Community and hospital acquired methicillin resistant Staphylococcus aureus efficiently retain the Van A determinant

Anup Kainthola , Ajay B. Bhatt , Ashish Gupta

Front. Biol. ›› 2015, Vol. 10 ›› Issue (6) : 520 -527.

PDF (492KB)
Front. Biol. ›› 2015, Vol. 10 ›› Issue (6) : 520 -527. DOI: 10.1007/s11515-015-1380-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Community and hospital acquired methicillin resistant Staphylococcus aureus efficiently retain the Van A determinant

Author information +
History +
PDF (492KB)

Abstract

Dissemination of vancomycin resistance from hospital to community strains is a serious threat to public health. Our study aimed to provide evidence for transmission of Van A type resistance from the hospital to the community. Wild-type community and hospital associated methicillin resistant Staphylococcus aureus strains were studied in vitro and in a model that mimicked a natural environment to ascertain their ability to acquire and maintain the vancomycin resistance determinant (Van A gene) from vancomycin resistant Enterococcus faecalis. Fitness was assessed and the cost of Van A acquisition and retention was estimated. In vitro mating experiments were carried out using a filter mating technique and a model of a natural water body environment. Transfer of resistance was carried out in two different conditions: restricted and favorable. Transconjugants were confirmed by E test and PCR using specific primer sets. Growth kinetics and fitness measurements were done by spectrometric analysis. Using the in vitro filter mating technique, high transfer frequencies that ranged from 0.7 × 10–3(0.0006) to 3.1 × 10–4(0.00011) were recorded, with the highest transfer frequencies for CA MRSA (thermosensitively homogenous) (0.7 × 10–3), and 1.2 × 10–4 to 2.4 × 10–6 in the model. HA MRSA (homogenous) showed a greater capacity (3.6 × 10–4) to receive the Van A gene, while CA MRSA showed a reduced ability to maintain the gene after serial subcultures. CA and HA thermosensitively heterogeneous MRSA transconjugants exhibited higher growth rates. The present study provides evidence for the enhanced ability of CA and HA MRSA clones to acquire and maintain Van A type resistance.

Keywords

Van A resistance / MRSA / fitness / growth kinetics / resistance transfer

Cite this article

Download citation ▾
Anup Kainthola, Ajay B. Bhatt, Ashish Gupta. Community and hospital acquired methicillin resistant Staphylococcus aureus efficiently retain the Van A determinant. Front. Biol., 2015, 10(6): 520-527 DOI:10.1007/s11515-015-1380-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aligholi MEmaneini MJabalameli FShahsavan SDabiri HSedaght H (2008). Emergence of high-level vancomycin-resistant Staphylococcus aureus in the Imam Khomeini Hospital in Tehran. Med Princ Pract17(5): 432–434

[2]

Annear D I (1968). The effect of temperature on resistance of Staphylococcus aureus to methicillin and some other antibioics. Med J Aust1(11): 444–446

[3]

Arthur MMolinas CDepardieu FCourvalin P (1993). Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol175(1): 117–127

[4]

Arthur MReynolds PCourvalin P (1996). Glycopeptide resistance in enterococci. Trends Microbiol4(10): 401–407

[5]

Chang SSievert D MHageman J CBoulton M LTenover F CDownes F PShah SRudrik J TPupp G RBrown W JCardo DFridkin S K, and the Vancomycin-Resistant Staphylococcus aureus Investigative Team (2003). Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med348(14): 1342–1347

[6]

Courvalin P (2006). Vancomycin resistance in gram-positive cocci. Clin Infect Dis42(Suppl 1): S25–S34

[7]

Cui LMa XSato KOkuma KTenover F CMamizuka E MGemmell C GKim M NPloy M CEl-Solh NFerraz VHiramatsu K (2003). Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J Clin Microbiol41(1): 5–14

[8]

de la Cruz FDavies J (2000). Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol8(3): 128–133

[9]

Ender MMcCallum NAdhikari RBerger-Bächi B (2004). Fitness cost of SCCmec and methicillin resistance levels in Staphylococcus aureus. Antimicrob Agents Chemother48(6): 2295–2297

[10]

Farrag NEltringham ILiddy H(1996).Vancomycin-dependent Enterococcus faecalisLancet348:1581–1582

[11]

Foucault M LCourvalin PGrillot-Courvalin C (2009). Fitness cost of VanA-type vancomycin resistance in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother53(6): 2354–2359

[12]

Hartman B JTomasz A (1986). Expression of methicillin resistance in heterogeneous strains of Staphylococcus aureus. Antimicrob Agents Chemother29(1): 85–92

[13]

Hiramatsu KHanaki HIno TYabuta KOguri TTenover F C (1997). Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother40(1): 135–136

[14]

Howden B PDavies J KJohnson P DStinear T PGrayson M L (2010). Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev23(1): 99–139

[15]

International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC) (2009). Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother53(12): 4961–4967

[16]

Kacica M,McDonald L C  and the Centers for Disease Control and Prevention (CDC) (2004). Vancomycin-resistant Staphylococcus aureus—New York, 2004. MMWR Morb Mortal Wkly Rep53(15): 322–323

[17]

Kainthola ABhatt A B (2013). Population based Prevalence of Community Acquired Methicillin Resistant Staphylococcus aureus in Community  Settings of  Srinagar  Garhwal,  India.  RRST 5(1):  60–62

[18]

Kirkpatrick B DHarrington S MSmith DMarcellus DMiller CDick JKaranfil LPerl T M (1999). An outbreak of vancomycin-dependent Enterococcus faecium in a bone marrow transplant unit. Clin Infect Dis29(5): 1268–1273

[19]

Klare ICollatz EAl-Obeid SWagner JRodloff ACWitte W(1992). Glykopeptidresistenz bei Enterococcus faecium aus Besiedlungen und Infectionen von Patienten aus Intensivstationen Berliner Kliniken und einem Transplantationszentrum. ZAC Z. Antimikrob Antineoplast Chemother10:45–53.

[20]

Leclercq RDerlot EDuval JCourvalin P (1988). Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med319(3): 157–161

[21]

Matsuo MHishinuma TKatayama YCui LKapi MHiramatsu K (2011). Mutation of RNA polymerase beta subunit (rpoB) promotes hVISA-to-VISA phenotypic conversion of strain Mu3. Antimicrob Agents Chemother55(9): 4188–4195

[22]

Miller DUrdaneta VWeltman APark S, and the Centers for Disease Control and Prevention (CDC) (2002). Vancomycin-resistant Staphylococcus aureus—Pennsylvania, 2002. MMWR Morb Mortal Wkly Rep51(40): 902

[23]

Noble W CVirani ZCree R G A (1992). Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol Lett72(2): 195–198

[24]

Noto M JFox P MArcher G L (2008). Spontaneous deletion of the methicillin resistance determinant, mecA, partially compensates for the fitness cost associated with high-level vancomycin resistance in Staphylococcus aureus. Antimicrob Agents Chemother52(4): 1221–1229

[25]

Périchon BCourvalin P (2009). VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother53(11): 4580–4587

[26]

Saha BSingh A KGhosh ABal M (2008). Identification and characterization of a vancomycin-resistant Staphylococcus aureus isolated from Kolkata (South Asia). J Med Microbiol57(Pt 1): 72–79

[27]

Sievert D MBoulton M LStolman GJohnson DStobierski M GDownes F PSomsel P ARudrik J TBrown WHafeez WLundstrom TFlanagan EJohnson RMitchell JChang S, and the Centers for Disease Control and Prevention (CDC) (2002). Staphylococcus aureus resistant to vancomycin—United States, 2002. MMWR Morb Mortal Wkly Rep51(26): 565–567

[28]

Tenover F CWeigel L MAppelbaum P CMcDougal L KChaitram JMcAllister SClark NKillgore GO’Hara C MJevitt LPatel J BBozdogan B (2004). Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents Chemother48(1): 275–280

[29]

Uttley A H CCollins C HNaidoo JGeorge R C (1988). Vancomycin-resistant enterococci. Lancet1(8575-6): 57–58

[30]

Van Bambeke FChauvel MReynolds P EFraimow H SCourvalin P (1999). Vancomycin-dependent Enterococcus faecalis clinical isolates and revertant mutants. Antimicrob Agents Chemother43(1): 41–47

[31]

Weigel L MDonlan R MShin D HJensen BClark N CMcDougal L KZhu WMusser K AThompson JKohlerschmidt DDumas NLimberger R JPatel J B (2007). High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. Antimicrob Agents Chemother51(1): 231–238

[32]

Zhu WClark N CMcDougal L KHageman JMcDonald L CPatel J B (2008). Vancomycin-resistant Staphylococcus aureus isolates associated with Inc18-like vanA plasmids in Michigan. Antimicrob Agents Chemother52(2): 452–457

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (492KB)

766

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/