Regulation and postsynaptic binding of neurexins – drug targets for neurodevelopmental and neuropsychiatric disorders
Neurexins (NRXNs) have been linked to neurodevelopmental and neuropsychiatric disorders and have become attractive drug targets. They are transmembrane neuronal adhesion molecules and play important roles in the formation and differentiation of synapses and synaptic activity. Many postsynaptic binding partners of NRXNs have been identified. The interactions between NRXNs and postsynaptic binding partners can be regulated by alternative splicing, synaptic activity, and RNA binding proteins. The postsynaptic interactive partners may compete with each other for NRXN binding. The expression of NRXNs can also be regulated transcriptionally and post-transcriptionally. Genetic polymorphism may affect the function and expression of NRXNs. In this review, we will summarize the recent advance in these areas. Understanding the biology of neurexin signaling is essential for developing neurexin-based drugs.
alternative splicing / neurexins / neurodevelopmental disorders / neuropsychiatric illness / post-synaptic interactive partners / regulation / synapse
1 | <?Pub Caret?> Aoto J, Martinelli D C, Malenka R C, Tabuchi K, Südhof T C (2013). Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell, 154(1): 75–88 |
2 | Bang M L, Owczarek S (2013). A matter of balance: role of neurexin and neuroligin at the synapse. Neurochem Res, 38(6): 1174–1189 |
3 | Batista-Brito R, Machold R, Klein C, Fishell G (2008). Gene expression in cortical interneuron precursors is prescient of their mature function. Cereb Cortex, 18(10): 2306–2317 |
4 | Beglopoulos V, Montag-Sallaz M, Rohlmann A, Piechotta K, Ahmad M, Montag D, Missler M (2005). Neurexophilin 3 is highly localized in cortical and cerebellar regions and is functionally important for sensorimotor gating and motor coordination. Mol Cell Biol, 25(16): 7278–7288 |
5 | Béna F, Bruno D L, Eriksson M, van Ravenswaaij-Arts C, Stark Z, Dijkhuizen T, Gerkes E, Gimelli S, Ganesamoorthy D, Thuresson A C, Labalme A, Till M, Bilan F, Pasquier L, Kitzis A, Dubourgm C, Rossi M, Bottani A, Gagnebin M, Sanlaville D, Gilbert-Dussardier B, Guipponi M, van Haeringen A, Kriek M, Ruivenkamp C, Antonarakis S E, Anderlid B M, Slater H R, Schoumans J (2013). Molecular and clinical characterization of 25 individuals with exonic deletions of NRXN1 and comprehensive review of the literature. Am J Med Genet B Neuropsychiatr Genet, 162B(4): 388–403 |
6 | Biederer T, Sudhof T C (2001). CASK and protein 4.1 support F-actin nucleation on neurexins. J Biol Chem, 276(51): 47869–47876 |
7 | Blundell J, Blaiss C A, Etherton M R, Espinosa F, Tabuchi K, Walz C, Bolliger M F, Südhof T C, Powell C M (2010). Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J Neurosci, 30(6): 2115–2129 |
8 | Bolliger M F, Frei K, Winterhalter K H, Gloor S M (2001). Identification of a novel neuroligin in humans which binds to PSD-95 and has a widespread expression. Biochem J, 356(Pt 2): 581–588 |
9 | Borg J P, Straight S W, Kaech S M, de Taddéo-Borg M, Kroon D E, Karnak D, Turner R S, Kim S K, Margolis B (1998). Identification of an evolutionarily conserved heterotrimeric protein complex involved in protein targeting. J Biol Chem, 273(48): 31633–31636 |
10 | Born G, Breuer D, Wang S, Rohlmann A, Coulon P, Vakili P, Reissner C, Kiefer F, Heine M, Pape H C, Missler M (2014). Modulation of synaptic function through the α-neurexin-specific ligand neurexophilin-1. Proc Natl Acad Sci USA, 111(13): E1274–E1283 |
11 | Boucard A A, Chubykin A A, Comoletti D, Taylor P, Südhof T C (2005). A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron, 48(2): 229–236 |
12 | Boucard A A, Ko J, Südhof T C (2012). High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex. J Biol Chem, 287(12): 9399–9413 |
13 | Bourne Y, Marchot P (2014). The neuroligins and their ligands: from structure to function at the synapse. J Mol Neurosci, 53(3): 387–396 |
14 | Briatore F, Patrizi A, Viltono L, Sassoè-Pognetto M, Wulff P (2010). Quantitative organization of GABAergic synapses in the molecular layer of the mouse cerebellar cortex. PLoS ONE, 5(8): e12119 |
15 | Bucan M, Abrahams B S, Wang K, Glessner J T, Herman E I, Sonnenblick L I, Alvarez Retuerto A I, Imielinski M, Hadley D, Bradfield J P, Kim C, Gidaya N B, Lindquist I, Hutman T, Sigman M, Kustanovich V, Lajonchere C M, Singleton A, Kim J, Wassink T H, McMahon W M, Owley T, Sweeney J A, Coon H, Nurnberger J I, Li M, Cantor R M, Minshew N J, Sutcliffe J S, Cook E H, Dawson G, Buxbaum J D, Grant S F, Schellenberg G D, Geschwind D H, Hakonarson H (2009). Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genet, 5(6): e1000536 |
16 | Budreck E C, Scheiffele P (2007). Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci, 26(7): 1738–1748 |
17 | Butz S, Okamoto M, Südhof T C (1998). A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell, 94(6): 773–782 |
18 | Camacho-Garcia R J, Planelles M I, Margalef M, Pecero M L, Martínez-Leal R, Aguilera F, Vilella E, Martinez-Mir A, Scholl F G (2012). Mutations affecting synaptic levels of neurexin-1β in autism and mental retardation. Neurobiol Dis, 47(1): 135–143 |
19 | Chahrour M, Jung S Y, Shaw C, Zhou X, Wong S T, Qin J, Zoghbi H Y (2008). MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 320(5880): 1224–1229 |
20 | Chih B, Gollan L, Scheiffele P (2006). Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron, 51(2): 171–178 |
21 | Ching M S, Shen Y, Tan W H, Jeste S S, Morrow E M, Chen X, Mukaddes N M, Yoo S Y, Hanson E, Hundley R, Austin C, Becker R E, Berry G T, Driscoll K, Engle E C, Friedman S, Gusella J F, Hisama F M, Irons M B, Lafiosca T, LeClair E, Miller D T, Neessen M, Picker J D, Rappaport L, Rooney C M, Sarco D P, Stoler J M, Walsh C A, Wolff R R, Zhang T, Nasir R H, Wu B L, and the Children’s Hospital Boston Genotype Phenotype Study Group (2010). Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. Am J Med Genet B Neuropsychiatr Genet, 153B(4): 937–947 |
22 | Comoletti D, De Jaco A, Jennings L L, Flynn R E, Gaietta G, Tsigelny I, Ellisman M H, Taylor P (2004). The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing. J Neurosci, 24(20): 4889–4893 |
23 | Craig A M, Kang Y (2007). Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol, 17(1): 43–52 |
24 | Curran S, Ahn J W, Grayton H, Collier D A, Ogilvie C M (2013). NRXN1 deletions identified by array comparative genome hybridisation in a clinical case series- further understanding of the relevance of NRXN1 to neurodevelopmental disorders. J Mol Psychiatry, 1(1): 4 |
25 | Dean C, Dresbach T (2006). Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci, 29(1): 21–29 |
26 | Dean C, Scholl F G, Choih J, DeMaria S, Berger J, Isacoff E, Scheiffele P (2003). Neurexin mediates the assembly of presynaptic terminals. Nat Neurosci, 6(7): 708–716 |
27 | Di Fruscio M, Chen T, Richard S (1999). Characterization of Sam68-like mammalian proteins SLM-1 and SLM-2: SLM-1 is a Src substrate during mitosis. Proc Natl Acad Sci USA, 96(6): 2710–2715 |
28 | Duong L, Klitten L L, M?ller R S, Ingason A, Jakobsen K D, Skj?dt C, Didriksen M, Hjalgrim H, Werge T, Tommerup N (2012). Mutations in NRXN1 in a family multiply affected with brain disorders: NRXN1 mutations and brain disorders. Am J Med Genet B Neuropsychiatr Genet, 159B(3): 354–358 |
29 | Ehrmann I, Dalgliesh C, Liu Y, Danilenko M, Crosier M, Overman L, Arthur H M, Lindsay S, Clowry G J, Venables J P, Fort P, Elliott D J (2013). The tissue-specific RNA binding protein T-STAR controls regional splicing patterns of neurexin pre-mRNAs in the brain. PLoS Genet, 9(4): e1003474 |
30 | Etherton M R, Blaiss C A, Powell C M, Südhof T C (2009). Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci USA, 106(42): 17998–18003 |
31 | Fan Z, Chen X, Chen R (2014). Transcriptome-wide analysis of TDP-43 binding small RNAs identifies miR-NID1 (miR-8485), a novel miRNA that represses NRXN1 expression. Genomics, 103(1): 76–82 |
32 | Fang Z H, Lee C H, Seo M K, Cho H, Lee J G, Lee B J, Park S W, Kim Y H (2013). Effect of treadmill exercise on the BDNF-mediated pathway in the hippocampus of stressed rats. Neurosci Res, 76(4): 187–194 |
33 | Feng J, Schroer R, Yan J, Song W, Yang C, Bockholt A, Cook E H Jr, Skinner C, Schwartz C E, Sommer S S (2006). High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neurosci Lett, 409(1): 10–13 |
34 | Fu Y, Huang Z J (2010). Differential dynamics and activity-dependent regulation of alpha- and beta-neurexins at developing GABAergic synapses. Proc Natl Acad Sci USA, 107(52): 22699–22704 |
35 | Gauthier J, Siddiqui T J, Huashan P, Yokomaku D, Hamdan F F, Champagne N, Lapointe M, Spiegelman D, Noreau A, Lafrenière R G, Fathalli F, Joober R, Krebs M O, DeLisi L E, Mottron L, Fombonne E, Michaud J L, Drapeau P, Carbonetto S, Craig A M, Rouleau G A (2011). Truncating mutations in NRXN2 and NRXN1 in autism spectrum disorders and schizophrenia. Hum Genet, 130(4): 563–573 |
36 | Glessner J T, Wang K, Cai G, Korvatska O, Kim C E, Wood S, Zhang H, Estes A, Brune C W, Bradfield J P, Imielinski Glessner J T, Wang K, Cai G, Korvatska O, Kim C E, Wood S, Zhang H, Estes A, Brune C W, Bradfield J P, Imielinski M, Frackelton E C, Reichert J, Crawford E L, Munson J, Sleiman P M, Chiavacci R, Annaiah K, Thomas K, Hou C, Glaberson W, Flory J, Otieno F, Garris M, Soorya L, Klei L, Piven J, Meyer K J, Anagnostou E, Sakurai T, Game R M, Rudd D S, Zurawiecki D, McDougle C J, Davis L K, Miller J, Posey D J, Michaels S, Kolevzon A, Silverman J M, Bernier R, Levy S E, Schultz R T, Dawson G, Owley T, McMahon W M, Wassink T H, Sweeney J A, Nurnberger J I, Coon H, Sutcliffe J S, Minshew N J, Grant S F, Bucan M, Cook E H, Buxbaum J D, Devlin B, Schellenberg G D, Hakonarson H (2009). Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459(7246): 569–573 |
37 | Graf E R, Kang Y, Hauner A M, Craig A M (2006). Structure function and splice site analysis of the synaptogenic activity of the neurexin-1 beta LNS domain. J Neurosci, 26(16): 4256–4265 |
38 | Graf E R, Zhang X, Jin S X, Linhoff M W, Craig A M (2004). Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell, 119(7): 1013–1026 |
39 | Grayton H M, Missler M, Collier D A, Fernandes C (2013). Altered social behaviours in neurexin 1α knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS ONE, 8(6): e67114 |
40 | Gunn B G, Cunningham L, Mitchell S G, Swinny J D, Lambert J J, Belelli D ( 2014). GABAA receptor-acting neurosteroids: A role in the development and regulation of the stress response. Front Neuroendocrinol, 36: 28–48 |
41 | Hata Y, Butz S, Südhof T C (1996). CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci, 16(8): 2488–2494 |
42 | Hemler M E (1999). Dystroglycan versatility. Cell, 97(5): 543–546 |
43 | Henry M D, Campbell K P (1998). A role for dystroglycan in basement membrane assembly. Cell, 95(6): 859–870 |
44 | Henry M D, Campbell K P (1999). Dystroglycan inside and out. Curr Opin Cell Biol, 11(5): 602–607 |
45 | Hines R M, Wu L, Hines D J, Steenland H, Mansour S, Dahlhaus R, Singaraja R R, Cao X, Sammler E, Hormuzdi S G, Zhuo M, El-Husseini A (2008). Synaptic imbalance, stereotypies, and impaired social interactions in mice with altered neuroligin 2 expression. J Neurosci, 28(24): 6055–6067 |
46 | Hirai H, Pang Z, Bao D, Miyazaki T, Li L, Miura E, Parris J, Rong Y, Watanabe M, Yuzaki M, Morgan J I (2005). Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nat Neurosci, 8(11): 1534–1541 |
47 | Hoon M, Soykan T, Falkenburger B, Hammer M, Patrizi A, Schmidt K F, Sassoè-Pognetto M, L?wel S, Moser T, Taschenberger H, Brose N, Varoqueaux F (2011). Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc Natl Acad Sci USA, 108(7): 3053–3058 |
48 | Ibraghimov-Beskrovnaya O, Ervasti J M, Leveille C J, Slaughter C A, Sernett S W, Campbell K P, Campbel K P (1992). Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature, 355(6362): 696–702 |
49 | Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C, Südhof T C (1995). Neuroligin 1: a splice site-specific ligand for beta-neurexins. Cell, 81(3): 435–443 |
50 | Iijima T, Iijima Y, Witte H, Scheiffele P (2014). Neuronal cell type-specific alternative splicing is regulated by the KH domain protein SLM1. J Cell Biol, 204(3): 331–342 |
51 | Iijima T, Wu K, Witte H, Hanno-Iijima Y, Glatter T, Richard S, Scheiffele P (2011). SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell, 147(7): 1601–1614 |
52 | Jamain S, Quach H, Betancur C, R?stam M, Colineaux C, Gillberg I C, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T, Gillberg C, R?stam M, Gillberg C, Nydén A, S?derstr?m H, Leboyer M, Betancur C, Philippe A, Giros B, Colineaux C, Cohen D, Chabane N, Mouren-Siméoni M C, Brice A, Sponheim E, Spurkland I, Skjeldal O H, Coleman M, Pearl P L, Cohen I L, Tsiouris J, Zappella M, Menchetti G, Pompella A, Aschauer H, Van Maldergem L, the Paris Autism Research International Sibpair Study (2003). Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet, 34(1): 27–29 |
53 | Jamain S, Radyushkin K, Hammerschmidt K, Granon S, Boretius S, Varoqueaux F, Ramanantsoa N, Gallego J, Ronnenberg A, Winter D, Frahm J, Fischer J, Bourgeron T, Ehrenreich H, Brose N (2008). Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc Natl Acad Sci USA, 105(5): 1710–1715 |
54 | Kang H S, Lee C K, Kim J R, Yu S J, Kang S G, Moon D H, Lee C H, Kim D K (2004). Gene expression analysis of the pro-oestrous-stage rat uterus reveals neuroligin 2 as a novel steroid-regulated gene. Reprod Fertil Dev, 16(8): 763–772 |
55 | Kang Y, Zhang X, Dobie F, Wu H, Craig A M (2008). Induction of GABAergic postsynaptic differentiation by alpha-neurexins. J Biol Chem, 283(4): 2323–2334 |
56 | Kattenstroth G, Tantalaki E, Südhof T C, Gottmann K, Missler M (2004). Postsynaptic N-methyl-D-aspartate receptor function requires alpha-neurexins. Proc Natl Acad Sci USA, 101(8): 2607–2612 |
57 | Kim H G, Kishikawa S, Higgins A W, Seong I S, Donovan D J, Shen Y, Lally E, Weiss L A, Najm J, Kutsche K, Descartes M, Holt L, Braddock S, Troxell R, Kaplan L, Volkmar F, Klin A, Tsatsanis K, Harris D J, Noens I, Pauls D L, Daly M J, MacDonald M E, Morton C C, Quade B J, Gusella J F (2008). Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet, 82(1): 199–207 |
58 | Kirov G, Gumus D, Chen W, Norton N, Georgieva L, Sari M, O’Donovan M C, Erdogan F, Owen M J, Ropers H H, Ullmann R (2008). Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Hum Mol Genet, 17(3): 458–465 |
59 | Kirov G, Rujescu D, Ingason A, Collier D A, O’Donovan M C, Owen M J (2009). Neurexin 1 (NRXN1) deletions in schizophrenia. Schizophr Bull, 35(5): 851–854 |
60 | Ko J, Fuccillo M V, Malenka R C, Südhof T C (2009). LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron, 64(6): 791–798 |
61 | Ko J, Soler-Llavina G J, Fuccillo M V, Malenka R C, Südhof T C (2011). Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulin-dependent synapse elimination in cultured neurons. J Cell Biol, 194(2): 323–334 |
62 | Krueger D D, Tuffy L P, Papadopoulos T, Brose N (2012). The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses. Curr Opin Neurobiol, 22(3): 412–422 |
63 | Kwon H B, Kozorovitskiy Y, Oh W J, Peixoto R T, Akhtar N, Saulnier J L, Gu C, Sabatini B L (2012). Neuroligin-1-dependent competition regulates cortical synaptogenesis and synapse number. Nat Neurosci, 15(12): 1667–1674 |
64 | Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard M P, Raynaud M, Ronce N, Lemonnier E, Calvas P, Laudier B, Chelly J, Fryns J P, Ropers H H, Hamel B C, Andres C, Barthélémy C, Moraine C, Briault S (2004). X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet, 74(3): 552–557 |
65 | Laurén J, Airaksinen M S, Saarma M, Timmusk T (2003). A novel gene family encoding leucine-rich repeat transmembrane proteins differentially expressed in the nervous system. Genomics, 81(4): 411–421 |
66 | Lawson-Yuen A, Saldivar J S, Sommer S, Picker J (2008). Familial deletion within NLGN4 associated with autism and Tourette syndrome. Eur J Hum Genet, 16(5): 614–618 |
67 | Lévi S, Grady R M, Henry M D, Campbell K P, Sanes J R, Craig A M (2002). Dystroglycan is selectively associated with inhibitory GABAergic synapses but is dispensable for their differentiation. J Neurosci, 22(11): 4274–4285 |
68 | Levinson J N, El-Husseini A (2005). Building excitatory and inhibitory synapses: balancing neuroligin partnerships. Neuron, 48(2): 171–174 |
69 | Linhoff M W, Laurén J, Cassidy R M, Dobie F A, Takahashi H, Nygaard H B, Airaksinen M S, Strittmatter S M, Craig A M (2009). An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron, 61(5): 734–749 |
70 | Lisé M F, El-Husseini A (2006). The neuroligin and neurexin families: from structure to function at the synapse. Cell Mol Life Sci, 63(16): 1833–1849 |
71 | Liu Y, Hu Z, Xun G, Peng Y, Lu L, Xu X, Xiong Z, Xia L, Liu D, Li W, Zhao J, Xia K (2012). Mutation analysis of the NRXN1 gene in a Chinese autism cohort. J Psychiatr Res, 46(5): 630–634 |
72 | Matsuda K, Miura E, Miyazaki T, Kakegawa W, Emi K, Narumi S, Fukazawa Y, Ito-Ishida A, Kondo T, Shigemoto R, Watanabe M, Yuzaki M (2010). Cbln1 is a ligand for an orphan glutamate receptor delta2, a bidirectional synapse organizer. Science, 328(5976): 363–368 |
73 | Matsuda K, Yuzaki M (2011). Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions. Eur J Neurosci, 33(8): 1447–1461 |
74 | Millson A, Lagrave D, Willis M J, Rowe L R, Lyon E, South S T (2012). Chromosomal loss of 3q26.3-3q26.32, involving a partial neuroligin 1 deletion, identified by genomic microarray in a child with microcephaly, seizure disorder, and severe intellectual disability. Am J Med Genet A, 158A(1): 159–165 |
75 | Missler M, Fernandez-Chacon R, Südhof T C (1998a). The making of neurexins. J Neurochem, 71(4): 1339–1347 |
76 | Missler M, Hammer R E, Südhof T C (1998b). Neurexophilin binding to alpha-neurexins. A single LNS domain functions as an independently folding ligand-binding unit. J Biol Chem, 273(52): 34716–34723 |
77 | Missler M, Südhof T C (1998). Neurexophilins form a conserved family of neuropeptide-like glycoproteins. J Neurosci, 18(10): 3630–3638 |
78 | Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer R E, Gottmann K, Südhof T C (2003). α-neurexins couple Ca2+ channels to synaptic vesicle exocytosis. Nature, 423(6943): 939–948 |
79 | Mukherjee K, Sharma M, Urlaub H, Bourenkov G P, Jahn R, Südhof T C, Wahl M C (2008). CASK Functions as a Mg2+-independent neurexin kinase. Cell, 133(2): 328–339 |
80 | Nam C I, Chen L (2005). Postsynaptic assembly induced by neurexin-neuroligin interaction and neurotransmitter. Proc Natl Acad Sci USA, 102(17): 6137–6142 |
81 | O’Dushlaine C, Kenny E, Heron E, Donohoe G, Gill M, Morris D, Corvin A, and the International Schizophrenia Consortium (2011). Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Mol Psychiatry, 16(3): 286–292 |
82 | Petrenko A G, Ullrich B, Missler M, Krasnoperov V, Rosahl T W, Südhof T C (1996). Structure and evolution of neurexophilin. J Neurosci, 16(14): 4360–4369 |
83 | Pettem K L, Yokomaku D, Luo L, Linhoff M W, Prasad T, Connor S A, Siddiqui T J, Kawabe H, Chen F, Zhang L, Rudenko G, Wang Y T, Brose N, Craig A M (2013). The specific α-neurexin interactor calsyntenin-3 promotes excitatory and inhibitory synapse development. Neuron, 80(1): 113–128 |
84 | Philibert R A, Winfield S L, Sandhu H K, Martin B M, Ginns E I (2000). The structure and expression of the human neuroligin-3 gene. Gene, 246(1-2): 303–310 |
85 | Pregno G, Frola E, Graziano S, Patrizi A, Bussolino F, Arese M, Sassoè-Pognetto M (2013). Differential regulation of neurexin at glutamatergic and GABAergic synapses. Front Cell Neurosci, 7: 35 |
86 | Rabaneda L G, Robles-Lanuza E, Nieto-González J L, Scholl F G (2014). Neurexin dysfunction in adult neurons results in autistic-like behavior in mice. Cell Reports, 8(2): 338–346 |
87 | Reissner C, Runkel F, Missler M (2013). Neurexins. Genome Biol, 14(9): 213 |
88 | Reissner C, Stahn J, Breuer D, Klose M, Pohlentz G, Mormann M, Missler M ( 2014) . Dystroglycan binding to α-neurexin competes with neurexophilin-1 and neuroligin in the brain. J Biol Chem, 289: 27585–27603 |
89 | Rujescu D, Ingason A, Cichon S, Pietil?inen O P, Barnes M R, Toulopoulou T, Picchioni M, Vassos E, Ettinger U, Bramon E, Murray R, Ruggeri M, Tosato S, Bonetto C, Steinberg S, Sigurdsson E, Sigmundsson T, Petursson H, Gylfason A, Olason P I, Hardarsson G, Jonsdottir G A, Gustafsson O, Fossdal R, Giegling I, M?ller H J, Hartmann A M, Hoffmann P, Crombie C, Fraser G, Walker N, Lonnqvist J, Suvisaari J, Tuulio-Henriksson A, Djurovic S, Melle I, Andreassen O A, Hansen T, Werge T, Kiemeney L A, Franke B, Veltman J, Buizer-Voskamp J E, Sabatti C, Ophoff R A, Rietschel M, N?then M M, Stefansson K, Peltonen L, St Clair D, Stefansson H, Collier D A, the GROUP Investigators (2009). Disruption of the neurexin 1 gene is associated with schizophrenia. Hum Mol Genet, 18(5): 988–996 |
90 | Runkel F, Rohlmann A, Reissner C, Brand S M, Missler M (2013). Promoter-like sequences regulating transcriptional activity in neurexin and neuroligin genes. J Neurochem, 127(1): 36–47 |
91 | Sassoè-Pognetto M, Frola E, Pregno G, Briatore F, Patrizi A (2011). Understanding the molecular diversity of GABAergic synapses. Front Cell Neurosci, 5: 4 |
92 | Saura C A, Servián-Morilla E, Scholl F G (2011). Presenilin/γ-secretase regulates neurexin processing at synapses. PLoS ONE, 6(4): e19430 |
93 | Siddiqui T J, Pancaroglu R, Kang Y, Rooyakkers A, Craig A M (2010). LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. J Neurosci, 30(22): 7495–7506 |
94 | Soler-Llavina G J, Fuccillo M V, Ko J, Südhof T C, Malenka R C (2011). The neurexin ligands, neuroligins and leucine-rich repeat transmembrane proteins, perform convergent and divergent synaptic functions in vivo. Proc Natl Acad Sci USA, 108(40): 16502–16509 |
95 | Song J Y, Ichtchenko K, Südhof T C, Brose N (1999). Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA, 96(3): 1100–1105 |
96 | Sons M S, Busche N, Strenzke N, Moser T, Ernsberger U, Mooren F C, Zhang W, Ahmad M, Steffens H, Schomburg E D, Plomp J J, Missler M (2006). alpha-Neurexins are required for efficient transmitter release and synaptic homeostasis at the mouse neuromuscular junction. Neuroscience, 138(2): 433–446 |
97 | Suckow A T, Comoletti D, Waldrop M A, Mosedale M, Egodage S, Taylor P, Chessler S D (2008). Expression of neurexin, neuroligin, and their cytoplasmic binding partners in the pancreatic beta-cells and the involvement of neuroligin in insulin secretion. Endocrinology, 149(12): 6006–6017 |
98 | Südhof T C (2008). Neuroligins and neurexins link synaptic function to cognitive disease. Nature, 455(7215): 903–911 |
99 | Sugita S, Ichtchenko K, Khvotchev M, Südhof T C (1998). alpha-Latrotoxin receptor CIRL/latrophilin 1 (CL1) defines an unusual family of ubiquitous G-protein-linked receptors. G-protein coupling not required for triggering exocytosis. J Biol Chem, 273(49): 32715–32724 |
100 | Sugita S, Saito F, Tang J, Satz J, Campbell K, Südhof T C (2001). A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol, 154(2): 435–445 |
101 | Szatmari P, Paterson A D, Zwaigenbaum L, Roberts W, Brian J, Liu X Q, Vincent J B, Skaug J L, Thompson A P, Senman L, Feuk L, Qian C, Bryson S E, Jones M B, Marshall C R, Scherer S W, Vieland V J, Bartlett C, Mangin L V, Goedken R, Segre A, Pericak-Vance M A, Cuccaro M L, Gilbert J R, Wright H H, Abramson R K, Betancur C, Bourgeron T, Gillberg C, Leboyer M, Buxbaum J D, Davis K L, Hollander E, Silverman J M, Hallmayer J, Lotspeich L, Sutcliffe J S, Haines J L, Folstein S E, Piven J, Wassink T H, Sheffield V, Geschwind D H, Bucan M, Brown W T, Cantor R M, Constantino J N, Gilliam T C, Herbert M, Lajonchere C, Ledbetter D H, Lese-Martin C, Miller J, Nelson S, Samango-Sprouse C A, Spence S, State M, Tanzi R E, Coon H, Dawson G, Devlin B, Estes A, Flodman P, Klei L, McMahon W M, Minshew N, Munson J, Korvatska E, Rodier P M, Schellenberg G D, Smith M, Spence M A, Stodgell C, Tepper P G, Wijsman E M, Yu C E, Rogé B, Mantoulan C, Wittemeyer K, Poustka A, Felder B, Klauck S M, Schuster C, Poustka F, B?lte S, Feineis-Matthews S, Herbrecht E, Schm?tzer G, Tsiantis J, Papanikolaou K, Maestrini E, Bacchelli E, Blasi F, Carone S, Toma C, Van Engeland H, de Jonge M, Kemner C, Koop F, Langemeijer M, Hijmans C, Staal W G, Baird G, Bolton P F, Rutter M L, Weisblatt E, Green J, Aldred C, Wilkinson J A, Pickles A, Le Couteur A, Berney T, McConachie H, Bailey A J, Francis K, Honeyman G, Hutchinson A, Parr J R, Wallace S, Monaco A P, Barnby G, Kobayashi K, Lamb J A, Sousa I, Sykes N, Cook E H, Guter S J, Leventhal B L, Salt J, Lord C, Corsello C, Hus V, Weeks D E, Volkmar F, Tauber M, Fombonne E, Shih A, Meyer K J, the Autism Genome Project Consortium (2007). Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet, 39(3): 319–328 |
102 | Tabuchi K, Blundell J, Etherton M R, Hammer R E, Liu X, Powell C M, Südhof T C (2007). A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science, 318(5847): 71–76 |
103 | Tabuchi K, Südhof T C (2002). Structure and evolution of neurexin genes: insight into the mechanism of alternative splicing. Genomics, 79(6): 849–859 |
104 | Talebizadeh Z, Lam D Y, Theodoro M F, Bittel D C, Lushington G H, Butler M G (2006). Novel splice isoforms for NLGN3 and NLGN4 with possible implications in autism. J Med Genet, 43(5): e21 |
105 | Tian M, Jacobson C, Gee S H, Campbell K P, Carbonetto S, Jucker M (1996). Dystroglycan in the cerebellum is a laminin alpha 2-chain binding protein at the glial-vascular interface and is expressed in Purkinje cells. Eur J Neurosci, 8(12): 2739–2747 |
106 | Treutlein B, Gokce O, Quake S R, Südhof T C (2014). Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing. Proc Natl Acad Sci USA, 111(13): E1291–E1299 |
107 | Uemura T, Lee S J, Yasumura M, Takeuchi T, Yoshida T, Ra M, Taguchi R, Sakimura K, Mishina M (2010). Trans-synaptic interaction of GluRdelta2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell, 141(6): 1068–1079 |
108 | Ullrich B, Ushkaryov Y A, Südhof T C (1995). Cartography of neurexins: more than 1000 isoforms generated by alternative splicing and expressed in distinct subsets of neurons. Neuron, 14(3): 497–507 |
109 | Um J W, Pramanik G, Ko J S, Song M Y, Lee D, Kim H, Park K S, Südhof T C, Tabuchi K, Ko J (2014). Calsyntenins function as synaptogenic adhesion molecules in concert with neurexins. Cell Reports, 6(6): 1096–1109 |
110 | Ushkaryov Y A, Petrenko A G, Geppert M, Südhof T C (1992). Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science, 257(5066): 50–56 |
111 | Ushkaryov Y A, Südhof T C (1993). Neurexin III alpha: extensive alternative splicing generates membrane-bound and soluble forms. Proc Natl Acad Sci USA, 90(14): 6410–6414 |
112 | Vaags A K, Lionel A C, Sato D, Goodenberger M, Stein Q P, Curran S, Ogilvie C, Ahn J W, Drmic I, Senman L, Chrysler C, Thompson A, Russell C, Prasad A, Walker S, Pinto D, Marshall C R, Stavropoulos D J, Zwaigenbaum L, Fernandez B A, Fombonne E, Bolton P F, Collier D A, Hodge J C, Roberts W, Szatmari P, Scherer S W (2012). Rare deletions at the neurexin 3 locus in autism spectrum disorder. Am J Hum Genet, 90(1): 133–141 |
113 | van der Kooij M A, Fantin M, Kraev I, Korshunova I, Grosse J, Zanoletti O, Guirado R, Garcia-Mompó C, Nacher J, Stewart M G, Berezin V, Sandi C (2014). Impaired hippocampal neuroligin-2 function by chronic stress or synthetic peptide treatment is linked to social deficits and increased aggression. Neuropsychopharmacology, 39(5): 1148–1158 |
114 | Varoqueaux F, Aramuni G, Rawson R L, Mohrmann R, Missler M, Gottmann K, Zhang W, Südhof T C, Brose N (2006). Neuroligins determine synapse maturation and function. Neuron, 51(6): 741–754 |
115 | Varoqueaux F, Jamain S, Brose N (2004). Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol, 83(9): 449–456 |
116 | Volk T, Israeli D, Nir R, Toledano-Katchalski H (2008). Tissue development and RNA control: “HOW” is it coordinated? Trends Genet, 24(2): 94–101 |
117 | Waites C L, Craig A M, Garner C C (2005). Mechanisms of vertebrate synaptogenesis. Annu Rev Neurosci, 28(1): 251–274 |
118 | Walsh T, McClellan J M, McCarthy S E, Addington A M, Pierce S B, Cooper G M, Nord A S, Kusenda M, Malhotra D, Bhandari A, Stray S M, Rippey C F, Roccanova P, Makarov V, Lakshmi B, Findling R L, Sikich L, Stromberg T, Merriman B, Gogtay N, Butler P, Eckstrand K, Noory L, Gochman P, Long R, Chen Z, Davis S, Baker C, Eichler E E, Meltzer P S, Nelson S F, Singleton A B, Lee M K, Rapoport J L, King M C, Sebat J (2008). Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science, 320(5875): 539–543 |
119 | Williams M E, de Wit J, Ghosh A (2010). Molecular mechanisms of synaptic specificity in developing neural circuits. Neuron, 68(1): 9–18 |
120 | Yan J, Feng J, Schroer R, Li W, Skinner C, Schwartz C E, Cook E H Jr, Sommer S S (2008). Analysis of the neuroligin 4Y gene in patients with autism. Psychiatr Genet, 18(4): 204–207 |
121 | Yan J, Noltner K, Feng J, Li W, Schroer R, Skinner C, Zeng W, Schwartz C E, Sommer S S (2008). Neurexin 1alpha structural variants associated with autism. Neurosci Lett, 438(3): 368–370 |
122 | Yan J, Oliveira G, Coutinho A, Yang C, Feng J, Katz C, Sram J, Bockholt A, Jones I R, Craddock N, Cook E H Jr, Vicente A, Sommer S S (2005). Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol Psychiatry, 10(4): 329–332 |
123 | Zhang C, Atasoy D, Ara? D, Yang X, Fucillo M V, Robison A J, Ko J, Brunger A T, Südhof T C (2010). Neurexins physically and functionally interact with GABA(A) receptors. Neuron, 66(3): 403–416 |
124 | Zhang C, Milunsky J M, Newton S, Ko J, Zhao G, Maher T A, Tager-Flusberg H, Bolliger M F, Carter A S, Boucard A A, Powell C M, Südhof T C (2009). A neuroligin-4 missense mutation associated with autism impairs neuroligin-4 folding and endoplasmic reticulum export. J Neurosci, 29(35): 10843–10854 |
125 | Zweier C, de Jong E K, Zweier M, Orrico A, Ousager L B, Collins A L, Bijlsma E K, Oortveld M A, Ekici A B, Reis A, Schenck A, Rauch A (2009). CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am J Hum Genet, 85(5): 655–666 |
/
〈 | 〉 |