Mitochondrial dysfunction in Parkinson’s disease: a possible target for neuroprotection

Jacqueline A. GLEAVE, Peter D. PERRI, Joanne E. NASH

PDF(264 KB)
PDF(264 KB)
Front. Biol. ›› 2014, Vol. 9 ›› Issue (6) : 489-503. DOI: 10.1007/s11515-014-1337-8
REVIEW
REVIEW

Mitochondrial dysfunction in Parkinson’s disease: a possible target for neuroprotection

Author information +
History +

Abstract

Mitochondria are dynamic organelles which are required for maintaining cellular homeostasis. Thus, it is not surprising that irregularities in mitochondrial function result in cellular damage and are linked with neurodegenerative diseases, such as Parkinson’s disease. Evidence that mitochondrial dysfunction is key to the pathogenesis of Parkinson’s disease is founded in studies in post-mortem tissue from patients with Parkinson’s disease, and also from genetic studies stemming from patients with familial Parkinson’s disease. Whether triggered by environmental or genetic factors, mitochondrial dysfunction occurs early in the pathogenic process, and is central to Parkinson’s disease pathology. As such, targeting the mitochondria to slow or halt disease progression is an attractive strategy for disease-modifying agents in Parkinson’s disease. Indeed, several therapies which target the mitochondria have been investigated as neuroprotective treatments for Parkinson’s disease. This review will discuss the evidence supporting mitochondrial dysfunction in Parkinson’s disease pathology as well as treatment strategies that target the mitochondria.

Keywords

Parkinson’s disease / mitochondria / oxidative stress / lysosome / UPS

Cite this article

Download citation ▾
Jacqueline A. GLEAVE, Peter D. PERRI, Joanne E. NASH. Mitochondrial dysfunction in Parkinson’s disease: a possible target for neuroprotection. Front. Biol., 2014, 9(6): 489‒503 https://doi.org/10.1007/s11515-014-1337-8

References

[1]
Albani D, Polito L, Batelli S, De Mauro S, Fracasso C, Martelli G, Colombo L, Manzoni C, Salmona M, Caccia S, Negro A, Forloni G (2009). The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alpha-synuclein or amyloid-beta (1-42) peptide. J Neurochem, 110(5): 1445–1456
CrossRef Pubmed Google scholar
[2]
Andres R H, Huber A W, Schlattner U, Pérez-Bouza A, Krebs S H, Seiler R W, Wallimann T, Widmer H R (2005). Effects of creatine treatment on the survival of dopaminergic neurons in cultured fetal ventral mesencephalic tissue. Neuroscience, 133(3): 701–713
CrossRef Pubmed Google scholar
[3]
Andres-Mateos E, Perier C, Zhang L, Blanchard-Fillion B, Greco T M, Thomas B, Ko H S, Sasaki M, Ischiropoulos H, Przedborski S, Dawson T M, Dawson V L (2007). DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci USA, 104(37): 14807–14812
CrossRef Pubmed Google scholar
[4]
Bedford L, Hay D, Devoy A, Paine S, Powe D G, Seth R, Gray T, Topham I, Fone K, Rezvani N, Mee M, Soane T, Layfield R, Sheppard P W, Ebendal T, Usoskin D, Lowe J, Mayer R J(2008). Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci, 28: 8189–8198
[5]
Beher D, Wu J, Cumine S, Kim K W, Lu S C, Atangan L, Wang M (2009). Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des, 74(6): 619–624
CrossRef Pubmed Google scholar
[6]
Bender A, Krishnan K J, Morris C M, Taylor G A, Reeve A K, Perry R H, Jaros E, Hersheson J S, Betts J, Klopstock T, Taylor R W, Turnbull D M (2006). High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet, 38(5): 515–517
CrossRef Pubmed Google scholar
[7]
Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973). Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci, 20(4): 415–455
CrossRef Pubmed Google scholar
[8]
Blackinton J, Lakshminarasimhan M, Thomas K J, Ahmad R, Greggio E, Raza A S, Cookson M R, Wilson M A (2009). Formation of a stabilized cysteine sulfinic acid is critical for the mitochondrial function of the parkinsonism protein DJ-1. J Biol Chem, 284(10): 6476–6485
CrossRef Pubmed Google scholar
[9]
Bové J, Zhou C, Jackson-Lewis V, Taylor J, Chu Y, Rideout H J, Wu D C, Kordower J H, Petrucelli L, Przedborski S (2006). Proteasome inhibition and Parkinson’s disease modeling. Ann Neurol, 60(2): 260–264
CrossRef Pubmed Google scholar
[10]
Brunet A, Sweeney L B, Sturgill J F, Chua K F, Greer P L, Lin Y, Tran H, Ross S E, Mostoslavsky R, Cohen H Y, Hu L S, Cheng H L, Jedrychowski M P, Gygi S P, Sinclair D A, Alt F W, Greenberg M E (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science, 303(5666): 2011–2015
CrossRef Pubmed Google scholar
[11]
Canet-Avilés R M, Wilson M A, Miller D W, Ahmad R, McLendon C, Bandyopadhyay S, Baptista M J, Ringe D, Petsko G A, Cookson M R (2004). The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci USA, 101(24): 9103–9108
CrossRef Pubmed Google scholar
[12]
Chan C S, Gertler T S, Surmeier D J(2010). A molecular basis for the increased vulnerability of substantia nigra dopamine neurons in aging and Parkinson's disease. Mov Disord, 25 (Suppl 1): S63–70
[13]
Chan C S, Guzman J N, Ilijic E, Mercer J N, Rick C, Tkatch T, Meredith G E, Surmeier D J (2007). ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature, 447(7148): 1081–1086
CrossRef Pubmed Google scholar
[14]
Chao J, Yu M S, Ho Y S, Wang M, Chang R C (2008). Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radic Biol Med, 45(7): 1019–1026
CrossRef Pubmed Google scholar
[15]
Chartier-Harlin M C, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destée A (2004). Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet, 364(9440): 1167–1169
CrossRef Pubmed Google scholar
[16]
Cherra S J 3rd, Steer E, Gusdon A M, Kiselyov K, Chu C T (2013). Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons. Am J Pathol, 182(2): 474–484
CrossRef Pubmed Google scholar
[17]
Chinta S J, Mallajosyula J K, Rane A, Andersen J K (2010). Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci Lett, 486(3): 235–239
CrossRef Pubmed Google scholar
[18]
Ciron C, Lengacher S, Dusonchet J, Aebischer P, Schneider B L (2012). Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function. Hum Mol Genet, 21(8): 1861–1876
CrossRef Pubmed Google scholar
[19]
Clark I E, Dodson M W, Jiang C, Cao J H, Huh J R, Seol J H, Yoo S J, Hay B A, Guo M (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature, 441(7097): 1162–1166
CrossRef Pubmed Google scholar
[20]
Cole N B, Murphy D D (2002). The cell biology of alpha-synuclein: a sticky problem? Neuromolecular Med, 1(2): 95–109
CrossRef Pubmed Google scholar
[21]
Cookson M R (2003). Parkin’s substrates and the pathways leading to neuronal damage. Neuromolecular Med, 3(1): 1–13
CrossRef Pubmed Google scholar
[22]
Couzin J (2007). Clinical research. Testing a novel strategy against Parkinson’s disease. Science, 315(5820): 1778
CrossRef Pubmed Google scholar
[23]
Cuervo A M, Stefanis L, Fredenburg R, Lansbury P T, Sulzer D (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science, 305(5688): 1292–1295
CrossRef Pubmed Google scholar
[24]
Dauer W, Przedborski S (2003). Parkinson’s disease: mechanisms and models. Neuron, 39(6): 889–909
CrossRef Pubmed Google scholar
[25]
Devi L, Raghavendran V, Prabhu B M, Avadhani N G, Anandatheerthavarada H K (2008). Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem, 283(14): 9089–9100
CrossRef Pubmed Google scholar
[26]
Donmez G, Arun A, Chung C Y, McLean P J, Lindquist S, Guarente L(2012). SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones. J Neurosci, 32: 124–132
[27]
Dorsey E R, Constantinescu R, Thompson J P, Biglan K M, Holloway R G, Kieburtz K, Marshall F J, Ravina B M, Schifitto G, Siderowf A, Tanner C M (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 68(5): 384–386
CrossRef Pubmed Google scholar
[28]
Dryanovski D I, Guzman J N, Xie Z, Galteri D J, Volpicelli-Daley L A, Lee V M, Miller R J, Schumacker P T, Surmeier D J (2013). Calcium entry and alpha-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. J Neurosci, 33(24): 10154–10164
[29]
Ekstrand M I, Terzioglu M, Galter D, Zhu S, Hofstetter C, Lindqvist E, Thams S, Bergstrand A, Hansson F S, Trifunovic A, Hoffer B, Cullheim S, Mohammed A H, Olson L, Larsson N G (2007). Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA, 104(4): 1325–1330
CrossRef Pubmed Google scholar
[30]
Esteves A R, Lu J, Rodova M, Onyango I, Lezi E, Dubinsky R, Lyons K E, Pahwa R, Burns J M, Cardoso S M, Swerdlow R H (2010). Mitochondrial respiration and respiration-associated proteins in cell lines created through Parkinson’s subject mitochondrial transfer. J Neurochem, 113(3): 674–682
CrossRef Pubmed Google scholar
[31]
Exner N, Lutz A K, Haass C, Winklhofer K F (2012). Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J, 31(14): 3038–3062
CrossRef Pubmed Google scholar
[32]
Ferretta A, Gaballo A, Tanzarella P, Piccoli C, Capitanio N, Nico B, Annese T, Di Paola M, Dell’aquila C, De Mari M, Ferranini E, Bonifati V, Pacelli C, Cocco T (2014). Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson’s disease. Biochim Biophys Acta, 1842(7): 902–915
CrossRef Pubmed Google scholar
[33]
Frye R A (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun, 273(2): 793–798
CrossRef Pubmed Google scholar
[34]
Fuchs J, Nilsson C, Kachergus J, Munz M, Larsson E M, Schüle B, Langston J W, Middleton F A, Ross O A, Hulihan M, Gasser T, Farrer M J (2007). Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology, 68(12): 916–922
CrossRef Pubmed Google scholar
[35]
Gautier C A, Kitada T, Shen J (2008). Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci USA, 105(32): 11364–11369
CrossRef Pubmed Google scholar
[36]
Gerhart-Hines Z, Rodgers J T, Bare O, Lerin C, Kim S H, Mostoslavsky R, Alt F W, Wu Z, Puigserver P (2007). Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J, 26(7): 1913–1923
CrossRef Pubmed Google scholar
[37]
Gispert S, Ricciardi F, Kurz A, Azizov M, Hoepken H H, Becker D, Voos W, Leuner K, Müller W E, Kudin A P, Kunz W S, Zimmermann A, Roeper J, Wenzel D, Jendrach M, García-Arencíbia M, Fernández-Ruiz J, Huber L, Rohrer H, Barrera M, Reichert A S, Rüb U, Chen A, Nussbaum R L, Auburger G (2009). Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE, 4(6): e5777
CrossRef Pubmed Google scholar
[38]
Goedert M (2001). Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci, 2(7): 492–501
CrossRef Pubmed Google scholar
[39]
Goldberg M S, Fleming S M, Palacino J J, Cepeda C, Lam H A, Bhatnagar A, Meloni E G, Wu N, Ackerson L C, Klapstein G J, Gajendiran M, Roth B L, Chesselet M F, Maidment N T, Levine M S, Shen J (2003). Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem, 278(44): 43628–43635
CrossRef Pubmed Google scholar
[40]
Gómez-Sánchez R, Gegg M E, Bravo-San Pedro J M, Niso-Santano M, Alvarez-Erviti L, Pizarro-Estrella E, Gutiérrez-Martín Y, Alvarez-Barrientos A, Fuentes J M, González-Polo R A, Schapira A H (2014). Mitochondrial impairment increases FL-PINK1 levels by calcium-dependent gene expression. Neurobiol Dis, 62: 426–440
CrossRef Pubmed Google scholar
[41]
González-Polo R, Niso-Santano M, Morán J M, Ortiz-Ortiz M A, Bravo-San Pedro J M, Soler G, Fuentes J M (2009). Silencing DJ-1 reveals its contribution in paraquat-induced autophagy. J Neurochem, 109(3): 889–898
CrossRef Pubmed Google scholar
[42]
Good C H, Hoffman A F, Hoffer B J, Chefer V I, Shippenberg T S, Backman C M, Larsson N G, Olson L, Gellhaar S, Galter D, Lupica C R(2011). Impaired nigrostriatal function precedes behavioral deficits in a genetic mitochondrial model of Parkinson's disease. FASEB J, 25:1333–1344
[43]
Greenamyre J T, Betarbet R, Sherer T B (2003). The rotenone model of Parkinson’s disease: genes, environment and mitochondria. Parkinsonism Relat Disord, 9(Suppl 2): S59–S64
CrossRef Pubmed Google scholar
[44]
Greene J C, Whitworth A J, Kuo I, Andrews L A, Feany M B, Pallanck L J (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA, 100(7): 4078–4083
CrossRef Pubmed Google scholar
[45]
Greggio E, Jain S, Kingsbury A, Bandopadhyay R, Lewis P, Kaganovich A, van der Brug M P, Beilina A, Blackinton J, Thomas K J, Ahmad R, Miller D W, Kesavapany S, Singleton A, Lees A, Harvey R J, Harvey K, Cookson M R (2006). Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis, 23(2): 329–341
CrossRef Pubmed Google scholar
[46]
Gu G, Reyes P E, Golden G T, Woltjer R L, Hulette C, Montine T J, Zhang J (2002). Mitochondrial DNA deletions/rearrangements in parkinson disease and related neurodegenerative disorders. J Neuropathol Exp Neurol, 61(7): 634–639
Pubmed
[47]
Guardia-Laguarta C, Area-Gomez E, Rub C, Liu Y, Magrane J, Becker D, Voos W, Schon E A, Przedborski S(2014). alpha-Synuclein is localized to mitochondria-associated ER membranes. J Neurosc, 34: 249–259
[48]
Guzman J N, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker P T, Surmeier D J (2010). Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature, 468(7324): 696–700
CrossRef Pubmed Google scholar
[49]
Haas R H, Nasirian F, Nakano K, Ward D, Pay M, Hill R, Shults C W (1995). Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann Neurol, 37(6): 714–722
CrossRef Pubmed Google scholar
[50]
Hayashi Y, Yoshida M, Yamato M, Ide T, Wu Z, Ochi-Shindou M, Kanki T, Kang D, Sunagawa K, Tsutsui H, Nakanishi H(2008). Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor a in mice. J Neurosci, 28: 8624–8634
[51]
Healy D G, Abou-Sleiman P M, Casas J P, Ahmadi K R, Lynch T, Gandhi S, Muqit M M, Foltynie T, Barker R, Bhatia K P, Quinn N P, Lees A J, Gibson J M, Holton J L, Revesz T, Goldstein D B, Wood N W (2006). UCHL-1 is not a Parkinson’s disease susceptibility gene. Ann Neurol, 59(4): 627–633
CrossRef Pubmed Google scholar
[52]
Höglinger G U, Carrard G, Michel P P, Medja F, Lombès A, Ruberg M, Friguet B, Hirsch E C (2003). Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease. J Neurochem, 86(5): 1297–1307
CrossRef Pubmed Google scholar
[53]
Howitz K T, Bitterman K J, Cohen H Y, Lamming D W, Lavu S, Wood J G, Zipkin R E, Chung P, Kisielewski A, Zhang L L, Scherer B, Sinclair D A (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, 425(6954): 191–196
CrossRef Pubmed Google scholar
[54]
Ikebe S, Tanaka M, Ozawa T (1995). Point mutations of mitochondrial genome in Parkinson’s disease. Brain Res Mol Brain Res, 28(2): 281–295
CrossRef Pubmed Google scholar
[55]
Imai Y, Soda M, Takahashi R (2000). Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem, 275(46): 35661–35664
CrossRef Pubmed Google scholar
[56]
Inden M, Taira T, Kitamura Y, Yanagida T, Tsuchiya D, Takata K, Yanagisawa D, Nishimura K, Taniguchi T, Kiso Y, Yoshimoto K, Agatsuma T, Koide-Yoshida S, Iguchi-Ariga S M, Shimohama S, Ariga H (2006). PARK7 DJ-1 protects against degeneration of nigral dopaminergic neurons in Parkinson’s disease rat model. Neurobiol Dis, 24(1): 144–158
CrossRef Pubmed Google scholar
[57]
Irrcher I, Aleyasin H, Seifert E L, Hewitt S J, Chhabra S, Phillips M, Lutz A K, Rousseaux M W, Bevilacqua L, Jahani-Asl A, Callaghan S, MacLaurin J G, Winklhofer K F, Rizzu P, Rippstein P, Kim R H, Chen C X, Fon E A, Slack R S, Harper M E, McBride H M, Mak T W, Park D S (2010). Loss of the Parkinson’s disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum Mol Genet, 19(19): 3734–3746
CrossRef Pubmed Google scholar
[58]
Itier J M, Ibanez P, Mena M A, Abbas N, Cohen-Salmon C, Bohme G A, Laville M, Pratt J, Corti O, Pradier L, Ret G, Joubert C, Periquet M, Araujo F, Negroni J, Casarejos M J, Canals S, Solano R, Serrano A, Gallego E, Sanchez M, Denefle P, Benavides J, Tremp G, Rooney T A, Brice A, Garcia de Yebenes J (2003). Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet, 12(18): 2277–2291
CrossRef Pubmed Google scholar
[59]
Jin F, Wu Q, Lu Y F, Gong Q H, Shi J S (2008). Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur J Pharmacol, 600(1-3): 78–82
CrossRef Pubmed Google scholar
[60]
Juhn M S, Tarnopolsky M(1998). Oral creatine supplementation and athletic performance: a critical review. Clin J Sport Med, 8: 286–297
[61]
Kakefuda K, Fujita Y, Oyagi A, Hyakkoku K, Kojima T, Umemura K, Tsuruma K, Shimazawa M, Ito M, Nozawa Y, Hara H (2009). Sirtuin 1 overexpression mice show a reference memory deficit, but not neuroprotection. Biochem Biophys Res Commun, 387(4): 784–788
CrossRef Pubmed Google scholar
[62]
Katzenschlager R, Lees A J (2002). Treatment of Parkinson’s disease: levodopa as the first choice. J Neurol, 249(Suppl 2): II19–II24
CrossRef Pubmed Google scholar
[63]
Keeney P M, Quigley C K, Dunham L D, Papageorge C M, Iyer S, Thomas R R, Schwarz K M, Trimmer P A, Khan S M, Portell F R, Bergquist K E, Bennett J P Jr (2009). Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson’s disease cell model. Hum Gene Ther, 20(8): 897–907
CrossRef Pubmed Google scholar
[64]
Kim R H, Smith P D, Aleyasin H, Hayley S, Mount M P, Pownall S, Wakeham A, You-Ten A J, Kalia S K, Horne P, Westaway D, Lozano A M, Anisman H, Park D S, Mak T W (2005). Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci USA, 102(14): 5215–5220
CrossRef Pubmed Google scholar
[65]
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392(6676): 605–608
CrossRef Pubmed Google scholar
[66]
Kitada T, Pisani A, Porter D R, Yamaguchi H, Tscherter A, Martella G, Bonsi P, Zhang C, Pothos E N, Shen J (2007). Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA, 104(27): 11441–11446
CrossRef Pubmed Google scholar
[67]
Klivenyi P, Gardian G, Calingasan N Y, Yang L, Beal M F(2003). Additive neuroprotective effects of creatine and a cyclooxygenase 2 inhibitor against dopamine depletion in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. J Mol Neurosci, MN 21: 191–198
[68]
Klivenyi P, Calingasan N Y, Starkov A, Stavrovskaya I G, Kristal B S, Yang L, Wieringa B, Beal M F (2004). Neuroprotective mechanisms of creatine occur in the absence of mitochondrial creatine kinase. Neurobiol Dis, 15(3): 610–617
CrossRef Pubmed Google scholar
[69]
Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, Cleren C, Ferrante R J, Kowall N W, Abeliovich A, Beal M F (2006). Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol Dis, 21(3): 541–548
CrossRef Pubmed Google scholar
[70]
Kones R(2010). Mitochondrial therapy for Parkinson's disease: neuroprotective pharmaconutrition may be disease-modifying. Clin pharmacol, 2: 185–198
[71]
Kordower J H, Kanaan N M, Chu Y, Suresh Babu R, Stansell J 3rd, Terpstra B T, Sortwell C E, Steece-Collier K, Collier T J (2006). Failure of proteasome inhibitor administration to provide a model of Parkinson’s disease in rats and monkeys. Ann Neurol, 60(2): 264–268
CrossRef Pubmed Google scholar
[72]
Kraytsberg Y, Kudryavtseva E, McKee A C, Geula C, Kowall N W, Khrapko K (2006). Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet, 38(5): 518–520
CrossRef Pubmed Google scholar
[73]
Krebiehl G, Ruckerbauer S, Burbulla L F, Kieper N, Maurer B, Waak J, Wolburg H, Gizatullina Z, Gellerich F N, Woitalla D, Riess O, Kahle P J, Proikas-Cezanne T, Krüger R (2010). Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson’s disease-associated protein DJ-1. PLoS ONE, 5(2): e9367
CrossRef Pubmed Google scholar
[74]
Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen J T, Schöls L, Riess O (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet, 18(2): 106–108
CrossRef Pubmed Google scholar
[75]
Lakshminarasimhan M, Rauh D, Schutkowski M, Steegborn C (2013). Sirt1 activation by resveratrol is substrate sequence-selective. Aging (Albany NY), 5(3): 151–154
Pubmed
[76]
Langston J W, Ballard P, Tetrud J W, Irwin I (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219(4587): 979–980
CrossRef Pubmed Google scholar
[77]
Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G, Brownstein M J, Jonnalagada S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach P J, Wilkinson K D, Polymeropoulos M H (1998). The ubiquitin pathway in Parkinson’s disease. Nature, 395(6701): 451–452
CrossRef Pubmed Google scholar
[78]
Li C, Beal M F (2005). Leucine-rich repeat kinase 2: a new player with a familiar theme for Parkinson’s disease pathogenesis. Proc Natl Acad Sci USA, 102(46): 16535–16536
CrossRef Pubmed Google scholar
[79]
Li X, Kazgan N (2011). Mammalian sirtuins and energy metabolism. Int J Biol Sci, 7(5): 575–587
CrossRef Pubmed Google scholar
[80]
Lim K L (2007). Ubiquitin-proteasome system dysfunction in Parkinson’s disease: current evidence and controversies. Expert Rev Proteomics, 4(6): 769–781
CrossRef Pubmed Google scholar
[81]
Lin T K, Chen S D, Chuang Y C, Lin H Y, Huang C R, Chuang J H, Wang P W, Huang S T, Tiao M M, Chen J B, Liou C W (2014). Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int J Mol Sci, 15(1): 1625–1646
CrossRef Pubmed Google scholar
[82]
Liu D, Gharavi R, Pitta M, Gleichmann M, Mattson M P (2009). Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromolecular Med, 11(1): 28–42
CrossRef Pubmed Google scholar
[83]
Liu G, Zhang C, Yin J, Li X, Cheng F, Li Y, Yang H, Uéda K, Chan P, Yu S (2009). alpha-Synuclein is differentially expressed in mitochondria from different rat brain regions and dose-dependently down-regulates complex I activity. Neurosci Lett, 454(3): 187–192
CrossRef Pubmed Google scholar
[84]
Lu K T, Ko M C, Chen B Y, Huang J C, Hsieh C W, Lee M C, Chiou R Y, Wung B S, Peng C H, Yang Y L (2008). Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging. J Agric Food Chem, 56(16): 6910–6913
CrossRef Pubmed Google scholar
[85]
Lutz A K, Exner N, Fett M E, Schlehe J S, Kloos K, Lämmermann K, Brunner B, Kurz-Drexler A, Vogel F, Reichert A S, Bouman L, Vogt-Weisenhorn D, Wurst W, Tatzelt J, Haass C, Winklhofer K F (2009). Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J Biol Chem, 284(34): 22938–22951
CrossRef Pubmed Google scholar
[86]
Marques O, Outeiro T F (2012). Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis, 3(7): e350
CrossRef Pubmed Google scholar
[87]
Matthews R T, Ferrante R J, Klivenyi P, Yang L, Klein A M, Mueller G, Kaddurah-Daouk R, Beal M F (1999). Creatine and cyclocreatine attenuate MPTP neurotoxicity. Exp Neurol, 157(1): 142–149
CrossRef Pubmed Google scholar
[88]
McLelland G L, Soubannier V, Chen C X, McBride H M, Fon E A (2014). Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J, 33(4): 282–295
Pubmed
[89]
McNaught K S, Perl D P, Brownell A L, Olanow C W (2004). Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol, 56(1): 149–162
CrossRef Pubmed Google scholar
[90]
Minakawa E N, Yamakado H, Tanaka A, Uemura K, Takeda S, Takahashi R (2013). Chicken DT40 cell line lacking DJ-1, the gene responsible for familial Parkinson’s disease, displays mitochondrial dysfunction. Neurosci Res, 77(4): 228–233
CrossRef Pubmed Google scholar
[91]
Moisoi N, Fedele V, Edwards J, Martins L M (2014). Loss of PINK1 enhances neurodegeneration in a mouse model of Parkinson’s disease triggered by mitochondrial stress. Neuropharmacology, 77: 350–357
CrossRef Pubmed Google scholar
[92]
Morais V A, Haddad D, Craessaerts K, De Bock P J, Swerts J, Vilain S, Aerts L, Overbergh L, Grünewald A, Seibler P, Klein C, Gevaert K, Verstreken P, De Strooper B (2014). PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science, 344(6180): 203–207
CrossRef Pubmed Google scholar
[93]
Mortiboys H, Johansen K K, Aasly J O, Bandmann O (2010). Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2. Neurology, 75(22): 2017–2020
CrossRef Pubmed Google scholar
[94]
Mortiboys H, Thomas K J, Koopman W J, Klaffke S, Abou-Sleiman P, Olpin S, Wood N W, Willems P H, Smeitink J A, Cookson M R, Bandmann O (2008). Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol, 64(5): 555–565
CrossRef Pubmed Google scholar
[95]
Mudò G, Mäkelä J, Di Liberto V, Tselykh T V, Olivieri M, Piepponen P, Eriksson O, Mälkiä A, Bonomo A, Kairisalo M, Aguirre J A, Korhonen L, Belluardo N, Lindholm D (2012). Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cell Mol Life Sci, 69(7): 1153–1165
CrossRef Pubmed Google scholar
[96]
Murray A M, Weihmueller F B, Marshall J F, Hurtig H I, Gottleib G L, Joyce J N (1995). Damage to dopamine systems differs between Parkinson’s disease and Alzheimer’s disease with parkinsonism. Ann Neurol, 37(3): 300–312
CrossRef Pubmed Google scholar
[97]
Narendra D, Tanaka A, Suen D F, Youle R J (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol, 183(5): 795–803
CrossRef Pubmed Google scholar
[98]
Neuspiel M, Schauss A C, Braschi E, Zunino R, Rippstein P, Rachubinski R A, Andrade-Navarro M A, McBride H M(2008). Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr Biol, CB 18: 102–108
[99]
Ng C H, Mok S Z, Koh C, Ouyang X, Fivaz M L, Tan E K, Dawson V L, Dawson T M, Yu F, Lim K L(2009). Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J Neurosci, 29: 11257–11262
[100]
NINDS NET-PD Investigators (2006). A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology, 66(5): 664–671
CrossRef Pubmed Google scholar
[101]
Nishiyama S, Shitara H, Nakada K, Ono T, Sato A, Suzuki H, Ogawa T, Masaki H, Hayashi J, Yonekawa H (2010). Over-expression of Tfam improves the mitochondrial disease phenotypes in a mouse model system. Biochem Biophys Res Commun, 401(1): 26–31
CrossRef Pubmed Google scholar
[102]
Niu J, Yu M, Wang C, Xu Z (2012). Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin-like protein. J Neurochem, 122(3): 650–658
CrossRef Pubmed Google scholar
[103]
Noack H, Bednarek T, Heidler J, Ladig R, Holtz J, Szibor M (2006). TFAM-dependent and independent dynamics of mtDNA levels in C2C12 myoblasts caused by redox stress. Biochim Biophys Acta, 1760(2): 141–150
CrossRef Pubmed Google scholar
[104]
O’Donnell K C, Lulla A, Stahl M C, Wheat N D, Bronstein J M, Sagasti A (2014). Axon degeneration and PGC-1α-mediated protection in a zebrafish model of α-synuclein toxicity. Dis Model Mech, 7(5): 571–582
CrossRef Pubmed Google scholar
[105]
Orenstein S J, Kuo S H, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig L S, Dauer W, Consiglio A, Raya A, Sulzer D, Cuervo A M (2013). Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci, 16(4): 394–406
CrossRef Pubmed Google scholar
[106]
Pacholec M, Bleasdale J E, Chrunyk B, Cunningham D, Flynn D, Garofalo R S, Griffith D, Griffor M, Loulakis P, Pabst B, Qiu X, Stockman B, Thanabal V, Varghese A, Ward J, Withka J, Ahn K (2010). SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem, 285(11): 8340–8351
CrossRef Pubmed Google scholar
[107]
Papkovskaia T D, Chau K Y, Inesta-Vaquera F, Papkovsky D B, Healy D G, Nishio K, Staddon J, Duchen M R, Hardy J, Schapira A H, Cooper J M (2012). G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization. Hum Mol Genet, 21(19): 4201–4213
CrossRef Pubmed Google scholar
[108]
Pardo P S, Mohamed J S, Lopez M A, Boriek A M (2011). Induction of Sirt1 by mechanical stretch of skeletal muscle through the early response factor EGR1 triggers an antioxidative response. J Biol Chem, 286(4): 2559–2566
CrossRef Pubmed Google scholar
[109]
Parihar M S, Parihar A, Fujita M, Hashimoto M, Ghafourifar P (2008). Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci, 65(7-8): 1272–1284
CrossRef Pubmed Google scholar
[110]
Park J, Kim S Y, Cha G H, Lee S B, Kim S, Chung J (2005). Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunction. Gene, 361: 133–139
CrossRef Pubmed Google scholar
[111]
Park J, Lee S B, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim J M, Chung J (2006). Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature, 441(7097): 1157–1161
CrossRef Pubmed Google scholar
[112]
Parker W D Jr, Boyson S J, Parks J K (1989). Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol, 26(6): 719–723
CrossRef Pubmed Google scholar
[113]
Pesah Y, Pham T, Burgess H, Middlebrooks B, Verstreken P, Zhou Y, Harding M, Bellen H, Mardon G (2004). Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development, 131(9): 2183–2194
CrossRef Pubmed Google scholar
[114]
Ping H X, Shepard P D (1999). Blockade of SK-type Ca2+-activated K+ channels uncovers a Ca2+-dependent slow afterdepolarization in nigral dopamine neurons. J Neurophysiol, 81(3): 977–984
Pubmed
[115]
Polymeropoulos M H, Lavedan C, Leroy E, Ide S E, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos E S, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson W G, Lazzarini A M, Duvoisin R C, Di Iorio G, Golbe L I, Nussbaum R L (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276(5321): 2045–2047
CrossRef Pubmed Google scholar
[116]
Poole A C, Thomas R E, Andrews L A, McBride H M, Whitworth A J, Pallanck L J (2008). The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA, 105(5): 1638–1643
CrossRef Pubmed Google scholar
[117]
Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid L P, Goebel I, Mubaidin A F, Wriekat A L, Roeper J, Al-Din A, Hillmer A M, Karsak M, Liss B, Woods C G, Behrens M I, Kubisch C (2006). Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet, 38(10): 1184–1191
CrossRef Pubmed Google scholar
[118]
Ramonet D, Daher J P, Lin B M, Stafa K, Kim J, Banerjee R, Westerlund M, Pletnikova O, Glauser L, Yang L, Liu Y, Swing D A, Beal M F, Troncoso J C, McCaffery J M, Jenkins N A, Copeland N G, Galter D, Thomas B, Lee M K, Dawson T M, Dawson V L, Moore D J (2011). Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS ONE, 6(4): e18568
CrossRef Pubmed Google scholar
[119]
Richfield E K, Thiruchelvam M J, Cory-Slechta D A, Wuertzer C, Gainetdinov R R, Caron M G, Di Monte D A, Federoff H J (2002). Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp Neurol, 175(1): 35–48
CrossRef Pubmed Google scholar
[120]
Saha S, Guillily M D, Ferree A, Lanceta J, Chan D, Ghosh J, Hsu C H, Segal L, Raghavan K, Matsumoto K, Hisamoto N, Kuwahara T, Iwatsubo T, Moore L, Goldstein L, Cookson M, Wolozin B(2009). LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci, 29: 9210–9218
[121]
Sakata E, Yamaguchi Y, Kurimoto E, Kikuchi J, Yokoyama S, Yamada S, Kawahara H, Yokosawa H, Hattori N, Mizuno Y, Tanaka K, Kato K (2003). Parkin binds the Rpn10 subunit of 26S proteasomes through its ubiquitin-like domain. EMBO Rep, 4(3): 301–306
CrossRef Pubmed Google scholar
[122]
Sarafian T A, Ryan C M, Souda P, Masliah E, Kar U K, Vinters H V, Mathern G W, Faull K F, Whitelegge J P, Watson J B (2013). Impairment of mitochondria in adult mouse brain overexpressing predominantly full-length, N-terminally acetylated human α-synuclein. PLoS ONE, 8(5): e63557PMID:23667637
CrossRef Google scholar
[123]
Scarffe L A, Stevens D A, Dawson V L, Dawson T M (2014). Parkin and PINK1: much more than mitophagy. Trends Neurosci, 37(6): 315–324
CrossRef Pubmed Google scholar
[124]
Schapira A H, Cooper J M, Dexter D, Jenner P, Clark J B, Marsden C D (1989). Mitochondrial complex I deficiency in Parkinson’s disease. Lancet, 1(8649): 1269
CrossRef Pubmed Google scholar
[125]
Shavali S, Brown-Borg H M, Ebadi M, Porter J (2008). Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cells. Neurosci Lett, 439(2): 125–128
CrossRef Pubmed Google scholar
[126]
Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet, 25(3): 302–305
CrossRef Pubmed Google scholar
[127]
Shin J H, Ko H S, Kang H, Lee Y, Lee Y I, Pletinkova O, Troconso J C, Dawson V L, Dawson T M (2011). PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell, 144(5): 689–702
CrossRef Pubmed Google scholar
[128]
Simon D K, Lin M T, Zheng L, Liu G J, Ahn C H, Kim L M, Mauck W M, Twu F, Beal M F, Johns D R (2004). Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson’s disease. Neurobiol Aging, 25(1): 71–81
CrossRef Pubmed Google scholar
[129]
Snyder H, Mensah K, Theisler C, Lee J, Matouschek A, Wolozin B (2003). Aggregated and monomeric alpha-synuclein bind to the S6′ proteasomal protein and inhibit proteasomal function. J Biol Chem, 278(14): 11753–11759
CrossRef Pubmed Google scholar
[130]
Song D D, Shults C W, Sisk A, Rockenstein E, Masliah E (2004). Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol, 186(2): 158–172
CrossRef Pubmed Google scholar
[131]
Soubannier V, McLelland G L, Zunino R, Braschi E, Rippstein P, Fon E A, McBride H M(2012). A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr Biol, CB 22: 135–141
[132]
Spillantini M G, Crowther R A, Jakes R, Hasegawa M, Goedert M (1998). alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA, 95(11): 6469–6473
CrossRef Pubmed Google scholar
[133]
Spillantini M G, Schmidt M L, Lee V M, Trojanowski J Q, Jakes R, Goedert M (1997). Alpha-synuclein in Lewy bodies. Nature, 388(6645): 839–840
CrossRef Pubmed Google scholar
[134]
St-Pierre J, Drori S, Uldry M, Silvaggi J M, Rhee J, Jäger S, Handschin C, Zheng K, Lin J, Yang W, Simon D K, Bachoo R, Spiegelman B M (2006). Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 127(2): 397–408
CrossRef Pubmed Google scholar
[135]
Su Y C, Qi X (2013). Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation. Hum Mol Genet, 22(22): 4545–4561
CrossRef Pubmed Google scholar
[136]
Sulzer D, Zecca L (2000). Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res, 1(3): 181–195
CrossRef Pubmed Google scholar
[137]
Surmeier D J (2007). Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol, 6(10): 933–938
CrossRef Pubmed Google scholar
[138]
Surmeier D J, Guzman J N, Sanchez-Padilla J (2010). Calcium, cellular aging, and selective neuronal vulnerability in Parkinson’s disease. Cell Calcium, 47(2): 175–182
CrossRef Pubmed Google scholar
[139]
Taira T, Saito Y, Niki T, Iguchi-Ariga S M, Takahashi K, Ariga H (2004). DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep, 5(2): 213–218
CrossRef Pubmed Google scholar
[140]
Tanaka M, Kim Y M, Lee G, Junn E, Iwatsubo T, Mouradian M M (2004). Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem, 279(6): 4625–4631
CrossRef Pubmed Google scholar
[141]
Valente E M, Abou-Sleiman P M, Caputo V, Muqit M M, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio A R, Healy D G, Albanese A, Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks W P, Latchman D S, Harvey R J, Dallapiccola B, Auburger G, Wood N W (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304(5674): 1158–1160
CrossRef Pubmed Google scholar
[142]
Valente E M, Salvi S, Ialongo T, Marongiu R, Elia A E, Caputo V, Romito L, Albanese A, Dallapiccola B, Bentivoglio A R (2004). PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol, 56(3): 336–341
CrossRef Pubmed Google scholar
[143]
van der Horst A, Tertoolen L G, de Vries-Smits L M, Frye R A, Medema R H, Burgering B M (2004). FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem, 279(28): 28873–28879
CrossRef Pubmed Google scholar
[144]
Vaquero A, Scher M, Erdjument-Bromage H, Tempst P, Serrano L, Reinberg D (2007). SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature, 450(7168): 440–444
CrossRef Pubmed Google scholar
[145]
Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D (2004). Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell, 16(1): 93–105
CrossRef Pubmed Google scholar
[146]
Wang X, Winter D, Ashrafi G, Schlehe J, Wong Y L, Selkoe D, Rice S, Steen J, LaVoie M J, Schwarz T L (2011). PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell, 147(4): 893–906
CrossRef Pubmed Google scholar
[147]
Wang X, Yan M H, Fujioka H, Liu J, Wilson-Delfosse A, Chen S G, Perry G, Casadesus G, Zhu X (2012). LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet, 21(9): 1931–1944
CrossRef Pubmed Google scholar
[148]
Wareski P, Vaarmann A, Choubey V, Safiulina D, Liiv J, Kuum M, Kaasik A (2009). PGC-1alpha and PGC-1beta regulate mitochondrial density in neurons. J Biol Chem, 284(32): 21379–21385
CrossRef Pubmed Google scholar
[149]
West A B, Moore D J, Biskup S, Bugayenko A, Smith W W, Ross C A, Dawson V L, Dawson T M (2005). Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA, 102(46): 16842–16847
CrossRef Pubmed Google scholar
[150]
Westerheide S D, Anckar J, Stevens S M Jr, Sistonen L, Morimoto R I (2009). Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science, 323(5917): 1063–1066
CrossRef Pubmed Google scholar
[151]
Winslow A R, Chen C W, Corrochano S, Acevedo-Arozena A, Gordon D E, Peden A A, Lichtenberg M, Menzies F M, Ravikumar B, Imarisio S, Brown S, O’Kane C J, Rubinsztein D C (2010). α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol, 190(6): 1023–1037
CrossRef Pubmed Google scholar
[152]
Wood-Kaczmar A, Gandhi S, Yao Z, Abramov A Y, Miljan E A, Keen G, Stanyer L, Hargreaves I, Klupsch K, Deas E, Downward J, Mansfield L, Jat P, Taylor J, Heales S, Duchen M R, Latchman D, Tabrizi S J, Wood N W (2008). PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS ONE, 3(6): e2455
CrossRef Pubmed Google scholar
[153]
Xilouri M, Vogiatzi T, Vekrellis K, Park D, Stefanis L (2009). Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS ONE, 4(5): e5515
CrossRef Pubmed Google scholar
[154]
Yang S R, Wright J, Bauter M, Seweryniak K, Kode A, Rahman I (2007). Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am J Physiol Lung Cel l Mol Physiol, 292(2): L567–L576
CrossRef Pubmed Google scholar
[155]
Yeung F, Hoberg J E, Ramsey C S, Keller M D, Jones D R, Frye R A, Mayo M W (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J, 23(12): 2369–2380
CrossRef Pubmed Google scholar
[156]
Yong-Kee C J, Salomonczyk D, Nash J E (2011). Development and validation of a screening assay for the evaluation of putative neuroprotective agents in the treatment of Parkinson’s disease. Neurotox Res, 19(4): 519–526
CrossRef Pubmed Google scholar
[157]
Yong-Kee C J, Sidorova E, Hanif A, Perera G, Nash J E (2012). Mitochondrial dysfunction precedes other sub-cellular abnormalities in an in vitro model linked with cell death in Parkinson’s disease. Neurotox Res, 21(2): 185–194
CrossRef Pubmed Google scholar
[158]
Zarranz J J, Alegre J, Gómez-Esteban J C, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atarés B, Llorens V, Gomez Tortosa E, del Ser T, Muñoz D G, de Yebenes J G (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol, 55(2): 164–173
CrossRef Pubmed Google scholar
[159]
Zhang L, Shimoji M, Thomas B, Moore D J, Yu S W, Marupudi N I, Torp R, Torgner I A, Ottersen O P, Dawson T M, Dawson V L (2005). Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet, 14(14): 2063–2073
CrossRef Pubmed Google scholar
[160]
Zhang N Y, Tang Z, Liu C W (2008). alpha-Synuclein protofibrils inhibit 26 S proteasome-mediated protein degradation: understanding the cytotoxicity of protein protofibrils in neurodegenerative disease pathogenesis. J Biol Chem, 283(29): 20288–20298
CrossRef Pubmed Google scholar
[161]
Zheng B, Liao Z, Locascio J J, Lesniak K A, Roderick S S, Watt M L, Eklund A C, Zhang-James Y, Kim P D, Hauser M A, Grünblatt E, Moran L B, Mandel S A, Riederer P, Miller R M, Federoff H J, Wüllner U, Papapetropoulos S, Youdim M B, Cantuti-Castelvetri I, Young A B, Vance J M, Davis R L, Hedreen J C, Adler C H, Beach T G, Graeber M B, Middleton F A, Rochet J C, Scherzer C R, Global P D G E C, and the Global PD Gene Expression (GPEX) Consortium (2010). PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Sci Transl Med, 2(52): 52ra73
CrossRef Pubmed Google scholar

Compliance with ethics guidelines

Dr. Joanne Nash, Dr. Jacqueline Gleave and Mr. Peter Perri declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(264 KB)

Accesses

Citations

Detail

Sections
Recommended

/