
Pubmed
Google scholar
|
[112] |
Totzeck M, Hendgen-Cotta U B, Kelm M, Rassaf T (2014). Crosstalk between nitrite, myoglobin and reactive oxygen species to regulate vasodilation under hypoxia. PLoS ONE, 9(8): e105951
CrossRef
Pubmed
Google scholar
|
[113] |
Uramoto H, Sugio K, Oyama T, Hanagiri T, Yasumoto K (2006). P53R2, p53 inducible ribonucleotide reductase gene, correlated with tumor progression of non-small cell lung cancer. Anticancer Res, 26(2A): 983–988
Pubmed
|
[114] |
Uringa E J, Youds J L, Lisaingo K, Lansdorp P M, Boulton S J (2011). RTEL1: an essential helicase for telomere maintenance and the regulation of homologous recombination. Nucleic Acids Res, 39(5): 1647–1655
CrossRef
Pubmed
Google scholar
|
[115] |
Valentine J S, Doucette P A, Zittin Potter S (2005). Copper-zinc superoxide dismutase and amyotrophic lateral sclerosis. Annu Rev Biochem, 74(1): 563–593
CrossRef
Pubmed
Google scholar
|
[116] |
van Brabant A J, Stan R, Ellis N A (2000). DNA helicases, genomic instability, and human genetic disease. Annu Rev Genomics Hum Genet, 1(1): 409–459
CrossRef
Pubmed
Google scholar
|
[117] |
van Holde K E, Miller K I, Decker H (2001). Hemocyanins and invertebrate evolution. J Biol Chem, 276(19): 15563–15566
CrossRef
Pubmed
Google scholar
|
[118] |
Waldron K J, Rutherford J C, Ford D, Robinson N J (2009). Metalloproteins and metal sensing. Nature, 460(7257): 823–830
CrossRef
Pubmed
Google scholar
|
[119] |
Wang J, Sattar A K, Wang C C, Karam J D, Konigsberg W H, Steitz T A (1997). Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell, 89(7): 1087–1099
CrossRef
Pubmed
Google scholar
|
[120] |
Wang X, Ira G, Tercero J A, Holmes A M, Diffley J F, Haber J E (2004). Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol, 24(16): 6891–6899
CrossRef
Pubmed
Google scholar
|
[121] |
Whittaker J W (2012). Non-heme manganese catalase–the 'other' catalase. Arch Biochem Biophys, 525: 111–120. Dowling D P, Di Costanzo L, Gennadios H A, Christianson D W (2008). Evolution of the arginase fold and functional diversity. Cell Mol Life Sci, 65: 2039–2055
|
[122] |
Wu A J, Penner-Hahn J E, Pecoraro V L (2004). Structural, spectroscopic, and reactivity models for the manganese catalases. Chem Rev, 104(2): 903–938
CrossRef
Pubmed
Google scholar
|
[123] |
Wu C, Yan L, Depre C, Dhar S K, Shen Y T, Sadoshima J, Vatner S F, Vatner D E (2009). Cytochrome c oxidase III as a mechanism for apoptosis in heart failure following myocardial infarction. Am J Physiol Cell Physiol, 297(4): C928–C934
CrossRef
Pubmed
Google scholar
|
[124] |
Xu W, Liu L Z, Loizidou M, Ahmed M, Charles I G (2002). The role of nitric oxide in cancer. Cell Res, 12(5-6): 311–320
CrossRef
Pubmed
Google scholar
|
[125] |
Yang L, Arora K, Beard W A, Wilson S H, Schlick T (2004). Critical role of magnesium ions in DNA polymerase beta’s closing and active site assembly. J Am Chem Soc, 126(27): 8441–8453
CrossRef
Pubmed
Google scholar
|
[126] |
Yoder D W, Hwang J, Penner-Hahn J E (2000). Manganese catalases. Met Ions Biol Syst, 37: 527–557
Pubmed
|
[127] |
Yoon E J, Park H J, Kim G Y, Cho H M, Choi J H, Park H Y, Jang J Y, Rhim H S, Kang S M (2009). Intracellular amyloid beta interacts with SOD1 and impairs the enzymatic activity of SOD1: implications for the pathogenesis of amyotrophic lateral sclerosis. Exp Mol Med, 41(9): 611–617
CrossRef
Pubmed
Google scholar
|
[128] |
Yu F, Sugawara T, Nishi T, Liu J, Chan P H (2006). Overexpression of SOD1 in transgenic rats attenuates nuclear translocation of endonuclease G and apoptosis after spinal cord injury. J Neurotrauma, 23(5): 595–603
CrossRef
Pubmed
Google scholar
|
[129] |
Zamocky M, Furtmüller P G, Obinger C (2008). Evolution of catalases from bacteria to humans. Antioxid Redox Signal, 10(9): 1527–1548
CrossRef
Pubmed
Google scholar
|
[130] |
Zhang C (2014). Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell, 5(10): 750–760
CrossRef
Pubmed
Google scholar
|
[131] |
Zhang C, Guo H, Zhang J, Guo G, Schumaker K S, Guo Y (2010). Arabidopsis cockayne syndrome A-like proteins 1A and 1B form a complex with CULLIN4 and damage DNA binding protein 1A and regulate the response to UV irradiation. Plant Cell, 22(7): 2353–2369
CrossRef
Pubmed
Google scholar
|
[132] |
Zhang C, Liu G, Huang M (2014a). Ribonucleotide reductase metallocofactor: assembly, maintenance and inhibition. Front Biol (Beijing), 9(2): 104–113
CrossRef
Pubmed
Google scholar
|
[133] |
Zhang C, Liu Y (2015). Targeting cancer with sesterterpenoids: the new potential antitumor drugs. J Nat Med, 69(3): 255–266
CrossRef
Pubmed
Google scholar
|
[134] |
Zhang C, Zhang F (2015a). Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell, 6(2): 88–100
CrossRef
Pubmed
Google scholar
|
[135] |
Zhang C, Zhang F (2015b). The multifunctions of WD40 proteins in genome integrity and cell cycle progression. J Genomics, 3: 40–50
CrossRef
Pubmed
Google scholar
|
[136] |
Zhang F, Zhang L, Zhang C (2015). Long noncoding RNAs and tumorigenesis: genetic associations, molecular mechanisms, and therapeutic strategies.Tumour Biol, doi:10. 1007/s13277–015–4445–4
|
[137] |
Zhang Y, Li H, Zhang C, An X, Liu L, Stubbe J, Huang M (2014b). Conserved electron donor complex Dre2-Tah18 is required for ribonucleotide reductase metallocofactor assembly and DNA synthesis. Proc Natl Acad Sci USA, 111(17): E1695–E1704
CrossRef
Pubmed
Google scholar
|
[138] |
Zhou L, Sun C B, Liu C, Fan Y, Zhu H Y, Wu X W, Hu L, Li Q P (2015). Upregulation of arginase activity contributes to intracellular ROS production induced by high glucose in H9c2 cells. Int J Clin Exp Pathol, 8(3): 2728–2736
Pubmed
|
/
〈 | 〉 |