Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis

Daniel A. Berg1,2,3,Ki-Jun Yoon1,2,Brett Will1,Alex Y. Xiao1,Nam-Shik Kim1,2,Kimberly M. Christian1,2,Hongjun Song1,2,4,Guo-li Ming1,2,4,*()

PDF(1517 KB)
PDF(1517 KB)
Front. Biol. ›› 2015, Vol. 10 ›› Issue (3) : 262-271. DOI: 10.1007/s11515-015-1364-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis

  • Daniel A. Berg1,2,3,Ki-Jun Yoon1,2,Brett Will1,Alex Y. Xiao1,Nam-Shik Kim1,2,Kimberly M. Christian1,2,Hongjun Song1,2,4,Guo-li Ming1,2,4,*()
Author information +
History +

Abstract

Neurogenesis persists in two locations of the adult mammalian brain, the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus in the hippocampus. In the adult subgranular zone, radial glial-like cells (RGLs) are multipotent stem cells that can give rise to both astrocytes and neurons. In the process of generating neurons, RGLs divide asymmetrically to give rise to one RGL and one intermediate progenitor cell (IPC). IPCs are considered to be a population of transit amplifying cells that proliferate and eventually give rise to mature granule neurons. The properties of individual IPCs at the clonal level are not well understood. Furthermore, it is not clear whether IPCs can generate astrocytes or revert back to RGLs, besides generating neurons. Here we developed a genetic marking strategy for clonal analysis and lineage-tracing of individual Tbr2-expressing IPCs in the adult hippocampus in vivo using Tbr2-CreERT2 mice. Using this technique we identified Tbr2-CreERT2 labeled IPCs as unipotent neuronal precursors that do not generate astrocytes or RGLs under homeostasis. Additionally, we showed that these labeled IPCs rapidly generate immature neurons in a synchronous manner and do not undergo a significant amount of amplification under homeostasis, in animals subjected to an enriched environment/running, or in animals with different age. In summary, our study suggests that Tbr2-expressing IPCs in the adult mouse hippocampus are unipotent precursors and rapidly give rise to immature neurons without major amplification.

Keywords

adult neurogenesis / Tbr2 / clonal analysis / lineage tracing / enriched environment

Cite this article

Download citation ▾
Daniel A. Berg,Ki-Jun Yoon,Brett Will,Alex Y. Xiao,Nam-Shik Kim,Kimberly M. Christian,Hongjun Song,Guo-li Ming. Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis. Front. Biol., 2015, 10(3): 262‒271 https://doi.org/10.1007/s11515-015-1364-0

References

1 Andersen J, Urbán N, Achimastou A, Ito A, Simic M, Ullom K, Martynoga B, Lebel M, G?ritz C, Frisén J, Nakafuku M, Guillemot F (2014). A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells. Neuron, 83(5): 1085-1097
2 Bonaguidi M A, Wheeler M A, Shapiro J S, Stadel R P, Sun G J, Ming G L, Song H (2011). In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 145(7): 1142-1155
3 Braun S M G, Jessberger S (2013). Adult neurogenesis in the mammalian brain. Front Biol, 8(3): 295-304
4 Brown J P, Couillard-Després S, Cooper-Kuhn C M, Winkler J, Aigner L, Kuhn H G (2003). Transient expression of doublecortin during adult neurogenesis. J Comp Neurol, 467(1): 1-10
5 Calzolari F, Michel J, Baumgart E V, Theis F, G?tz M, Ninkovic J (2015). Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nat Neurosci, 18(4): 490-492
6 Cameron H A, McKay R D (2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol, 435(4): 406-417
7 DeCarolis N A, Mechanic M, Petrik D, Carlton A, Ables J L, Malhotra S, Bachoo R, G?tz M, Lagace D C, Eisch A J (2013). <?Pub Caret?>In vivo contribution of nestin- and GLAST-lineage cells to adult hippocampal neurogenesis. Hippocampus, 23(8): 708-719
8 Doetsch F, Petreanu L, Caille I, Garcia-Verdugo J M, Alvarez-Buylla A (2002). EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron, 36(6): 1021-1034
9 Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566-579
10 Encinas J M, Vaahtokari A, Enikolopov G (2006). Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA, 103(21): 8233-8238
11 Englund C, Fink A, Lau C, Pham D, Daza R A, Bulfone A, Kowalczyk T, Hevner R F (2005). Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci, 25(1): 247-251
12 Ernst A, Frisén J (2015). Adult neurogenesis in humans- common and unique traits in mammals. PLoS Biol, 13(1): e1002045
13 Faulkner R L, Jang M H, Liu X B, Duan X, Sailor K A, Kim J Y, Ge S, Jones E G, Ming G L, Song H, Cheng H J (2008). Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci USA, 105(37): 14157-14162
14 Gao P, Postiglione M P, Krieger T G, Hernandez L, Wang C, Han Z, Streicher C, Papusheva E, Insolera R, Chugh K, Kodish O, Huang K, Simons B D, Luo L, Hippenmeyer S, Shi S H (2014). Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell, 159(4): 775-788
15 Ge S, Goh E L, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589-593
16 Hodge R D, Garcia A J 3rd, Elsen G E, Nelson B R, Mussar K E, Reiner S L, Ramirez J M, Hevner R F (2013). Tbr2 expression in Cajal-Retzius cells and intermediate neuronal progenitors is required for morphogenesis of the dentate gyrus. J Neurosci, 33(9): 4165-4180
17 Hodge R D, Kowalczyk T D, Wolf S A, Encinas J M, Rippey C, Enikolopov G, Kempermann G, Hevner R F (2008). Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J Neurosci, 28(14): 3707-3717
18 Hodge R D, Nelson B R, Kahoud R J, Yang R, Mussar K E, Reiner S L, Hevner R F (2012). Tbr2 is essential for hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons. J Neurosci, 32(18): 6275-6287
19 Jang M H, Bonaguidi M A, Kitabatake Y, Sun J, Song J, Kang E, Jun H, Zhong C, Su Y, Guo J U, Wang M X, Sailor K A, Kim J Y, Gao Y, Christian K M, Ming G L, Song H (2013). Secreted frizzled-related protein 3 regulates activity-dependent adult hippocampal neurogenesis. Cell Stem Cell, 12(2): 215-223
20 Jiruska P, Shtaya A B, Bodansky D M, Chang W C, Gray W P, Jefferys J G (2013). Dentate gyrus progenitor cell proliferation after the onset of spontaneous seizures in the tetanus toxin model of temporal lobe epilepsy. Neurobiol Dis, 54: 492-498
21 Kahoud R J, Elsen G E, Hevner R F, Hodge R D (2014). Conditional ablation of Tbr2 results in abnormal development of the olfactory bulbs and subventricular zone-rostral migratory stream. Dev Dyn, 243(3): 440-450
22 Kempermann G, Kuhn H G, Gage F H (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386(6624): 493-495
23 Kim E J, Ables J L, Dickel L K, Eisch A J, Johnson J E (2011). Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS ONE, 6(3): e18472
24 Kim J Y, Liu C Y, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, St Clair D, Christian K, Callicott J H, Weinberger D R, Song H, Ming G L (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell, 148(5): 1051-1064
25 Kronenberg G, Reuter K, Steiner B, Brandt M D, Jessberger S, Yamaguchi M, Kempermann G (2003). Subpopulations of proliferating cells of the adult hippocampus respond differently to physiological neurogenic stimuli. J Comp Neurol, 467(4): 455-463
26 Kuhn H G, Dickinson-Anson H, Gage F H (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci, 16(6): 2027-2033
27 Liu P, Jenkins N A, Copeland N G (2003). A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res, 13(3): 476-484
28 Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, G?tz M, Haas C A, Kempermann G, Taylor V, Giachino C (2010). Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell, 6(5): 445-456
29 Lugert S, Vogt M, Tchorz J S, Müller M, Giachino C, Taylor V (2012). Homeostatic neurogenesis in the adult hippocampus does not involve amplification of Ascl1(high) intermediate progenitors. Nat Commun, 3: 670
30 Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 70(4): 687-702
31 Muzumdar M D, Tasic B, Miyamichi K, Li L, Luo L (2007). A global double-fluorescent Cre reporter mouse. Genesis, 45(9): 593-605
32 Olariu A, Cleaver K M, Cameron H A (2007). Decreased neurogenesis in aged rats results from loss of granule cell precursors without lengthening of the cell cycle. J Comp Neurol, 501(4): 659-667
33 Piatti V C, Davies-Sala M G, Espósito M S, Mongiat L A, Trinchero M F, Schinder A F (2011). The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J Neurosci, 31(21): 7715-7728
34 Pimeisl I M, Tanriver Y, Daza R A, Vauti F, Hevner R F, Arnold H H, Arnold S J (2013). Generation and characterization of a tamoxifen-inducible Eomes(CreER) mouse line. Genesis, 51(10): 725-733
35 Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez-Buylla A (2013). Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proc Natl Acad Sci USA, 110(11): E1045-E1054
36 Seri B, García-Verdugo J M, McEwen B S, Alvarez-Buylla A (2001). Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci, 21(18): 7153-7160
37 Sessa A, Mao C A, Hadjantonakis A K, Klein W H, Broccoli V (2008). Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron, 60(1): 56-69
38 Sierra A, Encinas J M, Deudero J J, Chancey J H, Enikolopov G, Overstreet-Wadiche L S, Tsirka S E, Maletic-Savatic M (2010). Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell, 7(4): 483-495
39 Song J, Sun J, Moss J, Wen Z, Sun G J, Hsu D, Zhong C, Davoudi H, Christian K M, Toni N, Ming G L, Song H (2013). Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nat Neurosci, 16(12): 1728-1730
40 Song J, Zhong C, Bonaguidi M A, Sun G J, Hsu D, Gu Y, Meletis K, Huang Z J, Ge S, Enikolopov G, Deisseroth K, Luscher B, Christian K M, Ming G L, Song H (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 489(7414): 150-154
41 Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Bostr?m E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219-1227
42 Srinivas S, Watanabe T, Lin C S, William C M, Tanabe Y, Jessell T M, Costantini F (2001). Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol, 1(1): 4
43 Steiner B, Zurborg S, H?rster H, Fabel K, Kempermann G (2008). Differential 24 h responsiveness of Prox1-expressing precursor cells in adult hippocampal neurogenesis to physical activity, environmental enrichment, and kainic acid-induced seizures. Neuroscience, 154(2): 521-529
44 Sun G J, Sailor K A, Mahmood Q A, Chavali N, Christian K M, Song H, Ming G L (2013). Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus. J Neurosci, 33(28): 11400-11411
45 Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901-907
46 van Praag H, Kempermann G, Gage F H (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci, 2(3): 266-270
47 van Praag H, Schinder A F, Christie B R, Toni N, Palmer T D, Gage F H (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875): 1030-1034
48 Vasistha N A, Garcia-Moreno F, Arora S, Cheung A F, Arnold S J, Robertson E J, Molnar Z (2014). Cortical and clonal contribution of Tbr2 expressing progenitors in the developing mouse brain. Cereb Cortex, pii: bhu125. [Epub ahead of print]
49 Villeda S A, Luo J, Mosher K I, Zou B, Britschgi M, Bieri G, Stan T M, Fainberg N, Ding Z, Eggel A, Lucin K M, Czirr E, Park J S, Couillard-Després S, Aigner L, Li G, Peskind E R, Kaye J A, Quinn J F, Galasko D R, Xie X S, Rando T A, Wyss-Coray T (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477(7362): 90-94
PDF(1517 KB)

Accesses

Citations

Detail

Sections
Recommended

/