Kinetics of the exchange reaction catalyzed by 2-amino-3- ketobutyrate CoA ligase

Farrukh Jamil

PDF(370 KB)
PDF(370 KB)
Front. Biol. ›› 2015, Vol. 10 ›› Issue (6) : 503-507. DOI: 10.1007/s11515-015-1378-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Kinetics of the exchange reaction catalyzed by 2-amino-3- ketobutyrate CoA ligase

Author information +
History +

Abstract

2-Amino-3-ketobutyrate CoA ligase (KBL) of Escherichia coli is a member of the α-oxoamine synthase family; it catalyzes the condensation reaction between glycine and acetyl CoA to yield 2-amino-3-ketobutyrate. We have previously shown that KBL catalyzes the exchange of pro-R hydrogen of glycine with protons in the medium; however, the kinetics of this reaction has never been determined. In this study, we calculated the kinetic parameters of this exchange reaction by using different concentrations of [2RS- 3H2: 2-14C] glycine. The rate of the exchange reaction was determined by measuring the 3H/14C ratio in recovered [2S- 3H: 2-14C]glycine. The Lineweaver-Burk plot showed that Km and kcat of this reaction were 3.8 ×10-3 M and 0.22 S-1, respectively. On the other hand, Km and kcat values of the overall KBL-mediated catalysis were correspondingly 1.23 × 10-2 M and 1.19 S-1. Thus, the rate of the exchange reaction was almost five times lower than that of overall KBL catalysis.

Keywords

enzyme / 2-amino-3-ketobutyrate CoA ligase / kinetics / exchange reaction

Cite this article

Download citation ▾
Farrukh Jamil. Kinetics of the exchange reaction catalyzed by 2-amino-3- ketobutyrate CoA ligase. Front. Biol., 2015, 10(6): 503‒507 https://doi.org/10.1007/s11515-015-1378-7

References

[1]
Alexeev D, Alexeeva M, Baxter R L, Campopiano D J, Webster S P, Sawyer L (1998). The crystal structure of 8-amino-7-oxononanoate synthase: a bacterial PLP-dependent, acyl-CoA-condensing enzyme. J Mol Biol, 284(2): 401–419
CrossRef Pubmed Google scholar
[2]
Bashir Q, Rashid N, Akhtar M (2006). Mechanism and substrate stereochemistry of 2-amino-3-oxobutyrate CoA ligase: implications for 5-aminolevulinate synthase and related enzymes. Chem Commun (Camb), (48): 5065–5067
CrossRef Pubmed Google scholar
[3]
Edgar A J, Polak J M (2000). Molecular cloning of the human and murine 2-amino-3-ketobutyrate coenzyme A ligase cDNAs. Eur J Biochem, 267(6): 1805–1812
CrossRef Pubmed Google scholar
[4]
Gable K, Slife H, Bacikova D, Monaghan E, Dunn T M (2000). Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. J Biol Chem, 275(11): 7597–7603
CrossRef Pubmed Google scholar
[5]
Gibson K D, Laver W G, Neuberger A (1958). Initial stages in the biosynthesis of porphyrins. 2. The formation of delta-aminolaevulic acid from glycine and succinyl-coenzyme A by particles from chicken erythrocytes. Biochem J, 70(1): 71–81
CrossRef Pubmed Google scholar
[6]
Hanada K, Hara T, Fukasawa M, Yamaji A, Umeda M, Nishijima M (1998). Mammalian cell mutants resistant to a sphingomyelin-directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase. J Biol Chem, 273(50): 33787–33794
CrossRef Pubmed Google scholar
[7]
Hanada K, Hara T, Nishijima M (2000). Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques. J Biol Chem, 275(12): 8409–8415
CrossRef Pubmed Google scholar
[8]
Jamil F, Gardner Q A, Bashir Q, Rashid N, Akhtar M (2010). Mechanistic and stereochemical studies of glycine oxidase from Bacillus subtilis strain R5. Biochemistry, 49(34): 7377–7383
CrossRef Pubmed Google scholar
[9]
Kerbarh O, Campopiano D J, Baxter R L (2006). Mechanism of -oxoamine synthases: identification of the intermediate Claisen product in the 8-amino-7-oxononanoate synthase reaction. Chem. Comm, 60–62
[10]
Marcus J P, Dekker E E (1993). Threonine formation via the coupled activity of 2-amino-3-ketobutyrate coenzyme A lyase and threonine dehydrogenase. J Bacteriol, 175(20): 6505–6511
Pubmed
[11]
Mukherjee J J, Dekker E E (1987). Purification, properties, and N-terminal amino acid sequence of homogeneous Escherichia coli 2-amino-3-ketobutyrate CoA ligase, a pyridoxal phosphate-dependent enzyme. J Biol Chem, 262(30): 14441–14447
Pubmed
[12]
Ploux O, Marquet A (1996). Mechanistic studies on the 8-amino-7-oxopelargonate synthase, a pyridoxal-5′-phosphate-dependent enzyme involved in biotin biosynthesis. Eur J Biochem, 236(1): 301–308
CrossRef Pubmed Google scholar
[13]
Riddle R D, Yamamoto M, Engel J D (1989). Expression of d-aminolevulinate synthase in avian cells: separate genes encode erythroid-specific and nonspecific isozymes. Proc Natl Acad Sci USA, 86(3): 792–796
CrossRef Pubmed Google scholar
[14]
Schmidt A, Sivaraman J, Li Y, Larocque R, Barbosa J A, Smith C, Matte A, Schrag J D, Cygler M (2001). Three-dimensional structure of 2-amino-3-ketobutyrate CoA ligase from Escherichia coli complexed with a PLP-substrate intermediate: inferred reaction mechanism. Biochemistry, 40(17): 5151–5160
CrossRef Pubmed Google scholar

Acknowledgments

I am grateful to the Higher Education Commission (HEC) of Pakistan for grants that enabled establishment of the Bioinformatics research laboratory at COMSATS, Sahiwal.
This study does not contain any experiment on human and animals by the author.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(370 KB)

Accesses

Citations

Detail

Sections
Recommended

/