Mitochondrial dysfunction in Parkinson’s disease: a possible target for neuroprotection
Jacqueline A. GLEAVE, Peter D. PERRI, Joanne E. NASH
Mitochondrial dysfunction in Parkinson’s disease: a possible target for neuroprotection
Mitochondria are dynamic organelles which are required for maintaining cellular homeostasis. Thus, it is not surprising that irregularities in mitochondrial function result in cellular damage and are linked with neurodegenerative diseases, such as Parkinson’s disease. Evidence that mitochondrial dysfunction is key to the pathogenesis of Parkinson’s disease is founded in studies in post-mortem tissue from patients with Parkinson’s disease, and also from genetic studies stemming from patients with familial Parkinson’s disease. Whether triggered by environmental or genetic factors, mitochondrial dysfunction occurs early in the pathogenic process, and is central to Parkinson’s disease pathology. As such, targeting the mitochondria to slow or halt disease progression is an attractive strategy for disease-modifying agents in Parkinson’s disease. Indeed, several therapies which target the mitochondria have been investigated as neuroprotective treatments for Parkinson’s disease. This review will discuss the evidence supporting mitochondrial dysfunction in Parkinson’s disease pathology as well as treatment strategies that target the mitochondria.
Parkinson’s disease / mitochondria / oxidative stress / lysosome / UPS
[1] |
Albani D, Polito L, Batelli S, De Mauro S, Fracasso C, Martelli G, Colombo L, Manzoni C, Salmona M, Caccia S, Negro A, Forloni G (2009). The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J Neurochem, 110(5): 1445–1456
CrossRef
Pubmed
Google scholar
|
[2] |
Andres R H, Huber A W, Schlattner U, Pérez-Bouza A, Krebs S H, Seiler R W, Wallimann T, Widmer H R (2005). Effects of creatine treatment on the survival of dopaminergic neurons in cultured fetal ventral mesencephalic tissue. Neuroscience, 133(3): 701–713
CrossRef
Pubmed
Google scholar
|
[3] |
Andres-Mateos E, Perier C, Zhang L, Blanchard-Fillion B, Greco T M, Thomas B, Ko H S, Sasaki M, Ischiropoulos H, Przedborski S, Dawson T M, Dawson V L (2007). DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci USA, 104(37): 14807–14812
CrossRef
Pubmed
Google scholar
|
[4] |
Bedford L, Hay D, Devoy A, Paine S, Powe D G, Seth R, Gray T, Topham I, Fone K, Rezvani N, Mee M, Soane T, Layfield R, Sheppard P W, Ebendal T, Usoskin D, Lowe J, Mayer R J(2008). Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci, 28: 8189–8198
|
[5] |
Beher D, Wu J, Cumine S, Kim K W, Lu S C, Atangan L, Wang M (2009). Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des, 74(6): 619–624
CrossRef
Pubmed
Google scholar
|
[6] |
Bender A, Krishnan K J, Morris C M, Taylor G A, Reeve A K, Perry R H, Jaros E, Hersheson J S, Betts J, Klopstock T, Taylor R W, Turnbull D M (2006). High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet, 38(5): 515–517
CrossRef
Pubmed
Google scholar
|
[7] |
Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973). Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci, 20(4): 415–455
CrossRef
Pubmed
Google scholar
|
[8] |
Blackinton J, Lakshminarasimhan M, Thomas K J, Ahmad R, Greggio E, Raza A S, Cookson M R, Wilson M A (2009). Formation of a stabilized cysteine sulfinic acid is critical for the mitochondrial function of the parkinsonism protein DJ-1. J Biol Chem, 284(10): 6476–6485
CrossRef
Pubmed
Google scholar
|
[9] |
Bové J, Zhou C, Jackson-Lewis V, Taylor J, Chu Y, Rideout H J, Wu D C, Kordower J H, Petrucelli L, Przedborski S (2006). Proteasome inhibition and Parkinson’s disease modeling. Ann Neurol, 60(2): 260–264
CrossRef
Pubmed
Google scholar
|
[10] |
Brunet A, Sweeney L B, Sturgill J F, Chua K F, Greer P L, Lin Y, Tran H, Ross S E, Mostoslavsky R, Cohen H Y, Hu L S, Cheng H L, Jedrychowski M P, Gygi S P, Sinclair D A, Alt F W, Greenberg M E (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 303(5666): 2011–2015
CrossRef
Pubmed
Google scholar
|
[11] |
Canet-Avilés R M, Wilson M A, Miller D W, Ahmad R, McLendon C, Bandyopadhyay S, Baptista M J, Ringe D, Petsko G A, Cookson M R (2004). The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA, 101(24): 9103–9108
CrossRef
Pubmed
Google scholar
|
[12] |
Chan C S, Gertler T S, Surmeier D J(2010). A molecular basis for the increased vulnerability of substantia nigra dopamine neurons in aging and Parkinson's disease. Mov Disord, 25 (Suppl 1): S63–70
|
[13] |
Chan C S, Guzman J N, Ilijic E, Mercer J N, Rick C, Tkatch T, Meredith G E, Surmeier D J (2007). ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature, 447(7148): 1081–1086
CrossRef
Pubmed
Google scholar
|
[14] |
Chao J, Yu M S, Ho Y S, Wang M, Chang R C (2008). Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radic Biol Med, 45(7): 1019–1026
CrossRef
Pubmed
Google scholar
|
[15] |
Chartier-Harlin M C, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destée A (2004). Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet, 364(9440): 1167–1169
CrossRef
Pubmed
Google scholar
|
[16] |
Cherra S J 3rd, Steer E, Gusdon A M, Kiselyov K, Chu C T (2013). Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons. Am J Pathol, 182(2): 474–484
CrossRef
Pubmed
Google scholar
|
[17] |
Chinta S J, Mallajosyula J K, Rane A, Andersen J K (2010). Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett, 486(3): 235–239
CrossRef
Pubmed
Google scholar
|
[18] |
Ciron C, Lengacher S, Dusonchet J, Aebischer P, Schneider B L (2012). Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function. Hum Mol Genet, 21(8): 1861–1876
CrossRef
Pubmed
Google scholar
|
[19] |
Clark I E, Dodson M W, Jiang C, Cao J H, Huh J R, Seol J H, Yoo S J, Hay B A, Guo M (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441(7097): 1162–1166
CrossRef
Pubmed
Google scholar
|
[20] |
Cole N B, Murphy D D (2002). The cell biology of alpha-synuclein: a sticky problem? Neuromolecular Med, 1(2): 95–109
CrossRef
Pubmed
Google scholar
|
[21] |
Cookson M R (2003). Parkin’s substrates and the pathways leading to neuronal damage. Neuromolecular Med, 3(1): 1–13
CrossRef
Pubmed
Google scholar
|
[22] |
Couzin J (2007). Clinical research. Testing a novel strategy against Parkinson’s disease. Science, 315(5820): 1778
CrossRef
Pubmed
Google scholar
|
[23] |
Cuervo A M, Stefanis L, Fredenburg R, Lansbury P T, Sulzer D (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science, 305(5688): 1292–1295
CrossRef
Pubmed
Google scholar
|
[24] |
Dauer W, Przedborski S (2003). Parkinson’s disease: mechanisms and models. Neuron, 39(6): 889–909
CrossRef
Pubmed
Google scholar
|
[25] |
Devi L, Raghavendran V, Prabhu B M, Avadhani N G, Anandatheerthavarada H K (2008). Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem, 283(14): 9089–9100
CrossRef
Pubmed
Google scholar
|
[26] |
Donmez G, Arun A, Chung C Y, McLean P J, Lindquist S, Guarente L(2012). SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones. J Neurosci, 32: 124–132
|
[27] |
Dorsey E R, Constantinescu R, Thompson J P, Biglan K M, Holloway R G, Kieburtz K, Marshall F J, Ravina B M, Schifitto G, Siderowf A, Tanner C M (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 68(5): 384–386
CrossRef
Pubmed
Google scholar
|
[28] |
Dryanovski D I, Guzman J N, Xie Z, Galteri D J, Volpicelli-Daley L A, Lee V M, Miller R J, Schumacker P T, Surmeier D J (2013). Calcium entry and alpha-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. J Neurosci, 33(24): 10154–10164
|
[29] |
Ekstrand M I, Terzioglu M, Galter D, Zhu S, Hofstetter C, Lindqvist E, Thams S, Bergstrand A, Hansson F S, Trifunovic A, Hoffer B, Cullheim S, Mohammed A H, Olson L, Larsson N G (2007). Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA, 104(4): 1325–1330
CrossRef
Pubmed
Google scholar
|
[30] |
Esteves A R, Lu J, Rodova M, Onyango I, Lezi E, Dubinsky R, Lyons K E, Pahwa R, Burns J M, Cardoso S M, Swerdlow R H (2010). Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson’s subject mitochondrial transfer. J Neurochem, 113(3): 674–682
CrossRef
Pubmed
Google scholar
|
[31] |
Exner N, Lutz A K, Haass C, Winklhofer K F (2012). Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J, 31(14): 3038–3062
CrossRef
Pubmed
Google scholar
|
[32] |
Ferretta A, Gaballo A, Tanzarella P, Piccoli C, Capitanio N, Nico B, Annese T, Di Paola M, Dell’aquila C, De Mari M, Ferranini E, Bonifati V, Pacelli C, Cocco T (2014). Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson’s disease. Biochim Biophys Acta, 1842(7): 902–915
CrossRef
Pubmed
Google scholar
|
[33] |
Frye R A (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun, 273(2): 793–798
CrossRef
Pubmed
Google scholar
|
[34] |
Fuchs J, Nilsson C, Kachergus J, Munz M, Larsson E M, Schüle B, Langston J W, Middleton F A, Ross O A, Hulihan M, Gasser T, Farrer M J (2007). Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology, 68(12): 916–922
CrossRef
Pubmed
Google scholar
|
[35] |
Gautier C A, Kitada T, Shen J (2008). Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci USA, 105(32): 11364–11369
CrossRef
Pubmed
Google scholar
|
[36] |
Gerhart-Hines Z, Rodgers J T, Bare O, Lerin C, Kim S H, Mostoslavsky R, Alt F W, Wu Z, Puigserver P (2007). Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J, 26(7): 1913–1923
CrossRef
Pubmed
Google scholar
|
[37] |
Gispert S, Ricciardi F, Kurz A, Azizov M, Hoepken H H, Becker D, Voos W, Leuner K, Müller W E, Kudin A P, Kunz W S, Zimmermann A, Roeper J, Wenzel D, Jendrach M, García-Arencíbia M, Fernández-Ruiz J, Huber L, Rohrer H, Barrera M, Reichert A S, Rüb U, Chen A, Nussbaum R L, Auburger G (2009). Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE, 4(6): e5777
CrossRef
Pubmed
Google scholar
|
[38] |
Goedert M (2001). Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci, 2(7): 492–501
CrossRef
Pubmed
Google scholar
|
[39] |
Goldberg M S, Fleming S M, Palacino J J, Cepeda C, Lam H A, Bhatnagar A, Meloni E G, Wu N, Ackerson L C, Klapstein G J, Gajendiran M, Roth B L, Chesselet M F, Maidment N T, Levine M S, Shen J (2003). Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem, 278(44): 43628–43635
CrossRef
Pubmed
Google scholar
|
[40] |
Gómez-Sánchez R, Gegg M E, Bravo-San Pedro J M, Niso-Santano M, Alvarez-Erviti L, Pizarro-Estrella E, Gutiérrez-Martín Y, Alvarez-Barrientos A, Fuentes J M, González-Polo R A, Schapira A H (2014). Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. Neurobiol Dis, 62: 426–440
CrossRef
Pubmed
Google scholar
|
[41] |
González-Polo R, Niso-Santano M, Morán J M, Ortiz-Ortiz M A, Bravo-San Pedro J M, Soler G, Fuentes J M (2009). Silencing DJ-1 reveals its contribution in paraquat-induced autophagy. J Neurochem, 109(3): 889–898
CrossRef
Pubmed
Google scholar
|
[42] |
Good C H, Hoffman A F, Hoffer B J, Chefer V I, Shippenberg T S, Backman C M, Larsson N G, Olson L, Gellhaar S, Galter D, Lupica C R(2011). Impaired nigrostriatal function precedes behavioral deficits in a genetic mitochondrial model of Parkinson's disease. FASEB J, 25:1333–1344
|
[43] |
Greenamyre J T, Betarbet R, Sherer T B (2003). The rotenone model of Parkinson’s disease: genes, environment and mitochondria. Parkinsonism Relat Disord, 9(Suppl 2): S59–S64
CrossRef
Pubmed
Google scholar
|
[44] |
Greene J C, Whitworth A J, Kuo I, Andrews L A, Feany M B, Pallanck L J (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA, 100(7): 4078–4083
CrossRef
Pubmed
Google scholar
|
[45] |
Greggio E, Jain S, Kingsbury A, Bandopadhyay R, Lewis P, Kaganovich A, van der Brug M P, Beilina A, Blackinton J, Thomas K J, Ahmad R, Miller D W, Kesavapany S, Singleton A, Lees A, Harvey R J, Harvey K, Cookson M R (2006). Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis, 23(2): 329–341
CrossRef
Pubmed
Google scholar
|
[46] |
Gu G, Reyes P E, Golden G T, Woltjer R L, Hulette C, Montine T J, Zhang J (2002). Mitochondrial DNA deletions/rearrangements in parkinson disease and related neurodegenerative disorders. J Neuropathol Exp Neurol, 61(7): 634–639
Pubmed
|
[47] |
Guardia-Laguarta C, Area-Gomez E, Rub C, Liu Y, Magrane J, Becker D, Voos W, Schon E A, Przedborski S(2014). alpha-Synuclein is localized to mitochondria-associated ER membranes. J Neurosc, 34: 249–259
|
[48] |
Guzman J N, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker P T, Surmeier D J (2010). Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature, 468(7324): 696–700
CrossRef
Pubmed
Google scholar
|
[49] |
Haas R H, Nasirian F, Nakano K, Ward D, Pay M, Hill R, Shults C W (1995). Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann Neurol, 37(6): 714–722
CrossRef
Pubmed
Google scholar
|
[50] |
Hayashi Y, Yoshida M, Yamato M, Ide T, Wu Z, Ochi-Shindou M, Kanki T, Kang D, Sunagawa K, Tsutsui H, Nakanishi H(2008). Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor a in mice. J Neurosci, 28: 8624–8634
|
[51] |
Healy D G, Abou-Sleiman P M, Casas J P, Ahmadi K R, Lynch T, Gandhi S, Muqit M M, Foltynie T, Barker R, Bhatia K P, Quinn N P, Lees A J, Gibson J M, Holton J L, Revesz T, Goldstein D B, Wood N W (2006). UCHL-1 is not a Parkinson’s disease susceptibility gene. Ann Neurol, 59(4): 627–633
CrossRef
Pubmed
Google scholar
|
[52] |
Höglinger G U, Carrard G, Michel P P, Medja F, Lombès A, Ruberg M, Friguet B, Hirsch E C (2003). Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease. J Neurochem, 86(5): 1297–1307
CrossRef
Pubmed
Google scholar
|
[53] |
Howitz K T, Bitterman K J, Cohen H Y, Lamming D W, Lavu S, Wood J G, Zipkin R E, Chung P, Kisielewski A, Zhang L L, Scherer B, Sinclair D A (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425(6954): 191–196
CrossRef
Pubmed
Google scholar
|
[54] |
Ikebe S, Tanaka M, Ozawa T (1995). Point mutations of mitochondrial genome in Parkinson’s disease. Brain Res Mol Brain Res, 28(2): 281–295
CrossRef
Pubmed
Google scholar
|
[55] |
Imai Y, Soda M, Takahashi R (2000). Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem, 275(46): 35661–35664
CrossRef
Pubmed
Google scholar
|
[56] |
Inden M, Taira T, Kitamura Y, Yanagida T, Tsuchiya D, Takata K, Yanagisawa D, Nishimura K, Taniguchi T, Kiso Y, Yoshimoto K, Agatsuma T, Koide-Yoshida S, Iguchi-Ariga S M, Shimohama S, Ariga H (2006). PARK7 DJ-1 protects against degeneration of nigral dopaminergic neurons in Parkinson’s disease rat model. Neurobiol Dis, 24(1): 144–158
CrossRef
Pubmed
Google scholar
|
[57] |
Irrcher I, Aleyasin H, Seifert E L, Hewitt S J, Chhabra S, Phillips M, Lutz A K, Rousseaux M W, Bevilacqua L, Jahani-Asl A, Callaghan S, MacLaurin J G, Winklhofer K F, Rizzu P, Rippstein P, Kim R H, Chen C X, Fon E A, Slack R S, Harper M E, McBride H M, Mak T W, Park D S (2010). Loss of the Parkinson’s disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum Mol Genet, 19(19): 3734–3746
CrossRef
Pubmed
Google scholar
|
[58] |
Itier J M, Ibanez P, Mena M A, Abbas N, Cohen-Salmon C, Bohme G A, Laville M, Pratt J, Corti O, Pradier L, Ret G, Joubert C, Periquet M, Araujo F, Negroni J, Casarejos M J, Canals S, Solano R, Serrano A, Gallego E, Sanchez M, Denefle P, Benavides J, Tremp G, Rooney T A, Brice A, Garcia de Yebenes J (2003). Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet, 12(18): 2277–2291
CrossRef
Pubmed
Google scholar
|
[59] |
Jin F, Wu Q, Lu Y F, Gong Q H, Shi J S (2008). Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur J Pharmacol, 600(1-3): 78–82
CrossRef
Pubmed
Google scholar
|
[60] |
Juhn M S, Tarnopolsky M(1998). Oral creatine supplementation and athletic performance: a critical review. Clin J Sport Med, 8: 286–297
|
[61] |
Kakefuda K, Fujita Y, Oyagi A, Hyakkoku K, Kojima T, Umemura K, Tsuruma K, Shimazawa M, Ito M, Nozawa Y, Hara H (2009). Sirtuin 1 overexpression mice show a reference memory deficit, but not neuroprotection. Biochem Biophys Res Commun, 387(4): 784–788
CrossRef
Pubmed
Google scholar
|
[62] |
Katzenschlager R, Lees A J (2002). Treatment of Parkinson’s disease: levodopa as the first choice. J Neurol, 249(Suppl 2): II19–II24
CrossRef
Pubmed
Google scholar
|
[63] |
Keeney P M, Quigley C K, Dunham L D, Papageorge C M, Iyer S, Thomas R R, Schwarz K M, Trimmer P A, Khan S M, Portell F R, Bergquist K E, Bennett J P Jr (2009). Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson’s disease cell model. Hum Gene Ther, 20(8): 897–907
CrossRef
Pubmed
Google scholar
|
[64] |
Kim R H, Smith P D, Aleyasin H, Hayley S, Mount M P, Pownall S, Wakeham A, You-Ten A J, Kalia S K, Horne P, Westaway D, Lozano A M, Anisman H, Park D S, Mak T W (2005). Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci USA, 102(14): 5215–5220
CrossRef
Pubmed
Google scholar
|
[65] |
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392(6676): 605–608
CrossRef
Pubmed
Google scholar
|
[66] |
Kitada T, Pisani A, Porter D R, Yamaguchi H, Tscherter A, Martella G, Bonsi P, Zhang C, Pothos E N, Shen J (2007). Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA, 104(27): 11441–11446
CrossRef
Pubmed
Google scholar
|
[67] |
Klivenyi P, Gardian G, Calingasan N Y, Yang L, Beal M F(2003). Additive neuroprotective effects of creatine and a cyclooxygenase 2 inhibitor against dopamine depletion in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. J Mol Neurosci, MN 21: 191–198
|
[68] |
Klivenyi P, Calingasan N Y, Starkov A, Stavrovskaya I G, Kristal B S, Yang L, Wieringa B, Beal M F (2004). Neuroprotective mechanisms of creatine occur in the absence of mitochondrial creatine kinase. Neurobiol Dis, 15(3): 610–617
CrossRef
Pubmed
Google scholar
|
[69] |
Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, Cleren C, Ferrante R J, Kowall N W, Abeliovich A, Beal M F (2006). Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol Dis, 21(3): 541–548
CrossRef
Pubmed
Google scholar
|
[70] |
Kones R(2010). Mitochondrial therapy for Parkinson's disease: neuroprotective pharmaconutrition may be disease-modifying. Clin pharmacol, 2: 185–198
|
[71] |
Kordower J H, Kanaan N M, Chu Y, Suresh Babu R, Stansell J 3rd, Terpstra B T, Sortwell C E, Steece-Collier K, Collier T J (2006). Failure of proteasome inhibitor administration to provide a model of Parkinson’s disease in rats and monkeys. Ann Neurol, 60(2): 264–268
CrossRef
Pubmed
Google scholar
|
[72] |
Kraytsberg Y, Kudryavtseva E, McKee A C, Geula C, Kowall N W, Khrapko K (2006). Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet, 38(5): 518–520
CrossRef
Pubmed
Google scholar
|
[73] |
Krebiehl G, Ruckerbauer S, Burbulla L F, Kieper N, Maurer B, Waak J, Wolburg H, Gizatullina Z, Gellerich F N, Woitalla D, Riess O, Kahle P J, Proikas-Cezanne T, Krüger R (2010). Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson’s disease-associated protein DJ-1. PLoS ONE, 5(2): e9367
CrossRef
Pubmed
Google scholar
|
[74] |
Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen J T, Schöls L, Riess O (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet, 18(2): 106–108
CrossRef
Pubmed
Google scholar
|
[75] |
Lakshminarasimhan M, Rauh D, Schutkowski M, Steegborn C (2013). Sirt1 activation by resveratrol is substrate sequence-selective. Aging (Albany NY), 5(3): 151–154
Pubmed
|
[76] |
Langston J W, Ballard P, Tetrud J W, Irwin I (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219(4587): 979–980
CrossRef
Pubmed
Google scholar
|
[77] |
Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein M J, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach P J, Wilkinson K D, Polymeropoulos M H (1998). The ubiquitin pathway in Parkinson’s disease. Nature, 395(6701): 451–452
CrossRef
Pubmed
Google scholar
|
[78] |
Li C, Beal M F (2005). Leucine-rich repeat kinase 2: a new player with a familiar theme for Parkinson’s disease pathogenesis. Proc Natl Acad Sci USA, 102(46): 16535–16536
CrossRef
Pubmed
Google scholar
|
[79] |
Li X, Kazgan N (2011). Mammalian sirtuins and energy metabolism. Int J Biol Sci, 7(5): 575–587
CrossRef
Pubmed
Google scholar
|
[80] |
Lim K L (2007). Ubiquitin-proteasome system dysfunction in Parkinson’s disease: current evidence and controversies. Expert Rev Proteomics, 4(6): 769–781
CrossRef
Pubmed
Google scholar
|
[81] |
Lin T K, Chen S D, Chuang Y C, Lin H Y, Huang C R, Chuang J H, Wang P W, Huang S T, Tiao M M, Chen J B, Liou C W (2014). Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int J Mol Sci, 15(1): 1625–1646
CrossRef
Pubmed
Google scholar
|
[82] |
Liu D, Gharavi R, Pitta M, Gleichmann M, Mattson M P (2009). Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromolecular Med, 11(1): 28–42
CrossRef
Pubmed
Google scholar
|
[83] |
Liu G, Zhang C, Yin J, Li X, Cheng F, Li Y, Yang H, Uéda K, Chan P, Yu S (2009). alpha-Synuclein is differentially expressed in mitochondria from different rat brain regions and dose-dependently down-regulates complex I activity. Neurosci Lett, 454(3): 187–192
CrossRef
Pubmed
Google scholar
|
[84] |
Lu K T, Ko M C, Chen B Y, Huang J C, Hsieh C W, Lee M C, Chiou R Y, Wung B S, Peng C H, Yang Y L (2008). Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. J Agric Food Chem, 56(16): 6910–6913
CrossRef
Pubmed
Google scholar
|
[85] |
Lutz A K, Exner N, Fett M E, Schlehe J S, Kloos K, Lämmermann K, Brunner B, Kurz-Drexler A, Vogel F, Reichert A S, Bouman L, Vogt-Weisenhorn D, Wurst W, Tatzelt J, Haass C, Winklhofer K F (2009). Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem, 284(34): 22938–22951
CrossRef
Pubmed
Google scholar
|
[86] |
Marques O, Outeiro T F (2012). Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis, 3(7): e350
CrossRef
Pubmed
Google scholar
|
[87] |
Matthews R T, Ferrante R J, Klivenyi P, Yang L, Klein A M, Mueller G, Kaddurah-Daouk R, Beal M F (1999). Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol, 157(1): 142–149
CrossRef
Pubmed
Google scholar
|
[88] |
McLelland G L, Soubannier V, Chen C X, McBride H M, Fon E A (2014). Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J, 33(4): 282–295
Pubmed
|
[89] |
McNaught K S, Perl D P, Brownell A L, Olanow C W (2004). Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol, 56(1): 149–162
CrossRef
Pubmed
Google scholar
|
[90] |
Minakawa E N, Yamakado H, Tanaka A, Uemura K, Takeda S, Takahashi R (2013). Chicken DT40 cell line lacking DJ-1, the gene responsible for familial Parkinson’s disease, displays mitochondrial dysfunction. Neurosci Res, 77(4): 228–233
CrossRef
Pubmed
Google scholar
|
[91] |
Moisoi N, Fedele V, Edwards J, Martins L M (2014). Loss of PINK1 enhances neurodegeneration in a mouse model of Parkinson’s disease triggered by mitochondrial stress. Neuropharmacology, 77: 350–357
CrossRef
Pubmed
Google scholar
|
[92] |
Morais V A, Haddad D, Craessaerts K, De Bock P J, Swerts J, Vilain S, Aerts L, Overbergh L, Grünewald A, Seibler P, Klein C, Gevaert K, Verstreken P, De Strooper B (2014). PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science, 344(6180): 203–207
CrossRef
Pubmed
Google scholar
|
[93] |
Mortiboys H, Johansen K K, Aasly J O, Bandmann O (2010). Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2. Neurology, 75(22): 2017–2020
CrossRef
Pubmed
Google scholar
|
[94] |
Mortiboys H, Thomas K J, Koopman W J, Klaffke S, Abou-Sleiman P, Olpin S, Wood N W, Willems P H, Smeitink J A, Cookson M R, Bandmann O (2008). Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol, 64(5): 555–565
CrossRef
Pubmed
Google scholar
|
[95] |
Mudò G, Mäkelä J, Di Liberto V, Tselykh T V, Olivieri M, Piepponen P, Eriksson O, Mälkiä A, Bonomo A, Kairisalo M, Aguirre J A, Korhonen L, Belluardo N, Lindholm D (2012). Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell Mol Life Sci, 69(7): 1153–1165
CrossRef
Pubmed
Google scholar
|
[96] |
Murray A M, Weihmueller F B, Marshall J F, Hurtig H I, Gottleib G L, Joyce J N (1995). Damage to dopamine systems differs between Parkinson’s disease and Alzheimer’s disease with parkinsonism. Ann Neurol, 37(3): 300–312
CrossRef
Pubmed
Google scholar
|
[97] |
Narendra D, Tanaka A, Suen D F, Youle R J (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol, 183(5): 795–803
CrossRef
Pubmed
Google scholar
|
[98] |
Neuspiel M, Schauss A C, Braschi E, Zunino R, Rippstein P, Rachubinski R A, Andrade-Navarro M A, McBride H M(2008). Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol, CB 18: 102–108
|
[99] |
Ng C H, Mok S Z, Koh C, Ouyang X, Fivaz M L, Tan E K, Dawson V L, Dawson T M, Yu F, Lim K L(2009). Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J Neurosci, 29: 11257–11262
|
[100] |
NINDS NET-PD Investigators (2006). A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology, 66(5): 664–671
CrossRef
Pubmed
Google scholar
|
[101] |
Nishiyama S, Shitara H, Nakada K, Ono T, Sato A, Suzuki H, Ogawa T, Masaki H, Hayashi J, Yonekawa H (2010). Over-expression of Tfam improves the mitochondrial disease phenotypes in a mouse model system. Biochem Biophys Res Commun, 401(1): 26–31
CrossRef
Pubmed
Google scholar
|
[102] |
Niu J, Yu M, Wang C, Xu Z (2012). Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin-like protein. J Neurochem, 122(3): 650–658
CrossRef
Pubmed
Google scholar
|
[103] |
Noack H, Bednarek T, Heidler J, Ladig R, Holtz J, Szibor M (2006). TFAM-dependent and independent dynamics of mtDNA levels in C2C12 myoblasts caused by redox stress. Biochim Biophys Acta, 1760(2): 141–150
CrossRef
Pubmed
Google scholar
|
[104] |
O’Donnell K C, Lulla A, Stahl M C, Wheat N D, Bronstein J M, Sagasti A (2014). Axon degeneration and PGC-1α-mediated protection in a zebrafish model of α-synuclein toxicity. Dis Model Mech, 7(5): 571–582
CrossRef
Pubmed
Google scholar
|
[105] |
Orenstein S J, Kuo S H, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig L S, Dauer W, Consiglio A, Raya A, Sulzer D, Cuervo A M (2013). Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci, 16(4): 394–406
CrossRef
Pubmed
Google scholar
|
[106] |
Pacholec M, Bleasdale J E, Chrunyk B, Cunningham D, Flynn D, Garofalo R S, Griffith D, Griffor M, Loulakis P, Pabst B, Qiu X, Stockman B, Thanabal V, Varghese A, Ward J, Withka J, Ahn K (2010). SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem, 285(11): 8340–8351
CrossRef
Pubmed
Google scholar
|
[107] |
Papkovskaia T D, Chau K Y, Inesta-Vaquera F, Papkovsky D B, Healy D G, Nishio K, Staddon J, Duchen M R, Hardy J, Schapira A H, Cooper J M (2012). G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization. Hum Mol Genet, 21(19): 4201–4213
CrossRef
Pubmed
Google scholar
|
[108] |
Pardo P S, Mohamed J S, Lopez M A, Boriek A M (2011). Induction of Sirt1 by mechanical stretch of skeletal muscle through the early response factor EGR1 triggers an antioxidative response. J Biol Chem, 286(4): 2559–2566
CrossRef
Pubmed
Google scholar
|
[109] |
Parihar M S, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2008). Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci, 65(7-8): 1272–1284
CrossRef
Pubmed
Google scholar
|
[110] |
Park J, Kim S Y, Cha G H, Lee S B, Kim S, Chung J (2005). Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene, 361: 133–139
CrossRef
Pubmed
Google scholar
|
[111] |
Park J, Lee S B, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim J M, Chung J (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature, 441(7097): 1157–1161
CrossRef
Pubmed
Google scholar
|
[112] |
Parker W D Jr, Boyson S J, Parks J K (1989). Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol, 26(6): 719–723
CrossRef
Pubmed
Google scholar
|
[113] |
Pesah Y, Pham T, Burgess H, Middlebrooks B, Verstreken P, Zhou Y, Harding M, Bellen H, Mardon G (2004). Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development, 131(9): 2183–2194
CrossRef
Pubmed
Google scholar
|
[114] |
Ping H X, Shepard P D (1999). Blockade of SK-type Ca2+-activated K+ channels uncovers a Ca2+-dependent slow afterdepolarization in nigral dopamine neurons. J Neurophysiol, 81(3): 977–984
Pubmed
|
[115] |
Polymeropoulos M H, Lavedan C, Leroy E, Ide S E, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos E S, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson W G, Lazzarini A M, Duvoisin R C, Di Iorio G, Golbe L I, Nussbaum R L (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276(5321): 2045–2047
CrossRef
Pubmed
Google scholar
|
[116] |
Poole A C, Thomas R E, Andrews L A, McBride H M, Whitworth A J, Pallanck L J (2008). The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA, 105(5): 1638–1643
CrossRef
Pubmed
Google scholar
|
[117] |
Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid L P, Goebel I, Mubaidin A F, Wriekat A L, Roeper J, Al-Din A, Hillmer A M, Karsak M, Liss B, Woods C G, Behrens M I, Kubisch C (2006). Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet, 38(10): 1184–1191
CrossRef
Pubmed
Google scholar
|
[118] |
Ramonet D, Daher J P, Lin B M, Stafa K, Kim J, Banerjee R, Westerlund M, Pletnikova O, Glauser L, Yang L, Liu Y, Swing D A, Beal M F, Troncoso J C, McCaffery J M, Jenkins N A, Copeland N G, Galter D, Thomas B, Lee M K, Dawson T M, Dawson V L, Moore D J (2011). Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS ONE, 6(4): e18568
CrossRef
Pubmed
Google scholar
|
[119] |
Richfield E K, Thiruchelvam M J, Cory-Slechta D A, Wuertzer C, Gainetdinov R R, Caron M G, Di Monte D A, Federoff H J (2002). Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp Neurol, 175(1): 35–48
CrossRef
Pubmed
Google scholar
|
[120] |
Saha S, Guillily M D, Ferree A, Lanceta J, Chan D, Ghosh J, Hsu C H, Segal L, Raghavan K, Matsumoto K, Hisamoto N, Kuwahara T, Iwatsubo T, Moore L, Goldstein L, Cookson M, Wolozin B(2009). LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci, 29: 9210–9218
|
[121] |
Sakata E, Yamaguchi Y, Kurimoto E, Kikuchi J, Yokoyama S, Yamada S, Kawahara H, Yokosawa H, Hattori N, Mizuno Y, Tanaka K, Kato K (2003). Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep, 4(3): 301–306
CrossRef
Pubmed
Google scholar
|
[122] |
Sarafian T A, Ryan C M, Souda P, Masliah E, Kar U K, Vinters H V, Mathern G W, Faull K F, Whitelegge J P, Watson J B (2013). Impairment of mitochondria in adult mouse brain overexpressing predominantly full-length, N-terminally acetylated human α-synuclein. PLoS ONE, 8(5): e63557PMID:23667637
CrossRef
Google scholar
|
[123] |
Scarffe L A, Stevens D A, Dawson V L, Dawson T M (2014). Parkin and PINK1: much more than mitophagy. Trends Neurosci, 37(6): 315–324
CrossRef
Pubmed
Google scholar
|
[124] |
Schapira A H, Cooper J M, Dexter D, Jenner P, Clark J B, Marsden C D (1989). Mitochondrial complex I deficiency in Parkinson’s disease. Lancet, 1(8649): 1269
CrossRef
Pubmed
Google scholar
|
[125] |
Shavali S, Brown-Borg H M, Ebadi M, Porter J (2008). Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cells. Neurosci Lett, 439(2): 125–128
CrossRef
Pubmed
Google scholar
|
[126] |
Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet, 25(3): 302–305
CrossRef
Pubmed
Google scholar
|
[127] |
Shin J H, Ko H S, Kang H, Lee Y, Lee Y I, Pletinkova O, Troconso J C, Dawson V L, Dawson T M (2011). PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell, 144(5): 689–702
CrossRef
Pubmed
Google scholar
|
[128] |
Simon D K, Lin M T, Zheng L, Liu G J, Ahn C H, Kim L M, Mauck W M, Twu F, Beal M F, Johns D R (2004). Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson’s disease. Neurobiol Aging, 25(1): 71–81
CrossRef
Pubmed
Google scholar
|
[129] |
Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B (2003). Aggregated and monomeric alpha-synuclein bind to the S6′ proteasomal protein and inhibit proteasomal function. J Biol Chem, 278(14): 11753–11759
CrossRef
Pubmed
Google scholar
|
[130] |
Song D D, Shults C W, Sisk A, Rockenstein E, Masliah E (2004). Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol, 186(2): 158–172
CrossRef
Pubmed
Google scholar
|
[131] |
Soubannier V, McLelland G L, Zunino R, Braschi E, Rippstein P, Fon E A, McBride H M(2012). A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr Biol, CB 22: 135–141
|
[132] |
Spillantini M G, Crowther R A, Jakes R, Hasegawa M, Goedert M (1998). alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA, 95(11): 6469–6473
CrossRef
Pubmed
Google scholar
|
[133] |
Spillantini M G, Schmidt M L, Lee V M, Trojanowski J Q, Jakes R, Goedert M (1997). Alpha-synuclein in Lewy bodies. Nature, 388(6645): 839–840
CrossRef
Pubmed
Google scholar
|
[134] |
St-Pierre J, Drori S, Uldry M, Silvaggi J M, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon D K, Bachoo R, Spiegelman B M (2006). Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 127(2): 397–408
CrossRef
Pubmed
Google scholar
|
[135] |
Su Y C, Qi X (2013). Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. Hum Mol Genet, 22(22): 4545–4561
CrossRef
Pubmed
Google scholar
|
[136] |
Sulzer D, Zecca L (2000). Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res, 1(3): 181–195
CrossRef
Pubmed
Google scholar
|
[137] |
Surmeier D J (2007). Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol, 6(10): 933–938
CrossRef
Pubmed
Google scholar
|
[138] |
Surmeier D J, Guzman J N, Sanchez-Padilla J (2010). Calcium, cellular aging, and selective neuronal vulnerability in Parkinson’s disease. Cell Calcium, 47(2): 175–182
CrossRef
Pubmed
Google scholar
|
[139] |
Taira T, Saito Y, Niki T, Iguchi-Ariga S M, Takahashi K, Ariga H (2004). DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep, 5(2): 213–218
CrossRef
Pubmed
Google scholar
|
[140] |
Tanaka M, Kim Y M, Lee G, Junn E, Iwatsubo T, Mouradian M M (2004). Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem, 279(6): 4625–4631
CrossRef
Pubmed
Google scholar
|
[141] |
Valente E M, Abou-Sleiman P M, Caputo V, Muqit M M, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio A R, Healy D G, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks W P, Latchman D S, Harvey R J, Dallapiccola B, Auburger G, Wood N W (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304(5674): 1158–1160
CrossRef
Pubmed
Google scholar
|
[142] |
Valente E M, Salvi S, Ialongo T, Marongiu R, Elia A E, Caputo V, Romito L, Albanese A, Dallapiccola B, Bentivoglio A R (2004). PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol, 56(3): 336–341
CrossRef
Pubmed
Google scholar
|
[143] |
van der Horst A, Tertoolen L G, de Vries-Smits L M, Frye R A, Medema R H, Burgering B M (2004). FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem, 279(28): 28873–28879
CrossRef
Pubmed
Google scholar
|
[144] |
Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L, Reinberg D (2007). SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature, 450(7168): 440–444
CrossRef
Pubmed
Google scholar
|
[145] |
Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D (2004). Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell, 16(1): 93–105
CrossRef
Pubmed
Google scholar
|
[146] |
Wang X, Winter D, Ashrafi G, Schlehe J, Wong Y L, Selkoe D, Rice S, Steen J, LaVoie M J, Schwarz T L (2011). PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell, 147(4): 893–906
CrossRef
Pubmed
Google scholar
|
[147] |
Wang X, Yan M H, Fujioka H, Liu J, Wilson-Delfosse A, Chen S G, Perry G, Casadesus G, Zhu X (2012). LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet, 21(9): 1931–1944
CrossRef
Pubmed
Google scholar
|
[148] |
Wareski P, Vaarmann A, Choubey V, Safiulina D, Liiv J, Kuum M, Kaasik A (2009). PGC-1alpha and PGC-1beta regulate mitochondrial density in neurons. J Biol Chem, 284(32): 21379–21385
CrossRef
Pubmed
Google scholar
|
[149] |
West A B, Moore D J, Biskup S, Bugayenko A, Smith W W, Ross C A, Dawson V L, Dawson T M (2005). Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA, 102(46): 16842–16847
CrossRef
Pubmed
Google scholar
|
[150] |
Westerheide S D, Anckar J, Stevens S M Jr, Sistonen L, Morimoto R I (2009). Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science, 323(5917): 1063–1066
CrossRef
Pubmed
Google scholar
|
[151] |
Winslow A R, Chen C W, Corrochano S, Acevedo-Arozena A, Gordon D E, Peden A A, Lichtenberg M, Menzies F M, Ravikumar B, Imarisio S, Brown S, O’Kane C J, Rubinsztein D C (2010). α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol, 190(6): 1023–1037
CrossRef
Pubmed
Google scholar
|
[152] |
Wood-Kaczmar A, Gandhi S, Yao Z, Abramov A Y, Miljan E A, Keen G, Stanyer L, Hargreaves I, Klupsch K, Deas E, Downward J, Mansfield L, Jat P, Taylor J, Heales S, Duchen M R, Latchman D, Tabrizi S J, Wood N W (2008). PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS ONE, 3(6): e2455
CrossRef
Pubmed
Google scholar
|
[153] |
Xilouri M, Vogiatzi T, Vekrellis K, Park D, Stefanis L (2009). Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS ONE, 4(5): e5515
CrossRef
Pubmed
Google scholar
|
[154] |
Yang S R, Wright J, Bauter M, Seweryniak K, Kode A, Rahman I (2007). Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am J Physiol Lung Cel l Mol Physiol, 292(2): L567–L576
CrossRef
Pubmed
Google scholar
|
[155] |
Yeung F, Hoberg J E, Ramsey C S, Keller M D, Jones D R, Frye R A, Mayo M W (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J, 23(12): 2369–2380
CrossRef
Pubmed
Google scholar
|
[156] |
Yong-Kee C J, Salomonczyk D, Nash J E (2011). Development and validation of a screening assay for the evaluation of putative neuroprotective agents in the treatment of Parkinson’s disease. Neurotox Res, 19(4): 519–526
CrossRef
Pubmed
Google scholar
|
[157] |
Yong-Kee C J, Sidorova E, Hanif A, Perera G, Nash J E (2012). Mitochondrial dysfunction precedes other sub-cellular abnormalities in an in vitro model linked with cell death in Parkinson’s disease. Neurotox Res, 21(2): 185–194
CrossRef
Pubmed
Google scholar
|
[158] |
Zarranz J J, Alegre J, Gómez-Esteban J C, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atarés B, Llorens V, Gomez Tortosa E, del Ser T, Muñoz D G, de Yebenes J G (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol, 55(2): 164–173
CrossRef
Pubmed
Google scholar
|
[159] |
Zhang L, Shimoji M, Thomas B, Moore D J, Yu S W, Marupudi N I, Torp R, Torgner I A, Ottersen O P, Dawson T M, Dawson V L (2005). Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet, 14(14): 2063–2073
CrossRef
Pubmed
Google scholar
|
[160] |
Zhang N Y, Tang Z, Liu C W (2008). alpha-Synuclein protofibrils inhibit 26 S proteasome-mediated protein degradation: understanding the cytotoxicity of protein protofibrils in neurodegenerative disease pathogenesis. J Biol Chem, 283(29): 20288–20298
CrossRef
Pubmed
Google scholar
|
[161] |
Zheng B, Liao Z, Locascio J J, Lesniak K A, Roderick S S, Watt M L, Eklund A C, Zhang-James Y, Kim P D, Hauser M A, Grünblatt E, Moran L B, Mandel S A, Riederer P, Miller R M, Federoff H J, Wüllner U, Papapetropoulos S, Youdim M B, Cantuti-Castelvetri I, Young A B, Vance J M, Davis R L, Hedreen J C, Adler C H, Beach T G, Graeber M B, Middleton F A, Rochet J C, Scherzer C R, Global P D G E C, and the Global PD Gene Expression (GPEX) Consortium (2010). PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med, 2(52): 52ra73
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |