Regulation of Hedgehog signaling by ubiquitination
The Hedgehog (Hh) signaling pathway plays crucial roles both in embryonic development and in adult stem cell function. The timing, duration and location of Hh signaling activity need to be tightly controlled. Abnormalities of Hh signal transduction lead to birth defects or malignant tumors. Recent data point to ubiquitination-related posttranslational modifications of several key Hh pathway components as an important mechanism of regulation of the Hh pathway. Here we review how ubiquitination regulates the localization, stability and activity of the key Hh signaling components.
Hedgehog signaling / ubiquitination
1 | Agyeman A, Mazumdar T, Houghton J A (2012). Regulation of DNA damage following termination of Hedgehog (HH) survival signaling at the level of the GLI genes in human colon cancer. Oncotarget, 3(8): 854–868 |
2 | Allen B L, Song J Y, Izzi L, Althaus I W, Kang J S, Charron F, Krauss R S, McMahon A P (2011). Overlapping roles and collective requirement for the coreceptors GAS1, CDO, and BOC in SHH pathway function. Dev Cell, 20(6): 775–787 |
3 | Apionishev S, Katanayeva N M, Marks S A, Kalderon D, Tomlinson A (2005). Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nat Cell Biol, 7(1): 86–92 |
4 | Aza-Blanc P, Lin H Y, Ruiz i Altaba A, Kornberg T B (2000). Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities. Development, 127(19): 4293–4301 |
5 | Aza-Blanc P, Ramírez-Weber F A, Laget M P, Schwartz C, Kornberg T B (1997). Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell, 89(7): 1043–1053 |
6 | Bai C B, Auerbach W, Lee J S, Stephen D, Joyner A L (2002). Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development, 129(20): 4753–4761 |
7 | Bai C B, Stephen D, Joyner A L (2004). All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell, 6(1): 103–115 |
8 | Barakat B, Yu L, Lo C, Vu D, De Luca E, Cain J E, Martelotto L G, Dedhar S, Sadler A J, Wang D, Watkins D N, Hannigan G E (2013). Interaction of smoothened with integrin-linked kinase in primary cilia mediates Hedgehog signalling. EMBO Rep, 14(9): 837–844 |
9 | Baumeister W, Walz J, Zühl F, Seemüller E (1998). The proteasome: paradigm of a self-compartmentalizing protease. Cell, 92(3): 367–380 |
10 | Beachy P A, Hymowitz S G, Lazarus R A, Leahy D J, Siebold C (2010). Interactions between Hedgehog proteins and their binding partners come into view. Genes Dev, 24(18): 2001–2012 |
11 | Beachy P A, Karhadkar S S, Berman D M (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature, 432(7015): 324–331 |
12 | Bhatia N, Thiyagarajan S, Elcheva I, Saleem M, Dlugosz A, Mukhtar H, Spiegelman V S (2006). Gli2 is targeted for ubiquitination and degradation by beta-TrCP ubiquitin ligase. J Biol Chem, 281(28): 19320–19326 |
13 | Bitgood MJ, Shen L, McMahon AP. 1996. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol, 6(3): 298–304 |
14 | Briscoe J, Chen Y, Jessell T M, Struhl G (2001). A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol Cell, 7(6): 1279–1291 |
15 | Briscoe J, Thérond P P (2013). The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol, 14(7): 416–429 |
16 | Buttitta L, Mo R, Hui C C, Fan C M (2003). Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotome induction. Development, 130(25): 6233–6243 |
17 | Canettieri G, Di Marcotullio L, Greco A, Coni S, Antonucci L, Infante P, Pietrosanti L, De Smaele E, Ferretti E, Miele E, Pelloni M, De Simone G, Pedone E M, Gallinari P, Giorgi A, Steinkühler C, Vitagliano L, Pedone C, Schinin M E, Screpanti I, Gulino A (2010). Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nat Cell Biol, 12(2): 132–142 |
18 | Capdevila J, Estrada M P, Sánchez-Herrero E, Guerrero I (1994a). The Drosophila segment polarity gene patched interacts with decapentaplegic in wing development. EMBO J, 13(1): 71–82 |
19 | Capdevila J, Pariente F, Sampedro J, Alonso J L, Guerrero I (1994b). Subcellular localization of the segment polarity protein patched suggests an interaction with the wingless reception complex in Drosophila embryos. Development, 120(4): 987–998 |
20 | Chen C H, von Kessler D P, Park W, Wang B, Ma Y, Beachy P A (1999). Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell, 98(3): 305–316 |
21 | Chen M H, Wilson C W, Li Y J, Law K K, Lu C S, Gacayan R, Zhang X, Hui C C, Chuang P T (2009). Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev, 23(16): 1910–1928 |
22 | Chen X L, Chinchilla P, Fombonne J, Ho L, Guix C, Keen J H, Mehlen P, Riobo N A (2014). Patched-1 proapoptotic activity is downregulated by modification of K1413 by the E3 ubiquitin-protein ligase Itchy homolog. Mol Cell Biol, 34(20): 3855–3866 |
23 | Chen Y, Sasai N, Ma G, Yue T, Jia J, Briscoe J, Jiang J (2011a). Sonic Hedgehog dependent phosphorylation by CK1α and GRK2 is required for ciliary accumulation and activation of smoothened. PLoS Biol, 9(6): e1001083 |
24 | Chen Y, Struhl G (1996). Dual roles for patched in sequestering and transducing Hedgehog. Cell, 87(3): 553–563 |
25 | Chen Y, Yue S, Xie L, Pu X H, Jin T, Cheng S Y (2011b). Dual phosphorylation of suppressor of fused (Sufu) by PKA and GSK3β regulates its stability and localization in the primary cilium. J Biol Chem, 286(15): 13502–13511 |
26 | Chen Z J (2012). Ubiquitination in signaling to and activation of IKK. Immunol Rev, 246(1): 95–106 |
27 | Cheng S Y, Bishop J M (2002). Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc Natl Acad Sci U S A, 99(8): 5442–5447 |
28 | Chiang C, Litingtung Y, Lee E, Young K E, Corden J L, Westphal H, Beachy P A (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 383(6599): 407–413 |
29 | Cooper A F, Yu K P, Brueckner M, Brailey L L, Johnson L, McGrath J M, Bale A E (2005). Cardiac and CNS defects in a mouse with targeted disruption of suppressor of fused. Development, 132(19): 4407–4417 |
30 | Corbit K C, Aanstad P, Singla V, Norman A R, Stainier D Y, Reiter J F (2005). Vertebrate Smoothened functions at the primary cilium. Nature, 437(7061): 1018–1021 |
31 | Dai P, Akimaru H, Tanaka Y, Maekawa T, Nakafuku M, Ishii S (1999). Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3. J Biol Chem, 274(12): 8143–8152 |
32 | De Smaele E, Di Marcotullio L, Moretti M, Pelloni M, Occhione M A, Infante P, Cucchi D, Greco A, Pietrosanti L, Todorovic J, Coni S, Canettieri G, Ferretti E, Bei R, Maroder M, Screpanti I, Gulino A (2011). Identification and characterization of KCASH2 and KCASH3, 2 novel Cullin3 adaptors suppressing histone deacetylase and Hedgehog activity in medulloblastoma. Neoplasia, 13(4): 374–385 |
33 | Denef N, Neubüser D, Perez L, Cohen S M (2000). Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell, 102(4): 521–531 |
34 | Deshaies R J (1999). SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol, 15(1): 435–467 |
35 | Dessaud E, Yang L L, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, Novitch B G, Briscoe J (2007). Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature, 450(7170): 717–720 |
36 | Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Po A, Sico M A, Alimandi M, Giannini G, Maroder M, Screpanti I, Gulino A (2006). Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat Cell Biol, 8(12): 1415–1423 |
37 | Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Screpanti I, Gulino A (2007). Multiple ubiquitin-dependent processing pathways regulate hedgehog/gli signaling: implications for cell development and tumorigenesis. Cell Cycle, 6(4): 390–393 |
38 | Di Marcotullio L, Greco A, Mazzà D, Canettieri G, Pietrosanti L, Infante P, Coni S, Moretti M, De Smaele E, Ferretti E, Screpanti I, Gulino A (2011). Numb activates the E3 ligase Itch to control Gli1 function through a novel degradation signal. Oncogene, 30(1): 65–76 |
39 | Ding Q, Fukami S, Meng X, Nishizaki Y, Zhang X, Sasaki H, Dlugosz A, Nakafuku M, Hui CC(1999). Mouse suppressor of fused is a negative regulator of sonic hedgehog signaling and alters the subcellular distribution of Gli1. Curr Biol, 9(19): 1119–1122 |
40 | Ding Q, Motoyama J, Gasca S, Mo R, Sasaki H, Rossant J, Hui C C (1998). Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development, 125(14): 2533–2543 |
41 | Fan J, Jiang K, Liu Y, Jia J (2013). Hrs promotes ubiquitination and mediates endosomal trafficking of smoothened in Drosophila hedgehog signaling. PLoS One, 8(11): e79021 |
42 | Fan J, Liu Y, Jia J (2012). Hh-induced Smoothened conformational switch is mediated by differential phosphorylation at its C-terminal tail in a dose- and position-dependent manner. Dev Biol, 366(2): 172–184 |
43 | Finley D (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem, 78(1): 477–513 |
44 | Fombonne J, Bissey P A, Guix C, Sadoul R, Thibert C, Mehlen P (2012). Patched dependence receptor triggers apoptosis through ubiquitination of caspase-9. Proc Natl Acad Sci U S A, 109(26): 10510–10515 |
45 | Formstecher E, Aresta S, Collura V, Hamburger A, Meil A, Trehin A, Reverdy C, Betin V, Maire S, Brun C, Jacq B, Arpin M, Bellaiche Y, Bellusci S, Benaroch P, Bornens M, Chanet R, Chavrier P, Delattre O, Doye V, Fehon R, Faye G, Galli T, Girault J A, Goud B, de Gunzburg J, Johannes L, Junier M P, Mirouse V, Mukherjee A, Papadopoulo D, Perez F, Plessis A, Rossé C, Saule S, Stoppa-Lyonnet D, Vincent A, White M, Legrain P, Wojcik J, Camonis J, Daviet L (2005). Protein interaction mapping: a Drosophila case study. Genome Res, 15(3): 376–384 |
46 | Gilder A S, Chen Y B, Jackson R J 3rd, Jiang J, Maher J F (2013). Fem1b promotes ubiquitylation and suppresses transcriptional activity of Gli1. Biochem Biophys Res Commun, 440(3): 431–436 |
47 | Goetz S C, Anderson K V (2010). The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet, 11(5): 331–344 |
48 | Goodrich L V, Johnson R L, Milenkovic L, McMahon J A, Scott M P (1996). Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev, 10(3): 301–312 |
49 | Goodrich L V, Milenkovi? L, Higgins K M, Scott M P (1997). Altered neural cell fates and medulloblastoma in mouse patched mutants. Science, 277(5329): 1109–1113 |
50 | Gradilla A C, Guerrero I (2013). Hedgehog on the move: a precise spatial control of Hedgehog dispersion shapes the gradient. Curr Opin Genet Dev, 23(4): 363–373 |
51 | Guerrero I, Chiang C (2007). A conserved mechanism of Hedgehog gradient formation by lipid modifications. Trends Cell Biol, 17(1): 1–5 |
52 | Gulino A, Di Marcotullio L, Canettieri G, De Smaele E, Screpanti I (2012). Hedgehog/Gli control by ubiquitination/acetylation interplay. Vitam Horm, 88: 211–227 |
53 | Haglund K, Dikic I (2005). Ubiquitylation and cell signaling. EMBO J, 24(19): 3353–3359 |
54 | Harfe B D, Scherz P J, Nissim S, Tian H, McMahon A P, Tabin C J (2004). Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell, 118(4): 517–528 |
55 | Haycraft C J, Banizs B, Aydin-Son Y, Zhang Q, Michaud E J, Yoder B K (2005). Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet, 1(4): e53 |
56 | Hayer A, Stoeber M, Ritz D, Engel S, Meyer H H, Helenius A (2010). Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol, 191(3): 615–629 |
57 | Hershko A, Ciechanover A (1998). The ubiquitin system. Annu Rev Biochem, 67(1): 425–479 |
58 | Hu J, Wittekind S G, Barr M M (2007). STAM and Hrs down-regulate ciliary TRP receptors. Mol Biol Cell, 18(9): 3277–3289 |
59 | Huang K, Diener D R, Rosenbaum J L (2009). The ubiquitin conjugation system is involved in the disassembly of cilia and flagella. J Cell Biol, 186(4): 601–613 |
60 | Huang S, Zhang Z, Zhang C, Lv X, Zheng X, Chen Z, Sun L, Wang H, Zhu Y, Zhang J, Yang S, Lu Y, Sun Q, Tao Y, Liu F, Zhao Y, Chen D (2013). Activation of Smurf E3 ligase promoted by smoothened regulates hedgehog signaling through targeting patched turnover. PLoS Biol, 11(11): e1001721 |
61 | Huangfu D, Anderson K V (2005). Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci U S A, 102(32): 11325–11330 |
62 | Huangfu D, Anderson K V (2006). Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development, 133(1): 3–14 |
63 | Hui C C, Angers S (2011). Gli proteins in development and disease. Annu Rev Cell Dev Biol, 27(1): 513–537 |
64 | Humke E W, Dorn K V, Milenkovic L, Scott M P, Rohatgi R (2010). The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev, 24(7): 670–682 |
65 | Huntzicker E G, Estay I S, Zhen H, Lokteva L A, Jackson P K, Oro A E (2006). Dual degradation signals control Gli protein stability and tumor formation. Genes Dev, 20(3): 276–281 |
66 | Ingham P W, Fietz M J (1995). Quantitative effects of hedgehog and decapentaplegic activity on the patterning of the Drosophila wing. Curr Biol, 5(4): 432–440 |
67 | Ingham P W, Nakano Y, Seger C (2011). Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet, 12(6): 393–406 |
68 | Izzi L, Lévesque M, Morin S, Laniel D, Wilkes B C, Mille F, Krauss R S, McMahon A P, Allen B L, Charron F (2011). Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation. Dev Cell, 20(6): 788–801 |
69 | Jackson P K, Eldridge A G, Freed E, Furstenthal L, Hsu J Y, Kaiser B K, Reimann J D R (2000). The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol, 10(10): 429–439 |
70 | Jékely G, R?rth P (2003). Hrs mediates downregulation of multiple signalling receptors in Drosophila. EMBO Rep, 4(12): 1163–1168 |
71 | Jeong J, McMahon A P (2005). Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1. Development, 132(1): 143–154 |
72 | Jia J, Amanai K, Wang G, Tang J, Wang B, Jiang J (2002). Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature, 416(6880): 548–552 |
73 | Jia J, Tong C, Wang B, Luo L, Jiang J (2004). Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature, 432(7020): 1045–1050 |
74 | Jia J, Zhang L, Zhang Q, Tong C, Wang B, Hou F, Amanai K, Jiang J (2005). Phosphorylation by double-time/CKIepsilon and CKIalpha targets cubitus interruptus for Slimb/β-TRCP-mediated proteolytic processing. Dev Cell, 9(6): 819–830 |
75 | Jiang J (2006). Regulation of Hh/Gli signaling by dual ubiquitin pathways. Cell Cycle, 5(21): 2457–2463 |
76 | Jiang J, Hui C C (2008). Hedgehog signaling in development and cancer. Dev Cell, 15(6): 801–812 |
77 | Kawamura S, Hervold K, Ramirez-Weber F A, Kornberg T B (2008). Two patched protein subtypes and a conserved domain of group I proteins that regulates turnover. J Biol Chem, 283(45): 30964–30969 |
78 | Kent D, Bush E W, Hooper J E (2006). Roadkill attenuates Hedgehog responses through degradation of Cubitus interruptus. Development, 133(10): 2001–2010 |
79 | Kim J, Kato M, Beachy P A (2009). Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc Natl Acad Sci U S A, 106(51): 21666–21671 |
80 | Kise Y, Morinaka A, Teglund S, Miki H (2009). Sufu recruits GSK3beta for efficient processing of Gli3. Biochem Biophys Res Commun, 387(3): 569–574 |
81 | Kogerman P, Grimm T, Kogerman L, Krause D, Undén A B, Sandstedt B, Toftg?rd R, Zaphiropoulos P G (1999). Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol, 1(5): 312–319 |
82 | Koudijs M J, den Broeder M J, Keijser A, Wienholds E, Houwing S, van Rooijen E M, Geisler R, van Eeden F J (2005). The zebrafish mutants dre, uki, and lep encode negative regulators of the hedgehog signaling pathway. PLoS Genet, 1(2): e19 |
83 | Kovacs J J, Whalen E J, Liu R, Xiao K, Kim J, Chen M, Wang J, Chen W, Lefkowitz R J (2008). Beta-arrestin-mediated localization of smoothened to the primary cilium. Science, 320(5884): 1777–1781 |
84 | Lee J D, Amanai K, Shearn A, Treisman J E (2002). The ubiquitin ligase Hyperplastic discs negatively regulates hedgehog and decapentaplegic expression by independent mechanisms. Development, 129(24): 5697–5706 |
85 | Lee TA, Tyers M (2001 ). Ubiquitin junction, what’s your function? Genome Biol, 2(10): reports 4025.1–4025.3 |
86 | Li S, Chen Y, Shi Q, Yue T, Wang B, Jiang J (2012). Hedgehog-regulated ubiquitination controls smoothened trafficking and cell surface expression in Drosophila. PLoS Biol, 10(1): e1001239 |
87 | Liu A, Wang B, Niswander L A (2005). Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development, 132(13): 3103–3111 |
88 | Liu C, Zhou Z, Yao X, Chen P, Sun M, Su M, Chang C, Yan J, Jiang J, Zhang Q (2014a). Hedgehog signaling downregulates suppressor of fused through the HIB/SPOP-Crn axis in Drosophila. Cell Res, 24(5): 595–609 |
89 | Liu Z, Li T, Reinhold M I, Naski M C (2014b). MEK1-RSK2 contributes to Hedgehog signaling by stabilizing GLI2 transcription factor and inhibiting ubiquitination. Oncogene, 33(1): 65–73 |
90 | Lu X, Liu S, Kornberg T B (2006). The C-terminal tail of the Hedgehog receptor Patched regulates both localization and turnover. Genes Dev, 20(18): 2539–2551 |
91 | Lum L, Beachy P A (2004). The Hedgehog response network: sensors, switches, and routers. Science, 304(5678): 1755–1759 |
92 | Marigo V, Davey R A, Zuo Y, Cunningham J M, Tabin C J (1996). Biochemical evidence that patched is the Hedgehog receptor. Nature, 384(6605): 176–179 |
93 | Matise M P, Epstein D J, Park H L, Platt K A, Joyner A L (1998). Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development, 125(15): 2759–2770 |
94 | May S R, Ashique A M, Karlen M, Wang B, Shen Y, Zarbalis K, Reiter J, Ericson J, Peterson A S (2005). Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol, 287(2): 378–389 |
95 | Mazumdar T, DeVecchio J, Shi T, Jones J, Agyeman A, Houghton J A (2011). Hedgehog signaling drives cellular survival in human colon carcinoma cells. Cancer Res, 71(3): 1092–1102 |
96 | Mazzà D, Infante P, Colicchia V, Greco A, Alfonsi R, Siler M, Antonucci L, Po A, De Smaele E, Ferretti E, Capalbo C, Bellavia D, Canettieri G, Giannini G, Screpanti I, Gulino A, Di Marcotullio L (2013). PCAF ubiquitin ligase activity inhibits Hedgehog/Gli1 signaling in p53-dependent response to genotoxic stress. Cell Death Differ, 20(12): 1688–1697 |
97 | McDermott A, Gustafsson M, Elsam T, Hui C C, Emerson C P Jr, Borycki A G (2005). Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation. Development, 132(2): 345–357 |
98 | McGlinn E, Tabin C J (2006). Mechanistic insight into how Shh patterns the vertebrate limb. Curr Opin Genet Dev, 16(4): 426–432 |
99 | McLellan J S, Yao S, Zheng X, Geisbrecht B V, Ghirlando R, Beachy P A, Leahy D J (2006). Structure of a heparin-dependent complex of Hedgehog and Ihog. Proc Natl Acad Sci U S A, 103(46): 17208–17213 |
100 | Méthot N, Basler K (1999). Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor forms of Cubitus interruptus. Cell, 96(6): 819–831 |
101 | Méthot N, Basler K (2000). Suppressor of fused opposes hedgehog signal transduction by impeding nuclear accumulation of the activator form of Cubitus interruptus. Development, 127(18): 4001–4010 |
102 | Mille F, Thibert C, Fombonne J, Rama N, Guix C, Hayashi H, Corset V, Reed J C, Mehlen P (2009). The Patched dependence receptor triggers apoptosis through a DRAL-caspase-9 complex. Nat Cell Biol, 11(6): 739–746 |
103 | Monnier V, Dussillol F, Alves G, Lamour-Isnard C, Plessis A. 1998. Suppressor of fused links fused and Cubitus interruptus on the hedgehog signalling pathway. Curr Biol, 8(10): 583–586 |
104 | Motoyama J, Milenkovic L, Iwama M, Shikata Y, Scott M P, Hui C C (2003). Differential requirement for Gli2 and Gli3 in ventral neural cell fate specification. Dev Biol, 259(1): 150–161 |
105 | Nachury M V, Seeley E S, Jin H (2010). Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu Rev Cell Dev Biol, 26(1): 59–87 |
106 | Nakano Y, Nystedt S, Shivdasani A A, Strutt H, Thomas C, Ingham P W (2004). Functional domains and sub-cellular distribution of the Hedgehog transducing protein Smoothened in Drosophila. Mech Dev, 121(6): 507–518 |
107 | Nieuwenhuis E, Hui C C (2005). Hedgehog signaling and congenital malformations. Clin Genet, 67(3): 193–208 |
108 | Nieuwenhuis E, Motoyama J, Barnfield P C, Yoshikawa Y, Zhang X, Mo R, Crackower M A, Hui C C (2006). Mice with a targeted mutation of patched2 are viable but develop alopecia and epidermal hyperplasia. Mol Cell Biol, 26(17): 6609–6622 |
109 | Ohlmeyer J T, Kalderon D (1998). Hedgehog stimulates maturation of Cubitus interruptus into a labile transcriptional activator. Nature, 396(6713): 749–753 |
110 | Okada A, Charron F, Morin S, Shin D S, Wong K, Fabre P J, Tessier-Lavigne M, McConnell S K (2006). Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature, 444(7117): 369–373 |
111 | Oshiumi H, Matsumoto M, Seya T (2012). Ubiquitin-mediated modulation of the cytoplasmic viral RNA sensor RIG-I. J Biochem, 151(1): 5–11 |
112 | Ou C Y, Wang C H, Jiang J, Chien C T (2007). Suppression of Hedgehog signaling by Cul3 ligases in proliferation control of retinal precursors. Dev Biol, 308(1): 106–119 |
113 | Paces-Fessy M, Boucher D, Petit E, Paute-Briand S, Blanchet-Tournier M F (2004). The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins. Biochem J, 378(Pt 2): 353–362 |
114 | Pan Y, Wang C, Wang B (2009). Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol, 326(1): 177–189 |
115 | Park H L, Bai C, Platt K A, Matise M P, Beeghly A, Hui C C, Nakashima M, Joyner A L (2000). Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development, 127(8): 1593–1605 |
116 | Persson M, Stamataki D, te Welscher P, Andersson E, B?se J, Rüther U, Ericson J, Briscoe J (2002). Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev, 16(22): 2865–2878 |
117 | Petrova R, Joyner A L (2014). Roles for Hedgehog signaling in adult organ homeostasis and repair. Development, 141(18): 3445–3457 |
118 | Pickart C M (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem, 70(1): 503–533 |
119 | Pickart C M (2004). Back to the future with ubiquitin. Cell, 116(2): 181–190 |
120 | Pickart C M, Eddins M J (2004). Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta, 1695(1-3): 55–72 |
121 | Polo S, Di Fiore P P (2006). Endocytosis conducts the cell signaling orchestra. Cell, 124(5): 897–900 |
122 | Préat T (1992). Characterization of Suppressor of fused, a complete suppressor of the fused segment polarity gene of Drosophila melanogaster. Genetics, 132(3): 725–736 |
123 | Price M A, Kalderon D (2002). Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell, 108(6): 823–835 |
124 | Quirin K, Eschli B, Scheu I, Poort L, Kartenbeck J, Helenius A (2008). Lymphocytic choriomeningitis virus uses a novel endocytic pathway for infectious entry via late endosomes. Virology, 378(1): 21–33 |
125 | Rohatgi R, Milenkovic L, Corcoran R B, Scott M P (2009). Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc Natl Acad Sci U S A, 106(9): 3196–3201 |
126 | Rohatgi R, Milenkovic L, Scott M P (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science, 317(5836): 372–376 |
127 | Rohatgi R, Scott M P (2007). Patching the gaps in Hedgehog signalling. Nat Cell Biol, 9(9): 1005–1009 |
128 | Sandvig K, Pust S, Skotland T, van Deurs B (2011). Clathrin-independent endocytosis: mechanisms and function. Curr Opin Cell Biol, 23(4): 413–420 |
129 | Santos N, Reiter J F (2014). A central region of Gli2 regulates its localization to the primary cilium and transcriptional activity. J Cell Sci, 127(Pt 7): 1500–1510 |
130 | Sasaki H, Nishizaki Y, Hui C, Nakafuku M, Kondoh H (1999). Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development, 126(17): 3915–3924 |
131 | Scherz P J, McGlinn E, Nissim S, Tabin C J (2007). Extended exposure to Sonic hedgehog is required for patterning the posterior digits of the vertebrate limb. Dev Biol, 308(2): 343–354 |
132 | Sigismund S, Polo S, Di Fiore P P (2004). Signaling through monoubiquitination. Curr Top Microbiol Immunol, 286: 149–185 |
133 | Smelkinson MG, Kalderon D (2006 ). Processing of the Drosophila hedgehog signaling effector Ci-155 to the repressor Ci-75 is mediated by direct binding to the SCF component Slimb. Curr Biol, 16: 110–116 |
134 | St-Jacques B, Hammerschmidt M, McMahon A P (1999). Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev, 13(16): 2072–2086 |
135 | Stamataki D, Ulloa F, Tsoni S V, Mynett A, Briscoe J (2005). A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes Dev, 19(5): 626–641 |
136 | Sv?rd J, Heby-Henricson K, Persson-Lek M, Rozell B, Lauth M, Bergstr?m A, Ericson J, Toftg?rd R, Teglund S (2006). Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell, 10(2): 187–197 |
137 | Tabata T, Kornberg T B (1994). Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell, 76(1): 89–102 |
138 | Taipale J, Beachy P A (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature, 411(6835): 349–354 |
139 | Teglund S, Toftg?rd R (2010). Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta, 1805(2): 181–208 |
140 | Tempé D, Casas M, Karaz S, Blanchet-Tournier M F, Concordet J P (2006). Multisite protein kinase A and glycogen synthase kinase 3βphosphorylation leads to Gli3 ubiquitination by SCFβTrCP. Mol Cell Biol, 26(11): 4316–4326 |
141 | Tenzen T, Allen B L, Cole F, Kang J S, Krauss R S, McMahon A P (2006). The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev Cell, 10(5): 647–656 |
142 | Thibert C, Teillet M A, Lapointe F, , Mazelin L, Le Douarin N M, Mehlen P (2003). Inhibition of neuroepithelial patched-induced apoptosis by sonic hedgehog. Science, 301: 843–846 |
142 | Torroja C, Gorfinkiel N, Guerrero I (2004). Patched controls the Hedgehog gradient by endocytosis in a dynamin-dependent manner, but this internalization does not play a major role in signal transduction. Development, 131(10): 2395–2408 |
143 | Torroja C, Gorfinkiel N, Guerrero I (2005). Mechanisms of Hedgehog gradient formation and interpretation. J Neurobiol, 64(4): 334–356 |
144 | Tukachinsky H, Lopez L V, Salic A (2010). A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J Cell Biol, 191(2): 415–428 |
145 | Varjosalo M, Bj?rklund M, Cheng F, Syv?nen H, Kivioja T, Kilpinen S, Sun Z, Kallioniemi O, Stunnenberg H G, He W W, Ojala P, Taipale J (2008). Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell, 133(3): 537–548 |
146 | Varjosalo M, Taipale J (2008). Hedgehog: functions and mechanisms. Genes Dev, 22(18): 2454–2472 |
147 | Verma R, Deshaies R J (2000). A proteasome howdunit: the case of the missing signal. Cell, 101(4): 341–344 |
148 | Voges D, Zwickl P, Baumeister W (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem, 68(1): 1015–1068 |
149 | Wang B, Fallon J F, Beachy P A (2000a). Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell, 100(4): 423–434 |
150 | Wang B, Li Y (2006). Evidence for the direct involvement of βTrCP in Gli3 protein processing. Proc Natl Acad Sci U S A, 103(1): 33–38 |
151 | Wang C, Pan Y, Wang B (2010). Suppressor of fused and Spop regulate the stability, processing and function of Gli2 and Gli3 full-length activators but not their repressors. Development, 137(12): 2001–2009 |
152 | Wang G, Amanai K, Wang B, Jiang J (2000b). Interactions with Costal2 and suppressor of fused regulate nuclear translocation and activity of cubitus interruptus. Genes Dev, 14(22): 2893–2905 |
153 | Wang G, Tang X, Chen Y, Cao J, Huang Q, Ling X, Ren W, Liu S, Wu Y, Ray L, Lin X (2014). Hyperplastic discs differentially regulates the transcriptional outputs of hedgehog signaling. Mech Dev, 133: 117–125 |
154 | Wang G, Wang B, Jiang J (1999). Protein kinase A antagonizes Hedgehog signaling by regulating both the activator and repressor forms of Cubitus interruptus. Genes Dev, 13(21): 2828–2837 |
155 | Wang Q T, Holmgren R A (1999). The subcellular localization and activity of Drosophila cubitus interruptus are regulated at multiple levels. Development, 126(22): 5097–5106 |
156 | Wang Y, Zhou Z, Walsh C T, McMahon A P (2009). Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proc Natl Acad Sci U S A, 106(8): 2623–2628 |
157 | Weissman A M (2001). Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol, 2(3): 169–178 |
158 | Wen X, Lai C K, Evangelista M, Hongo J A, de Sauvage F J, Scales S J (2010). Kinetics of hedgehog-dependent full-length Gli3 accumulation in primary cilia and subsequent degradation. Mol Cell Biol, 30(8): 1910–1922 |
159 | Williams R L, Urbé S (2007). The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol, 8(5): 355–368 |
160 | Wilson C W, Chen M H, Chuang P T (2009). Smoothened adopts multiple active and inactive conformations capable of trafficking to the primary cilium. PLoS One, 4(4): e5182 |
161 | Woelk T, Sigismund S, Penengo L, Polo S (2007). The ubiquitination code: a signalling problem. Cell Div, 2(1): 11 |
162 | Wolff C, Roy S, Ingham PW (2003 ). Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo. Curr Biol, 13: 1169–1181 |
163 | Xia R, Jia H, Fan J, Liu Y, Jia J (2012). USP8 promotes smoothened signaling by preventing its ubiquitination and changing its subcellular localization. PLoS Biol, 10(1): e1001238 |
164 | Xu P, Duong D M, Seyfried N T, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009). Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 137(1): 133–145 |
165 | Yang X, Mao F, Lv X, Zhang Z, Fu L, Lu Y, Wu W, Zhou Z, Zhang L, Zhao Y (2013). Drosophila Vps36 regulates Smo trafficking in Hedgehog signaling. J Cell Sci, 126(Pt 18): 4230–4238 |
166 | Yao S, Lum L, Beachy P (2006). The ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell, 125(2): 343–357 |
167 | Yue S, Chen Y, Cheng S Y (2009). Hedgehog signaling promotes the degradation of tumor suppressor Sufu through the ubiquitin-proteasome pathway. Oncogene, 28(4): 492–499 |
168 | Yue S, Tang LY, Tang Y, Tang Y, Shen QH, Ding J, Chen Y, Zhang Z, Yu TT, Zhang YE, Cheng S Y (2014). Requirement of Smurf-mediated endocytosis of Patched1 in Sonic Hedgehog signal reception. eLife, 3: e02555 |
169 | Zeng H, Jia J, Liu A (2010). Coordinated translocation of mammalian Gli proteins and suppressor of fused to the primary cilium. PLoS One, 5(12): e15900 |
170 | Zhang C, Williams E H, Guo Y, Lum L, Beachy P A (2004). Extensive phosphorylation of Smoothened in Hedgehog pathway activation. Proc Natl Acad Sci U S A, 101(52): 17900–17907 |
171 | Zhang Q, Zhang L, Wang B, Ou C Y, Chien C T, Jiang J (2006a). A hedgehog-induced BTB protein modulates hedgehog signaling by degrading Ci/Gli transcription factor. Dev Cell, 10(6): 719–729 |
172 | Zhang W, Kang J S, Cole F, Yi M J, Krauss R S (2006b). Cdo functions at multiple points in the Sonic Hedgehog pathway, and Cdo-deficient mice accurately model human holoprosencephaly. Dev Cell, 10(5): 657–665 |
173 | Zhang W, Zhao Y, Tong C, Wang G, Wang B, Jia J, Jiang J (2005). Hedgehog-regulated Costal2-kinase complexes control phosphorylation and proteolytic processing of Cubitus interruptus. Dev Cell, 8(2): 267–278 |
174 | Zhang X M, Ramalho-Santos M, McMahon A P (2001). Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell, 106(2): 781–792 |
175 | Zhang Z, Lv X, Yin W C, Zhang X, Feng J, Wu W, Hui C C, Zhang L, Zhao Y (2013). Ter94 ATPase complex targets k11-linked ubiquitinated ci to proteasomes for partial degradation. Dev Cell, 25(6): 636–644 |
176 | Zhao Y, Tong C, Jiang J (2007). Hedgehog regulates smoothened activity by inducing a conformational switch. Nature, 450(7167): 252–258 |
177 | Zheng X, Mann R K, Sever N, Beachy P A (2010). Genetic and biochemical definition of the Hedgehog receptor. Genes Dev, 24(1): 57–71 |
178 | Zhu A J, Zheng L, Suyama K, Scott M P (2003). Altered localization of Drosophila Smoothened protein activates Hedgehog signal transduction. Genes Dev, 17(10): 1240–1252 |
/
〈 | 〉 |