Microbial enzyme systems for lignin degradation and their transcriptional regulation
Takanori FURUKAWA, Fatai Olumide BELLO, Louise HORSFALL
Microbial enzyme systems for lignin degradation and their transcriptional regulation
Lignocellulosic biomass is the most abundant renewable resource in nature and has received considerable attention as one of the most promising alternatives to oil resources for the provision of energy and certain raw materials. The phenolic polymer lignin is the second most abundant constituent of this biomass resource and has been shown to have the potential to be converted into industrially important aromatic chemicals after degradation. However, due to its chemical and structural nature, it exhibits high resistance toward mechanical, chemical, and biological degradation, and this causes a major obstacle for achieving efficient conversion of lignocellulosic biomass. In nature, lignin-degrading microorganisms have evolved unique extracellular enzyme systems to decompose lignin using radical mediated oxidative reactions. These microorganisms produce a set of different combinations of enzymes with multiple isozymes and isoforms by responding to various environmental stimuli such as nutrient availability, oxygen concentration and temperature, which are thought to enable effective decomposition of the lignin in lignocellulosic biomass. In this review, we present an overview of the microbial ligninolytic enzyme systems including general molecular aspects, structural features, and systematic differences in each microorganism. We also describe the gene expression pattern and the transcriptional regulation mechanisms of each ligninolytic enzyme with current data.
lignocellulose biorefinery / lignin degradation / lignin peroxidases / manganese peroxidases / versatile peroxidases / laccases
[1] |
Adler E (1977). Lignin chemistry—past, present and future. Wood Sci Technol, 11(3): 169–218
CrossRef
Google scholar
|
[2] |
Ahmad M, Roberts J N, Hardiman E M, Singh R, Eltis L D, Bugg T D (2011). Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry, 50(23): 5096–5107
CrossRef
Pubmed
Google scholar
|
[3] |
Ahmad M, Taylor C R, Pink D, Burton K, Eastwood D, Bending G D, Bugg T D (2010). Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders. Mol Biosyst, 6(5): 815–821
CrossRef
Pubmed
Google scholar
|
[4] |
Akin D E, Morrison Iii W H, Rigsby L L, Gamble G R, Sethuraman A, Eriksson K E L (1996). Biological delignification of plant components by the white rot fungi Ceriporiopsis subvermispora and Cyathus stercoreus. Anim Feed Sci Technol, 63(1–4): 305–321
CrossRef
Google scholar
|
[5] |
Alvarez J M, Canessa P, Mancilla R A, Polanco R, Santibáñez P A, Vicuña R (2009). Expression of genes encoding laccase and manganese-dependent peroxidase in the fungus Ceriporiopsis subvermispora is mediated by an ACE1-like copper-fist transcription factor. Fungal Genet Biol, 46(1): 104–111
CrossRef
Pubmed
Google scholar
|
[6] |
Andreu G, Vidal T (2011). Effects of laccase-natural mediator systems on kenaf pulp. Bioresour Technol, 102(10): 5932–5937
CrossRef
Pubmed
Google scholar
|
[7] |
Antoni D, Zverlov V V, Schwarz W H (2007). Biofuels from microbes. Appl Microbiol Biotechnol, 77(1): 23–35
CrossRef
Pubmed
Google scholar
|
[8] |
Arantes V, Jellison J, Goodell B (2012). Peculiarities of brown-rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol, 94(2): 323–338
CrossRef
Pubmed
Google scholar
|
[9] |
Asgher M, Bhatti H N, Ashraf M, Legge R L (2008). Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation, 19(6): 771–783
CrossRef
Pubmed
Google scholar
|
[10] |
Ausec L, Zakrzewski M, Goesmann A, Schlüter A, Mandic-Mulec I (2011). Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One, 6(10): e25724
CrossRef
Pubmed
Google scholar
|
[11] |
Azadi P, Inderwildi O R, Farnood R, King D A (2013). Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew Sustain Energy Rev, 21: 506–523
CrossRef
Google scholar
|
[12] |
Bajpai P (2004). Biological bleaching of chemical pulps. Crit Rev Biotechnol, 24(1): 1–58
CrossRef
Pubmed
Google scholar
|
[13] |
Bajpai P, Anand A, Bajpai P K (2006). Bleaching with lignin-oxidizing enzymes. Biotechnol Annu Rev, 12: 349–378
CrossRef
Pubmed
Google scholar
|
[14] |
Balakshin Mikhail Y, Capanema Ewellyn A, Chang H (2007). MWL fraction with a high concentration of lignin-carbohydrate linkages: Isolation and 2D NMR spectroscopic analysis. Holzforschung, 61(1): 1–7
CrossRef
Google scholar
|
[15] |
Baldrian P (2006). Fungal laccases- occurrence and properties. FEMS Microbiol Rev, 30(2): 215–242
CrossRef
Pubmed
Google scholar
|
[16] |
Banci L, Camarero S, Martínez A T, Martínez M J, Pérez-Boada M, Pierattelli R, Ruiz-Dueñas F J (2003). NMR study of manganese(II) binding by a new versatile peroxidase from the white-rot fungus Pleurotus eryngii. J Biol Inorg Chem, 8(7): 751–760
CrossRef
Pubmed
Google scholar
|
[17] |
Bao W, Fukushima Y, Jensen K A Jr, Moen M A, Hammel K E (1994). Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase. FEBS Lett, 354(3): 297–300
CrossRef
Pubmed
Google scholar
|
[18] |
Beedlow P A, Tingey D T, Phillips D L, Hogsett W E, Olszyk D M (2004). Rising atmospheric CO2 and carbon sequestration in forests. Front Ecol Environ, 2: 315–322
|
[19] |
Belinky P A, Flikshtein N, Lechenko S, Gepstein S, Dosoretz C G (2003). Reactive oxygen species and induction of lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol, 69(11): 6500–6506
CrossRef
Pubmed
Google scholar
|
[20] |
Bindoff N L, Stott P A, AchutaRao K M, Allen M R, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov I I, Overland J, Perlwitz J, Sebbari R, Zhang X (2013). Detection and Attribution of Climate Change: from Global to Regional. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M (eds.) . Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, 867–952
|
[21] |
Blanchette R A (1995). Degradation of the lignocellulose complex in wood. Can J Bot, 73(S1): 999–1010
CrossRef
Google scholar
|
[22] |
Blanchette Robert A, Burnes Todd A, Eerdmans Marjorie M, Akhtar M (1992). Evaluating isolates of Phanerochaete chrysosporium and Ceriporiopsis subvermispora for use in biological pulping processes. Holzforschung, 46(2): 109–116
CrossRef
Google scholar
|
[23] |
Boerjan W, Ralph J, Baucher M (2003). Lignin biosynthesis. Annu Rev Plant Biol, 54(1): 519–546
CrossRef
Pubmed
Google scholar
|
[24] |
Bogan B W, Schoenike B, Lamar R T, Cullen D (1996). Expression of lip genes during growth in soil and oxidation of anthracene by Phanerochaete chrysosporium. Appl Environ Microbiol, 62(10): 3697–3703
Pubmed
|
[25] |
Bourbonnais R, Paice M G (1990). Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett, 267(1): 99–102
CrossRef
Pubmed
Google scholar
|
[26] |
Bozell J J, Petersen G R (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem, 12(4): 539
CrossRef
Google scholar
|
[27] |
Brown J A, Li D, Alic M, Gold M H (1993). Heat Shock induction of manganese peroxidase gene transcription in Phanerochaete chrysosporium. Appl Environ Microbiol, 59(12): 4295–4299
Pubmed
|
[28] |
Brown M E, Barros T, Chang M C (2012). Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol, 7(12): 2074–2081
CrossRef
Pubmed
Google scholar
|
[29] |
Bugg T D, Ahmad M, Hardiman E M, Rahmanpour R (2011a). Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep, 28(12): 1883–1896
CrossRef
Pubmed
Google scholar
|
[30] |
Bugg T D, Ahmad M, Hardiman E M, Singh R (2011b). The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol, 22(3): 394–400
CrossRef
Pubmed
Google scholar
|
[31] |
Call H P, Mücke I (1997). History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). J Biotechnol, 53(2–3): 163–202
CrossRef
Google scholar
|
[32] |
Camarero S, Ibarra D, Martínez M J, Martínez A T (2005). Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol, 71(4): 1775–1784
CrossRef
Pubmed
Google scholar
|
[33] |
Cañas A I, Camarero S (2010). Laccases and their natural mediators: biotechnological tools for sustainable eco-friendly processes. Biotechnol Adv, 28(6): 694–705
CrossRef
Pubmed
Google scholar
|
[34] |
Canessa P, Alvarez J M, Polanco R, Bull P, Vicuña R (2008). The copper-dependent ACE1 transcription factor activates the transcription of the mco1 gene from the basidiomycete Phanerochaete chrysosporium. Microbiology, 154(Pt 2): 491–499
CrossRef
Pubmed
Google scholar
|
[35] |
Chen F, Dixon R A (2007). Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol, 25(7): 759–761
CrossRef
Pubmed
Google scholar
|
[36] |
Choinowski T, Blodig W, Winterhalter K H, Piontek K (1999). The crystal structure of lignin peroxidase at 1.70 A resolution reveals a hydroxy group on the cbeta of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol, 286(3): 809–827
CrossRef
Pubmed
Google scholar
|
[37] |
Claus H (2003). Laccases and their occurrence in prokaryotes. Arch Microbiol, 179(3): 145–150
Pubmed
|
[38] |
Claus H (2004). Laccases: structure, reactions, distribution. Micron, 35(1–2): 93–96
CrossRef
Pubmed
Google scholar
|
[39] |
Cohen R, Hadar Y, Yarden O (2001). Transcript and activity levels of different Pleurotus ostreatus peroxidases are differentially affected by Mn2+. Environ Microbiol, 3(5): 312–322
CrossRef
Pubmed
Google scholar
|
[40] |
Cohen R, Yarden O, Hadar Y (2002). Lignocellulose affects Mn2+ regulation of peroxidase transcript levels in solid-state cultures of Pleurotus ostreatus. Appl Environ Microbiol, 68(6): 3156–3158
CrossRef
Pubmed
Google scholar
|
[41] |
Colao M Ch, Garzillo A M, Buonocore V, Schiesser A, Ruzzi M (2003). Primary structure and transcription analysis of a laccase-encoding gene from the basidiomycete Trametes trogii. Appl Microbiol Biotechnol, 63(2): 153–158
CrossRef
Pubmed
Google scholar
|
[42] |
Collins P J, Dobson A (1997). Regulation of laccase gene transcription in trametes versicolor. Appl Environ Microbiol, 63(9): 3444–3450
Pubmed
|
[43] |
Collins P J, O’Brien M M, Dobson A D (1999). Cloning and characterization of a cDNA encoding a novel extracellular peroxidase from trametes versicolor. Appl Environ Microbiol, 65(3): 1343–1347
Pubmed
|
[44] |
Colpa D I, Fraaije M W, van Bloois E (2014). DyP-type peroxidases: a promising and versatile class of enzymes. J Ind Microbiol Biotechnol, 41(1): 1–7
CrossRef
Pubmed
Google scholar
|
[45] |
Conesa A, Punt P J, van den Hondel C A (2002). Fungal peroxidases: molecular aspects and applications. J Biotechnol, 93(2): 143–158
CrossRef
Pubmed
Google scholar
|
[46] |
Crestini C, Crucianelli M, Orlandi M, Saladino R (2010). Oxidative strategies in lignin chemistry: A new environmental friendly approach for the functionalisation of lignin and lignocellulosic fibers. Catal Today, 156(1–2): 8–22
CrossRef
Google scholar
|
[47] |
Crestini C, Melone F, Sette M, Saladino R (2011). Milled wood lignin: a linear oligomer. Biomacromolecules, 12(11): 3928–3935
CrossRef
Pubmed
Google scholar
|
[48] |
Cullen D (1997). Recent advances on the molecular genetics of ligninolytic fungi. J Biotechnol, 53(2-3): 273–289
CrossRef
Pubmed
Google scholar
|
[49] |
Dhawale S S, Lane A C (1993). Compilation of sequence-specific DNA-binding proteins implicated in transcriptional control in fungi. Nucleic Acids Res, 21(24): 5537–5546
CrossRef
Pubmed
Google scholar
|
[50] |
Doherty W O S, Mousavioun P, Fellows C M (2011). Value-adding to cellulosic ethanol: Lignin polymers. Ind Crops Prod, 33(2): 259–276
CrossRef
Google scholar
|
[51] |
Dooley D M, Rawlings J, Dawson J H, Stephens P J, Andreasson L E, Malmstrom B G, Gray H B (1979). Spectroscopic studies of Rhus vernicifera and Polyporus versicolor laccase. Electronic structures of the copper sites. J Am Chem Soc, 101(17): 5038–5046
CrossRef
Google scholar
|
[52] |
Dowzer C E, Kelly J M (1991). Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol, 11(11): 5701–5709
Pubmed
|
[53] |
Doyle W A, Blodig W, Veitch N C, Piontek K, Smith A T (1998). Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis. Biochemistry, 37(43): 15097–15105
CrossRef
Pubmed
Google scholar
|
[54] |
Drysdale M R, Kolze S E, Kelly J M (1993). The Aspergillus niger carbon catabolite repressor encoding gene, creA. Gene, 130(2): 241–245
CrossRef
Pubmed
Google scholar
|
[55] |
Dunford H B (1999). Heme peroxidases, New York, Wiley
|
[56] |
Dusselier M, Mascal M, Sels B F (2014). Top chemical opportunities from carbohydrate biomass: A chemist’s view of the biorefinery. Top Curr Chem, 353: 1–40
|
[57] |
Dwivedi U N, Singh P, Pandey V P, Kumar A (2011). Structure–function relationship among bacterial, fungal and plant laccases. J Mol Catal, B Enzym, 68: 117–128
|
[58] |
Edwards S L, Raag R, Wariishi H, Gold M H, Poulos T L (1993). Crystal structure of lignin peroxidase. Proc Natl Acad Sci U S A, 90(2): 750–754
CrossRef
Pubmed
Google scholar
|
[59] |
Eggert C, Temp U, Dean J F D, Eriksson K E L (1996). A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett, 391(1–2): 144–148
CrossRef
Pubmed
Google scholar
|
[60] |
Eggert C, Temp U, Eriksson K E (1997). Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett, 407(1): 89–92
CrossRef
Pubmed
Google scholar
|
[61] |
Elisashvili V, Kachlishvili E (2009). Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J Biotechnol, 144(1): 37–42
CrossRef
Pubmed
Google scholar
|
[62] |
Enguita F J, Martins L O, Henriques A O, Carrondo M A (2003). Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J Biol Chem, 278(21): 19416–19425
CrossRef
Pubmed
Google scholar
|
[63] |
Eriksson K E L B R A, Ander P (1990). Microbial and Enzymatic Degradation of Wood and Wood Components. Berlin, Springer, 1–72
|
[64] |
Ertan H, Siddiqui K S, Muenchhoff J, Charlton T, Cavicchioli R (2012). Kinetic and thermodynamic characterization of the functional properties of a hybrid versatile peroxidase using isothermal titration calorimetry: Insight into manganese peroxidase activation and lignin peroxidase inhibition. Biochimie, 94(5): 1221–1231
CrossRef
Pubmed
Google scholar
|
[65] |
Fackler K, Gradinger C, Hinterstoisser B, Messner K, Schwanninger M (2006). Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzyme Microb Technol, 39(7): 1476–1483
CrossRef
Google scholar
|
[66] |
Faraco V, Giardina P, Sannia G (2003). Metal-responsive elements in Pleurotus ostreatus laccase gene promoters. Microbiology, 149(Pt 8): 2155–2162
CrossRef
Pubmed
Google scholar
|
[67] |
Faraco V, Piscitelli A, Sannia G, Giardina P (2006). Identification of a new member of the dye-decolorizing peroxidase family from Pleurotus ostreatus. World J Microb Biot, 23(6): 889–893
CrossRef
Google scholar
|
[68] |
Fernández-Fueyo E, Castanera R, Ruiz-Dueñas F J, López-Lucendo M F, Ramírez L, Pisabarro A G, Martínez A T (2014a). Ligninolytic peroxidase gene expression by Pleurotus ostreatus: Differential regulation in lignocellulose medium and effect of temperature and pH. Fungal Genet Biol, (In press)
CrossRef
Pubmed
Google scholar
|
[69] |
Fernandez-Fueyo E, Ruiz-Dueñas F J, Ferreira P, Floudas D, Hibbett D S, Canessa P, Larrondo L F, James T Y, Seelenfreund D, Lobos S, Polanco R, Tello M, Honda Y, Watanabe T, Watanabe T, Ryu J S, Kubicek C P, Schmoll M, Gaskell J, Hammel K E, St John F J, Vanden Wymelenberg A, Sabat G, Splinter BonDurant S, Syed K, Yadav J S, Doddapaneni H, Subramanian V, Lavín J L, Oguiza J A, Perez G, Pisabarro A G, Ramirez L, Santoyo F, Master E, Coutinho P M, Henrissat B, Lombard V, Magnuson J K, Kües U, Hori C, Igarashi K, Samejima M, Held B W, Barry K W, LaButti K M, Lapidus A, Lindquist E A, Lucas S M, Riley R, Salamov A A, Hoffmeister D, Schwenk D, Hadar Y, Yarden O, de Vries R P, Wiebenga A, Stenlid J, Eastwood D, Grigoriev I V, Berka R M, Blanchette R A, Kersten P, Martinez A T, Vicuna R, Cullen D (2012). Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci U S A, 109(14): 5458–5463
Pubmed
|
[70] |
Fernández-Fueyo E, Ruiz-Dueñas F J, Martínez M J, Romero A, Hammel K E, Medrano F J, Martínez A T (2014b). Ligninolytic peroxidase genes in the oyster mushroom genome: heterologous expression, molecular structure, catalytic and stability properties, and lignin-degrading ability. Biotechnol Biofuels, 7(1): 2
CrossRef
Pubmed
Google scholar
|
[71] |
Fillat A, Colom J F, Vidal T (2010). A new approach to the biobleaching of flax pulp with laccase using natural mediators. Bioresour Technol, 101(11): 4104–4110
CrossRef
Pubmed
Google scholar
|
[72] |
FitzPatrick M, Champagne P, Cunningham M F, Whitney R A (2010). A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol, 101(23): 8915–8922
CrossRef
Pubmed
Google scholar
|
[73] |
Floudas D, Binder M, Riley R, Barry K, Blanchette R A, Henrissat B, Martínez A T, Otillar R, Spatafora J W, Yadav J S, Aerts A, Benoit I, Boyd A, Carlson A, Copeland A, Coutinho P M, de Vries R P, Ferreira P, Findley K, Foster B, Gaskell J, Glotzer D, Górecki P, Heitman J, Hesse C, Hori C, Igarashi K, Jurgens J A, Kallen N, Kersten P, Kohler A, Kües U, Kumar T K, Kuo A, LaButti K, Larrondo L F, Lindquist E, Ling A, Lombard V, Lucas S, Lundell T, Martin R, McLaughlin D J, Morgenstern I, Morin E, Murat C, Nagy L G, Nolan M, Ohm R A, Patyshakuliyeva A, Rokas A, Ruiz-Dueñas F J, Sabat G, Salamov A, Samejima M, Schmutz J, Slot J C, St John F, Stenlid J, Sun H, Sun S, Syed K, Tsang A, Wiebenga A, Young D, Pisabarro A, Eastwood D C, Martin F, Cullen D, Grigoriev I V, Hibbett D S (2012). The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science, 336(6089): 1715–1719
CrossRef
Pubmed
Google scholar
|
[74] |
Galhaup C, Goller S, Peterbauer C K, Strauss J, Haltrich D (2002). Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology, 148(Pt 7): 2159–2169
Pubmed
|
[75] |
Galliano H, Gas G, Seris J L, Boudet A M (1991). Lignin degradation by Rigidoporus lignosus involves synergistic action of two oxidizing enzymes: Mn peroxidase and laccase. Enzyme Microb Technol, 13(6): 478–482
CrossRef
Google scholar
|
[76] |
Gardner K H, Blackwell J (1974). The structure of native cellulose. Biopolymers, 13(10): 1975–2001
CrossRef
Google scholar
|
[77] |
Gaskell J, Stewart P, Kersten P J, Covert S F, Reiser J, Cullen D (1994). Establishment of genetic linkage by allele-specific polymerase chain reaction: application to the lignin peroxidase gene family of Phanerochaete chrysosporium. Biotechnology (N Y), 12(13): 1372–1375
CrossRef
Pubmed
Google scholar
|
[78] |
Gasser C A, Hommes G, Schäffer A, Corvini P F (2012). Multi-catalysis reactions: new prospects and challenges of biotechnology to valorize lignin. Appl Microbiol Biotechnol, 95(5): 1115–1134
CrossRef
Pubmed
Google scholar
|
[79] |
Gianfreda L, Xu F, Bollag J M (1999). Laccases: A useful group of oxidoreductive enzymes. Bioremediat J, 3(1): 1–25
CrossRef
Google scholar
|
[80] |
Giardina P, Faraco V, Pezzella C, Piscitelli A, Vanhulle S, Sannia G (2010). Laccases: a never-ending story. Cell Mol Life Sci, 67(3): 369–385
CrossRef
Pubmed
Google scholar
|
[81] |
Gilbertson R L (1980). Wood-rotting fungi of North-America. Mycologia, 72(1): 1–49
CrossRef
Google scholar
|
[82] |
Glenn J K, Akileswaran L, Gold M H (1986). Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys, 251(2): 688–696
CrossRef
Pubmed
Google scholar
|
[83] |
Glenn J K, Gold M H (1985). Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys, 242(2): 329–341
CrossRef
Pubmed
Google scholar
|
[84] |
Goblirsch B, Kurker R C, Streit B R, Wilmot C M, DuBois J L (2011). Chlorite dismutases, DyPs, and EfeB: 3 microbial heme enzyme families comprise the CDE structural superfamily. J Mol Biol, 408(3): 379–398
CrossRef
Pubmed
Google scholar
|
[85] |
Godfrey B J, Mayfield M B, Brown J A, Gold M H (1990). Characterization of a gene encoding a manganese peroxidase from Phanerochaete chrysosporium. Gene, 93(1): 119–124
CrossRef
Pubmed
Google scholar
|
[86] |
Gold M H, Alic M (1993). Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev, 57(3): 605–622
Pubmed
|
[87] |
Gold M H, Kuwahara M, Chiu A A, Glenn J K (1984). Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys, 234(2): 353–362
CrossRef
Pubmed
Google scholar
|
[88] |
Golovleva L A, Leontievsky A A, Maltseva O V, Myasoedova N M (1993). Ligninolytic enzymes of the fungus Panus tigrinus 8⁄18: Biosynthesis, purification and properties. J Biotechnol, 30(1): 71–77
CrossRef
Google scholar
|
[89] |
Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F, Krishnamurthy S, Jun L, Xu G (1997). Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol, 53(2–3): 133–162
CrossRef
Google scholar
|
[90] |
Guillén F, Martínez A T, Martínez M J (1992). Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem, 209(2): 603–611
CrossRef
Pubmed
Google scholar
|
[91] |
Gupta R, Mehta G, Khasa Y P, Kuhad R C (2011). Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation, 22(4): 797–804
CrossRef
Pubmed
Google scholar
|
[92] |
Gutiérrez A, del Río J C, Martínez-Iñigo M J, Martínez M J, Martínez A T (2002). Production of new unsaturated lipids during wood decay by ligninolytic basidiomycetes. Appl Environ Microbiol, 68(3): 1344–1350
CrossRef
Pubmed
Google scholar
|
[93] |
Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund M F, Lidén G, Zacchi G (2006). Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol, 24(12): 549–556
CrossRef
Pubmed
Google scholar
|
[94] |
Hakala T K, Hildén K, Maijala P, Olsson C, Hatakka A (2006). Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol, 73(4): 839–849
CrossRef
Pubmed
Google scholar
|
[95] |
Hamelinck C N, Hooijdonk G, Faaij A P C (2005). Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy, 28(4): 384–410
CrossRef
Google scholar
|
[96] |
Hammel K E, Jensen K A Jr, Mozuch M D, Landucci L L, Tien M, Pease E A (1993). Ligninolysis by a purified lignin peroxidase. J Biol Chem, 268(17): 12274–12281
Pubmed
|
[97] |
Hatakka A (2001) Biodegradation of Lignin. In: Hofrichter M,Steinbuchel A (eds.). (ed) Biopolymers, Wiley-VCH Verlag GmbH & Co. KGaA
|
[98] |
Hatti-Kaul R, Törnvall U, Gustafsson L, Börjesson P (2007). Industrial biotechnology for the production of bio-based chemicals—a cradle-to-grave perspective. Trends Biotechnol, 25(3): 119–124
CrossRef
Pubmed
Google scholar
|
[99] |
Heinfling A, Ruiz-Dueñas F J, Martínez M J, Bergbauer M, Szewzyk U, Martínez A T (1998). A study on reducing substrates of manganese-oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta. FEBS Lett, 428(3): 141–146
CrossRef
Pubmed
Google scholar
|
[100] |
Hildén K, Mäkelä M R, Steffen K T, Hofrichter M, Hatakka A, Archer D B, Lundell T K (2014). Biochemical and molecular characterization of an atypical manganese peroxidase of the litter-decomposing fungus Agrocybe praecox. Fungal Genet Biol, (In press)
CrossRef
Pubmed
Google scholar
|
[101] |
Hildén K, Martinez A T, Hatakka A, Lundell T (2005). The two manganese peroxidases Pr-MnP2 and Pr-MnP3 of Phlebia radiata, a lignin-degrading basidiomycete, are phylogenetically and structurally divergent. Fungal Genet Biol, 42(5): 403–419
CrossRef
Pubmed
Google scholar
|
[102] |
Himmel M E, Ding S Y, Johnson D K, Adney W S, Nimlos M R, Brady J W, Foust T D (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315(5813): 804–807
CrossRef
Pubmed
Google scholar
|
[103] |
Holzbaur E L, Andrawis A, Tien M (1988). Structure and regulation of a lignin peroxidase gene from Phanerochaete chrysosporium. Biochem Biophys Res Commun, 155(2): 626–633
CrossRef
Pubmed
Google scholar
|
[104] |
Hon D S (1994). Cellulose: a random walk along its historical path. Cellulose, 1(1): 1–25
CrossRef
Google scholar
|
[105] |
Husain M, Husain Q (2007). Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: A Review. Crit Rev Environ Sci Technol, 38(1): 1–42
CrossRef
Google scholar
|
[106] |
Janusz G, Kucharzyk K H, Pawlik A, Staszczak M, Paszczynski A J (2013). Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme Microb Technol, 52(1): 1–12
CrossRef
Pubmed
Google scholar
|
[107] |
Jeffries T W, Choi S, Kirk T K (1981). Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl Environ Microbiol, 42(2): 290–296
Pubmed
|
[108] |
Johansson T, Nyman P O, Cullen D (2002). Differential regulation of mnp2, a new manganese peroxidase-encoding gene from the ligninolytic fungus Trametes versicolor PRL 572. Appl Environ Microbiol, 68(4): 2077–2080
CrossRef
Pubmed
Google scholar
|
[109] |
Kamitsuji H, Honda Y, Watanabe T, Kuwahara M (2005). Mn(2+) is dispensable for the production of active MnP2 by Pleurotus ostreatus. Biochem Biophys Res Commun, 327(3): 871–876
CrossRef
Pubmed
Google scholar
|
[110] |
Kamm B, Kamm M (2004). Principles of biorefineries. Appl Microbiol Biotechnol, 64(2): 137–145
CrossRef
Pubmed
Google scholar
|
[111] |
Kersten P, Cullen D (2007). Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol, 44(2): 77–87
CrossRef
Pubmed
Google scholar
|
[112] |
Kersten P, Cullen D (2014). Copper radical oxidases and related extracellular oxidoreductases of wood-decay Agaricomycetes. Fungal Genet Biol, (In press)
CrossRef
Pubmed
Google scholar
|
[113] |
Kersten P J (1990). Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proc Natl Acad Sci U S A, 87(8): 2936–2940
CrossRef
Pubmed
Google scholar
|
[114] |
Kersten P J, Kirk T K (1987). Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol, 169(5): 2195–2201
Pubmed
|
[115] |
Kim S J, Ishikawa K, Hirai M, Shoda M (1995). Characteristics of a newly isolated fungus, Geotrichum candidum Dec 1, which decolorizes various dyes. J Ferment Bioeng, 79(6): 601–607
CrossRef
Google scholar
|
[116] |
Kim S J, Shoda M (1999). Purification and characterization of a novel peroxidase from Geotrichum candidum dec 1 involved in decolorization of dyes. Appl Environ Microbiol, 65(3): 1029–1035
Pubmed
|
[117] |
Kim Y, Yeo S, Kum J, Song H G, Choi H T (2005). Cloning of a manganese peroxidase cDNA gene repressed by manganese in Trametes versicolor. J Microbiol, 43(6): 569–571
Pubmed
|
[118] |
Kirk T K, Croan S, Tien M, Murtagh K E, Farrell R L (1986). Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme Microb Technol, 8(1): 27–32
CrossRef
Google scholar
|
[119] |
Kirk T K, Farrell R L (1987). Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol, 41(1): 465–505
CrossRef
Pubmed
Google scholar
|
[120] |
Kishi K, Kusters-van Someren M, Mayfield M B, Sun J, Loehr T M, Gold M H (1996). Characterization of manganese(II) binding site mutants of manganese peroxidase. Biochemistry, 35(27): 8986–8994
CrossRef
Pubmed
Google scholar
|
[121] |
Kishi K, Wariishi H, Marquez L, Dunford H B, Gold M H (1994). Mechanism of manganese peroxidase compound II reduction. Effect of organic acid chelators and pH. Biochemistry, 33(29): 8694–8701
CrossRef
Pubmed
Google scholar
|
[122] |
Kleinert M, Barth T (2008). Phenols from Lignin. Chem Eng Technol, 31(5): 736–745
CrossRef
Google scholar
|
[123] |
Koenig A B, Sleighter R L, Salmon E, Hatcher P G (2010). NMR structural characterization of Quercus alba (White Oak) degraded by the brown rot fungus, Laetiporus sulphureus. J Wood Chem Technol, 30(1): 61–85
CrossRef
Google scholar
|
[124] |
Kolpak F J, Blackwell J (1976). Determination of the structure of cellulose II. Macromolecules, 9(2): 273–278
CrossRef
Pubmed
Google scholar
|
[125] |
Kramer K J, Kanost M R, Hopkins T L, Jiang H, Zhu Y C, Xu R, Kerwin J L, Turecek F (2001). Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron, 57(2): 385–392
CrossRef
Google scholar
|
[126] |
Kuan I C, Johnson K A, Tien M (1993). Kinetic analysis of manganese peroxidase. The reaction with manganese complexes. J Biol Chem, 268(27): 20064–20070
Pubmed
|
[127] |
Kunamneni A, Camarero S, García-Burgos C, Plou F J, Ballesteros A, Alcalde M (2008). Engineering and applications of fungal laccases for organic synthesis. Microb Cell Fact, 7(1): 32
CrossRef
Pubmed
Google scholar
|
[128] |
Kuwahara M, Glenn J K, Morgan M A, Gold M H (1984). Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett, 169(2): 247–250
CrossRef
Google scholar
|
[129] |
Levasseur A, Lomascolo A, Chabrol O, Ruiz-Dueñas F J, Boukhris-Uzan E, Piumi F, Kües U, Ram A F, Murat C, Haon M, Benoit I, Arfi Y, Chevret D, Drula E, Kwon M J, Gouret P, Lesage-Meessen L, Lombard V, Mariette J, Noirot C, Park J, Patyshakuliyeva A, Sigoillot J C, Wiebenga A, Wösten H A, Martin F, Coutinho P M, de Vries R P, Martinez A T, Klopp C, Pontarotti P, Henrissat B, Record E (2014). The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown. BMC Genomics, 15(1): 486
CrossRef
Pubmed
Google scholar
|
[130] |
Levin L, Forchiassin F, Ramos A M (2002). Copper induction of lignin-modifying enzymes in the white-rot fungus Trametes trogii. Mycologia, 94(3): 377–383
CrossRef
Pubmed
Google scholar
|
[131] |
Li D, Alic M, Brown J A, Gold M H (1995). Regulation of manganese peroxidase gene transcription by hydrogen peroxide, chemical stress, and molecular oxygen. Appl Environ Microbiol, 61(1): 341–345
Pubmed
|
[132] |
Li D, Li N, Ma B, Mayfield M B, Gold M H (1999). Characterization of genes encoding two manganese peroxidases from the lignin-degrading fungus Dichomitus squalens(1). Biochim Biophys Acta, 1434(2): 356–364
CrossRef
Pubmed
Google scholar
|
[133] |
Lieth H (1975) Primary Production of the Major Vegetation Units of the World. In: Lieth H, Whittaker R (eds.). Primary Productivity of the Biosphere (Ecological Studies), Springer Berlin Heidelberg, 203–215
|
[134] |
Liu S, Lu H, Hu R, Shupe A, Lin L, Liang B (2012). A sustainable woody biomass biorefinery. Biotechnol Adv, 30(4): 785–810
CrossRef
Pubmed
Google scholar
|
[135] |
Liu X, Du Q, Wang Z, Zhu D, Huang Y, Li N, Wei T, Xu S, Gu L (2011). Crystal structure and biochemical features of EfeB/YcdB from Escherichia coli O157: ASP235 plays divergent roles in different enzyme-catalyzed processes. J Biol Chem, 286(17): 14922–14931
CrossRef
Pubmed
Google scholar
|
[136] |
Lobos S, Larraín J, Salas L, Cullen D, Vicuña R (1994). Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora. Microbiology, 140(Pt 10): 2691–2698
CrossRef
Pubmed
Google scholar
|
[137] |
Lundell T K, Mäkelä M R, Hildén K (2010). Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review. J Basic Microbiol, 50(1): 5–20
CrossRef
Pubmed
Google scholar
|
[138] |
Lynd L R, Weimer P J, van Zyl W H, Pretorius I S (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev, 66(3): 506–577
CrossRef
Pubmed
Google scholar
|
[139] |
Ma B, Mayfield M B, Godfrey B J, Gold M H (2004). Novel promoter sequence required for manganese regulation of manganese peroxidase isozyme 1 gene expression in Phanerochaete chrysosporium. Eukaryot Cell, 3(3): 579–588
CrossRef
Pubmed
Google scholar
|
[140] |
Ma B, Mayfield M B, Gold M H (2001). The green fluorescent protein gene functions as a reporter of gene expression in Phanerochaete chrysosporium. Appl Environ Microbiol, 67(2): 948–955
CrossRef
Pubmed
Google scholar
|
[141] |
Malkin R, Malmström B G (1970). The state and function of copper in biological systems. Adv Enzymol Relat Areas Mol Biol, 33: 177–244
Pubmed
|
[142] |
Mancilla R A, Canessa P, Manubens A, Vicuña R (2010). Effect of manganese on the secretion of manganese-peroxidase by the basidiomycete Ceriporiopsis subvermispora. Fungal Genet Biol, 47(7): 656–661
CrossRef
Pubmed
Google scholar
|
[143] |
Mansur M, Suárez T, González A E (1998). Differential gene expression in the laccase gene family from basidiomycete I-62 (CECT 20197). Appl Environ Microbiol, 64(2): 771–774
Pubmed
|
[144] |
Manubens A, Avila M, Canessa P, Vicuña R (2003). Differential regulation of genes encoding manganese peroxidase (MnP) in the basidiomycete Ceriporiopsis subvermispora. Curr Genet, 43(6): 433–438
CrossRef
Pubmed
Google scholar
|
[145] |
Manubens A, Canessa P, Folch C, Avila M, Salas L, Vicuña R (2007). Manganese affects the production of laccase in the basidiomycete Ceriporiopsis subvermispora. FEMS Microbiol Lett, 275(1): 139–145
CrossRef
Pubmed
Google scholar
|
[146] |
Martínez A T (2002). Molecular biology and structure-function of lignin-degrading heme peroxidases. Enzyme Microb Technol, 30(4): 425–444
CrossRef
Google scholar
|
[147] |
Martínez A T, Rencoret J, Nieto L, Jiménez-Barbero J, Gutiérrez A, del Río J C (2011). Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by in situ structural analyses. Environ Microbiol, 13(1): 96–107
CrossRef
Pubmed
Google scholar
|
[148] |
Martínez A T, Speranza M, Ruiz-Dueñas F J, Ferreira P, Camarero S, Guillén F, Martínez M J, Gutiérrez A, del Río J C (2005). Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol, 8(3): 195–204
Pubmed
|
[149] |
Martinez D, Larrondo L F, Putnam N, Gelpke M D, Huang K, Chapman J, Helfenbein K G, Ramaiya P, Detter J C, Larimer F, Coutinho P M, Henrissat B, Berka R, Cullen D, Rokhsar D (2004). Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol, 22(6): 695–700
CrossRef
Pubmed
Google scholar
|
[150] |
Martinez M J, Ruiz-Dueñas F J, Guillén F, Martínez A T (1996). Purification and catalytic properties of two manganese peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem, 237(2): 424–432
CrossRef
Pubmed
Google scholar
|
[151] |
Masai E, Katayama Y, Fukuda M (2007). Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem, 71(1): 1–15
CrossRef
Pubmed
Google scholar
|
[152] |
Mayer A M, Staples R C (2002). Laccase: new functions for an old enzyme. Phytochemistry, 60(6): 551–565
CrossRef
Pubmed
Google scholar
|
[153] |
Menon V, Rao M (2012). Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog Energ Combust, 38(4): 522–550
CrossRef
Google scholar
|
[154] |
Mester T, de Jong E, Field J A (1995). Manganese regulation of veratryl alcohol in white rot fungi and its indirect effect on lignin peroxidase. Appl Environ Microbiol, 61(5): 1881–1887
Pubmed
|
[155] |
Mester T, Field J A (1998). Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem, 273(25): 15412–15417
CrossRef
Pubmed
Google scholar
|
[156] |
Miyazaki K (2005). A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles, 9(6): 415–425
CrossRef
Pubmed
Google scholar
|
[157] |
Morales M, Mate M J, Romero A, Martinez M J, Martínez A T, Ruiz-Dueñas F J (2012). Two oxidation sites for low redox potential substrates: a directed mutagenesis, kinetic, and crystallographic study on Pleurotus eryngii versatile peroxidase. J Biol Chem, 287(49): 41053–41067
CrossRef
Pubmed
Google scholar
|
[158] |
Moreira P R, Duez C, Dehareng D, Antunes A, Almeida-Vara E, Frère J M, Malcata F X, Duarte J C (2005). Molecular characterisation of a versatile peroxidase from a Bjerkandera strain. J Biotechnol, 118(4): 339–352
CrossRef
Pubmed
Google scholar
|
[159] |
Morozova O V, Shumakovich G P, Gorbacheva M A, Shleev S V, Yaropolov A I (2007). “Blue” laccases. Biochemistry (Mosc), 72(10): 1136–1150
CrossRef
Pubmed
Google scholar
|
[160] |
Mouso N, Papinutti L, Forchiassin F (2003). Combined effect of copper and initial pH of the culture on production of laccase and manganese peroxidase by Stereum hirsutum (Willd) Pers. Rev Iberoam Micol, 20(4): 176–178
Pubmed
|
[161] |
Octave S, Thomas D (2009). Biorefinery: Toward an industrial metabolism. Biochimie, 91(6): 659–664
CrossRef
Pubmed
Google scholar
|
[162] |
Ogola H J, Kamiike T, Hashimoto N, Ashida H, Ishikawa T, Shibata H, Sawa Y (2009). Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. strain PCC 7120. Appl Environ Microbiol, 75(23): 7509–7518
CrossRef
Pubmed
Google scholar
|
[163] |
Ohara H (2003). Biorefinery. Appl Microbiol Biotechnol, 62(5–6): 474–477
CrossRef
Pubmed
Google scholar
|
[164] |
Osma J F, Toca-Herrera J L, Rodríguez-Couto S (2010). Uses of laccases in the food industry. Enzyme Res, 2010: 918761
CrossRef
Pubmed
Google scholar
|
[165] |
Otjen L, Blanchette R, Effland M, Leatham G (1987). Assessment of 30 White Rot Basidiomycetes for Selective Lignin Degradation Holzforschung- International Journal of the Biology, Chemistry, Physics and Technology of Wood, pp. 343
|
[166] |
Paliwal R, Rawat A P, Rawat M, Rai J P (2012). Bioligninolysis: recent updates for biotechnological solution. Appl Biochem Biotechnol, 167(7): 1865–1889
CrossRef
Pubmed
Google scholar
|
[167] |
Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000). Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol, 66(3): 920–924
CrossRef
Pubmed
Google scholar
|
[168] |
Paszczynski A, Huynh V B, Crawford R (1985). Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett, 29: 37–41
CrossRef
Google scholar
|
[169] |
Pauly M, Gille S, Liu L, Mansoori N, de Souza A, Schultink A, Xiong G (2013). Hemicellulose biosynthesis. Planta, 238(4): 627–642
CrossRef
Pubmed
Google scholar
|
[170] |
Pauly M, Keegstra K (2008). Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J, 54(4): 559–568
CrossRef
Pubmed
Google scholar
|
[171] |
Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol, 5(2): 53–63
CrossRef
Pubmed
Google scholar
|
[172] |
Pérez-Boada M, Ruiz-Dueñas F J, Pogni R, Basosi R, Choinowski T, Martínez M J, Piontek K, Martínez A T (2005). Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol, 354(2): 385–402
CrossRef
Pubmed
Google scholar
|
[173] |
Périé F H, Gold M H (1991). Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microbiol, 57(8): 2240–2245
Pubmed
|
[174] |
Peterson T W a G (2004). Top value added chemicals from biomass. no DOE/GO-102004–1992, US Department of Energy, Office of Scientific and Technical Information, Piontek K, Antorini M, Choinowski T (2002). Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-A resolution containing a full complement of coppers. J Biol Chem, 277: 37663–37669
|
[175] |
Piscitelli A, Giardina P, Lettera V, Pezzella C, Sannia G, Faraco V (2011). Induction and transcriptional regulation of laccases in fungi. Curr Genomics, 12(2): 104–112
CrossRef
Pubmed
Google scholar
|
[176] |
Pogni R, Baratto M C, Teutloff C, Giansanti S, Ruiz-Dueñas F J, Choinowski T, Piontek K, Martínez A T, Lendzian F, Basosi R (2006). A tryptophan neutral radical in the oxidized state of versatile peroxidase from Pleurotus eryngii: a combined multifrequency EPR and density functional theory study. J Biol Chem, 281(14): 9517–9526
CrossRef
Pubmed
Google scholar
|
[177] |
Poulos T L, Edwards S L, Wariishi H, Gold M H (1993). Crystallographic refinement of lignin peroxidase at 2 A. J Biol Chem, 268(6): 4429–4440
Pubmed
|
[178] |
Pozdnyakova N, Makarov O, Chernyshova M, Turkovskaya O, Jarosz-Wilkolazka A (2013). Versatile peroxidase of Bjerkandera fumosa: substrate and inhibitor specificity. Enzyme Microb Technol, 52(1): 44–53
CrossRef
Pubmed
Google scholar
|
[179] |
Ragauskas A J, Beckham G T, Biddy M J, Chandra R, Chen F, Davis M F, Davison B H, Dixon R A, Gilna P, Keller M, Langan P, Naskar A K, Saddler J N, Tschaplinski T J, Tuskan G A, Wyman C E (2014). Lignin valorization: improving lignin processing in the biorefinery. Science, 344(6185): 1246843
CrossRef
Pubmed
Google scholar
|
[180] |
Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick W J Jr, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T (2006). The path forward for biofuels and biomaterials. Science, 311(5760): 484–489
CrossRef
Pubmed
Google scholar
|
[181] |
Raj A, Reddy M M K, Chandra R (2007). Decolourisation and treatment of pulp and paper mill effluent by lignin-degrading Bacillus sp.. J Chem Tech Biot, 82(4): 399–406
CrossRef
Google scholar
|
[182] |
Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz P, Marita J, Hatfield R, Ralph S, Christensen J, Boerjan W (2004). Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem Rev, 3(1/2): 29–60
CrossRef
Google scholar
|
[183] |
Ramachandra M, Crawford D L, Hertel G (1988). Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus. Appl Environ Microbiol, 54(12): 3057–3063
Pubmed
|
[184] |
Ramírez D A, Muñoz S V, Atehortua L, Michel F C Jr (2010). Effects of different wavelengths of light on lignin peroxidase production by the white-rot fungi Phanerochaete chrysosporium grown in submerged cultures. Bioresour Technol, 101(23): 9213–9220
CrossRef
Pubmed
Google scholar
|
[185] |
Reddy G V B, Sridhar M, Gold M H (2003). Cleavage of nonphenolic β-1 diarylpropane lignin model dimers by manganese peroxidase from Phanerochaete chrysosporium. Eur J Biochem, 270(2): 284–292
CrossRef
Pubmed
Google scholar
|
[186] |
Reiser J, Walther I S, Fraefel C, Fiechter A (1993). Methods to investigate the expression of lignin peroxidase genes by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol, 59(9): 2897–2903
Pubmed
|
[187] |
Rico A, Rencoret J, Del Río J C, Martínez A T, Gutiérrez A (2014). Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol Biofuels, 7(1): 6
CrossRef
Pubmed
Google scholar
|
[188] |
Riley R, Salamov A A, Brown D W, Nagy L G, Floudas D, Held B W, Levasseur A, Lombard V, Morin E, Otillar R, Lindquist E A, Sun H, LaButti K M, Schmutz J, Jabbour D, Luo H, Baker S E, Pisabarro A G, Walton J D, Blanchette R A, Henrissat B, Martin F, Cullen D, Hibbett D S, Grigoriev I V (2014). Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci U S A, 111(27): 9923–9928
CrossRef
Pubmed
Google scholar
|
[189] |
Roberts J N, Singh R, Grigg J C, Murphy M E, Bugg T D, Eltis L D (2011). Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1. Biochemistry, 50(23): 5108–5119
CrossRef
Pubmed
Google scholar
|
[190] |
Roddy D J (2013). Biomass in a petrochemical world. Interface Focus, 3(1): 20120038
CrossRef
Pubmed
Google scholar
|
[191] |
Rodríguez Couto S, Toca Herrera J L (2006). Industrial and biotechnological applications of laccases: a review. Biotechnol Adv, 24(5): 500–513
CrossRef
Pubmed
Google scholar
|
[192] |
Ruiz-Dueñas F J, Camarero S, Pérez-Boada M, Martínez M J, Martínez A T (2001). A new versatile peroxidase from Pleurotus. Biochem Soc Trans, 29(Pt 2): 116–122
CrossRef
Pubmed
Google scholar
|
[193] |
Ruiz-Dueñas F J, Guillén F, Camarero S, Pérez-Boada M, Martínez M J, Martínez A T (1999). Regulation of peroxidase transcript levels in liquid cultures of the ligninolytic fungus Pleurotus eryngii. Appl Environ Microbiol, 65(10): 4458–4463
Pubmed
|
[194] |
Ruiz-Dueñas F J, Martínez A T (2009). Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol, 2(2): 164–177
CrossRef
Pubmed
Google scholar
|
[195] |
Ruiz-Dueñas F J, Martínez M J, Martínez A T (1999). Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microbiol, 31(1): 223–235
CrossRef
Pubmed
Google scholar
|
[196] |
Ruiz-Dueñas F J, Morales M, García E, Miki Y, Martínez M J, Martínez A T (2009a). Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot, 60(2): 441–452
CrossRef
Pubmed
Google scholar
|
[197] |
Ruiz-Dueñas F J, Morales M, Pérez-Boada M, Choinowski T, Martínez M J, Piontek K, Martínez A T (2007). Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic, and crystallographic study. Biochemistry, 46(1): 66–77
CrossRef
Pubmed
Google scholar
|
[198] |
Ruiz-Dueñas F J, Pogni R, Morales M, Giansanti S, Mate M J, Romero A, Martínez M J, Basosi R, Martínez A T (2009b). Protein radicals in fungal versatile peroxidase: catalytic tryptophan radical in both compound I and compound II and studies on W164Y, W164H, and W164S variants. J Biol Chem, 284(12): 7986–7994
CrossRef
Pubmed
Google scholar
|
[199] |
Saha B C (2003). Hemicellulose bioconversion. J Ind Microbiol Biotechnol, 30(5): 279–291
CrossRef
Pubmed
Google scholar
|
[200] |
Salame T M, Knop D, Levinson D, Mabjeesh S J, Yarden O, Hadar Y (2012a). Release of Pleurotus ostreatus versatile-peroxidase from Mn2+ repression enhances anthropogenic and natural substrate degradation. PLoS One, 7(12): e52446
CrossRef
Pubmed
Google scholar
|
[201] |
Salame T M, Knop D, Tal D, Levinson D, Yarden O, Hadar Y (2012b). Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus. Appl Environ Microbiol, 78(15): 5341–5352
CrossRef
Pubmed
Google scholar
|
[202] |
Salvachúa D, Prieto A, Martínez A T, Martínez M J (2013). Characterization of a novel dye-decolorizing peroxidase (DyP)-type enzyme from Irpex lacteus and its application in enzymatic hydrolysis of wheat straw. Appl Environ Microbiol, 79(14): 4316–4324
CrossRef
Pubmed
Google scholar
|
[203] |
Santhanam N, Vivanco J M, Decker S R, Reardon K F (2011). Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol, 29(10): 480–489
CrossRef
Pubmed
Google scholar
|
[204] |
Schwarze F W M R, Engels J, Mattheck C (2000) Fungal strategies of wood decay in trees, New York, Berlin, Springer
|
[205] |
Sharma P, Goel R, Capalash N (2007). Bacterial laccases. World J Microbiol Biotechnol, 23(6): 823–832
CrossRef
Google scholar
|
[206] |
Shraddha S R, Shekher R, Sehgal S, Kamthania M, Kumar A (2011). Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res, 2011: 217861
Pubmed
|
[207] |
Singh D, Chen S (2008). The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol, 81(3): 399–417
CrossRef
Pubmed
Google scholar
|
[208] |
Singh R, Grigg J C, Armstrong Z, Murphy M E, Eltis L D (2012). Distal heme pocket residues of B-type dye-decolorizing peroxidase: arginine but not aspartate is essential for peroxidase activity. J Biol Chem, 287(13): 10623–10630
CrossRef
Pubmed
Google scholar
|
[209] |
Soden D M, Dobson A D (2001). Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology, 147(Pt 7): 1755–1763
Pubmed
|
[210] |
Soden D M, Dobson A D (2003). The use of amplified flanking region-PCR in the isolation of laccase promoter sequences from the edible fungus Pleurotus sajor-caju. J Appl Microbiol, 95(3): 553–562
CrossRef
Pubmed
Google scholar
|
[211] |
Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004). Toward a systems approach to understanding plant cell walls. Science, 306(5705): 2206–2211
CrossRef
Pubmed
Google scholar
|
[212] |
Stewart P, Cullen D (1999). Organization and differential regulation of a cluster of lignin peroxidase genes of Phanerochaete chrysosporium. J Bacteriol, 181(11): 3427–3432
Pubmed
|
[213] |
Stewart P, Kersten P, Vanden Wymelenberg A, Gaskell J, Cullen D (1992). Lignin peroxidase gene family of Phanerochaete chrysosporium: complex regulation by carbon and nitrogen limitation and identification of a second dimorphic chromosome. J Bacteriol, 174(15): 5036–5042
Pubmed
|
[214] |
Stoj C, Kosman D J (2003). Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett, 554(3): 422–426
CrossRef
Pubmed
Google scholar
|
[215] |
Strittmatter E, Wachter S, Liers C, Ullrich R, Hofrichter M, Plattner D A, Piontek K (2013). Radical formation on a conserved tyrosine residue is crucial for DyP activity. Arch Biochem Biophys, 537(2): 161–167
CrossRef
Pubmed
Google scholar
|
[216] |
Sugano Y (2009). DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci, 66(8): 1387–1403
CrossRef
Pubmed
Google scholar
|
[217] |
Sugano Y, Muramatsu R, Ichiyanagi A, Sato T, Shoda M (2007). DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family: ASP171 replaces the distal histidine of classical peroxidases. J Biol Chem, 282(50): 36652–36658
CrossRef
Pubmed
Google scholar
|
[218] |
Sundaramoorthy M, Gold M H, Poulos T L (2010). Ultrahigh (0.93A) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: implications for the catalytic mechanism. J Inorg Biochem, 104(6): 683–690
CrossRef
Pubmed
Google scholar
|
[219] |
Sundaramoorthy M, Kishi K, Gold M H, Poulos T L (1994). The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-A resolution. J Biol Chem, 269(52): 32759–32767
Pubmed
|
[220] |
Sundaramoorthy M, Kishi K, Gold M H, Poulos T L (1997). Crystal structures of substrate binding site mutants of manganese peroxidase. J Biol Chem, 272(28): 17574–17580
CrossRef
Pubmed
Google scholar
|
[221] |
Taylor C R, Hardiman E M, Ahmad M, Sainsbury P D, Norris P R, Bugg T D (2012). Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J Appl Microbiol, 113(3): 521–530
CrossRef
Pubmed
Google scholar
|
[222] |
Tello M, Corsini G, Larrondo L F, Salas L, Lobos S, Vicuña R (2000). Characterization of three new manganese peroxidase genes from the ligninolytic basidiomycete Ceriporiopsis subvermispora. Biochim Biophys Acta, 1490(1–2): 137–144
CrossRef
Pubmed
Google scholar
|
[223] |
Thiele D J (1988). ACE1 regulates expression of the Saccharomyces cerevisiae metallothionein gene. Mol Cell Biol, 8(7): 2745–2752
Pubmed
|
[224] |
Tien M, Kirk T K (1983). Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science, 221(4611): 661–663
CrossRef
Pubmed
Google scholar
|
[225] |
Tien M, Kirk T K (1988) Lignin peroxidase of Phanerochaete chrysosporium. In: Willis A. Wood S T K (ed.). Methods in Enzymology, Academic Press, 238–249
|
[226] |
Tuck C O, Pérez E, Horváth I T, Sheldon R A, Poliakoff M (2012). Valorization of biomass: deriving more value from waste. Science, 337(6095): 695–699
CrossRef
Pubmed
Google scholar
|
[227] |
Valli K, Wariishi H, Gold M H (1990). Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: role of veratryl alcohol in lignin biodegradation. Biochemistry, 29(37): 8535–8539
CrossRef
Pubmed
Google scholar
|
[228] |
Vanden Wymelenberg A, Gaskell J, Mozuch M, Kersten P, Sabat G, Martinez D, Cullen D (2009). Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression. Appl Environ Microbiol, 75(12): 4058–4068
CrossRef
Pubmed
Google scholar
|
[229] |
Vanden Wymelenberg A, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, Mansfield S D, Blanchette R A, Martinez D, Grigoriev I, Kersten P J, Cullen D (2010). Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol, 76(11): 3599–3610
CrossRef
Pubmed
Google scholar
|
[230] |
Wan C, Li Y (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv, 30(6): 1447–1457
CrossRef
Pubmed
Google scholar
|
[231] |
Wariishi H, Akileswaran L, Gold M H (1988). Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry, 27(14): 5365–5370
CrossRef
Pubmed
Google scholar
|
[232] |
Wariishi H, Gold M H (1990). Lignin peroxidase compound III. Mechanism of formation and decomposition. J Biol Chem, 265(4): 2070–2077
Pubmed
|
[233] |
Wariishi H, Valli K, Renganathan V, Gold M H (1989). Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. J Biol Chem, 264(24): 14185–14191
Pubmed
|
[234] |
Welinder K G, Mauro J M, Nørskov-Lauritsen L (1992). Structure of plant and fungal peroxidases. Biochem Soc Trans, 20(2): 337–340
Pubmed
|
[235] |
Wesenberg D, Kyriakides I, Agathos S N (2003). White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv, 22(1-2): 161–187
CrossRef
Pubmed
Google scholar
|
[236] |
Whitwam R E, Brown K R, Musick M, Natan M J, Tien M (1997). Mutagenesis of the Mn2+-binding site of manganese peroxidase affects oxidation of Mn2+ by both compound I and compound II. Biochemistry, 36(32): 9766–9773
CrossRef
Pubmed
Google scholar
|
[237] |
Williamson P R, Wakamatsu K, Ito S (1998). Melanin biosynthesis in Cryptococcus neoformans. J Bacteriol, 180(6): 1570–1572
Pubmed
|
[238] |
Wong D W (2009). Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol, 157(2): 174–209
CrossRef
Pubmed
Google scholar
|
[239] |
Xiao X, Marzluf G A (1996). Identification of the native NIT2 major nitrogen regulatory protein in nuclear extracts of Neurospora crassa. Genetica, 97(2): 153–163
CrossRef
Pubmed
Google scholar
|
[240] |
Xiao Y Z, Hong Y Z, Li J F, Hang J, Tong P G, Fang W, Zhou C Z (2006). Cloning of novel laccase isozyme genes from Trametes sp. AH28-2 and analyses of their differential expression. Appl Microbiol Biotechnol, 71(4): 493–501
CrossRef
Pubmed
Google scholar
|
[241b] |
Xu F, Shin W, Brown S H, Wahleithner J A, Sundaram U M, Solomon E I (1996). A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. BiochimBiophysActa, 1292: 303–311
|
[241] |
Yaropolov A I, Skorobogat’ko O V, Vartanov S S, Varfolomeyev S D (1994). Laccase. Appl Biochem Biotechnol, 49(3): 257–280
CrossRef
Google scholar
|
[242] |
Yelle D J, Ralph J, Lu F, Hammel K E (2008). Evidence for cleavage of lignin by a brown rot basidiomycete. Environ Microbiol, 10(7): 1844–1849
CrossRef
Pubmed
Google scholar
|
[243] |
Yoshida H, the Communication from the Chemical Society of Tokio (1883). Yoshida: Chemistry of lacquer (Urushi). J Chem Soc Trans, 43: 472–486
CrossRef
Google scholar
|
[244] |
Yoshida T, Tsuge H, Konno H, Hisabori T, Sugano Y (2011). The catalytic mechanism of dye-decolorizing peroxidase DyP may require the swinging movement of an aspartic acid residue. FEBS J, 278(13): 2387–2394
CrossRef
Pubmed
Google scholar
|
[245] |
Zeng Y, Zhao S, Yang S, Ding S Y (2014). Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol, 27: 38–45
CrossRef
Pubmed
Google scholar
|
[246] |
Zhang Y H (2008). Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol, 35(5): 367–375
CrossRef
Pubmed
Google scholar
|
[247] |
Zimmermann W (1990). Degradation of lignin by bacteria. J Biotechnol, 13(2–3): 119–130
CrossRef
Google scholar
|
[248] |
Zubieta C, Joseph R, Krishna S S, McMullan D, Kapoor M, Axelrod H L, Miller M D, Abdubek P, Acosta C, Astakhova T, Carlton D, Chiu H J, Clayton T, Deller M C, Duan L, Elias Y, Elsliger M A, Feuerhelm J, Grzechnik S K, Hale J, Han G W, Jaroszewski L, Jin K K, Klock H E, Knuth M W, Kozbial P, Kumar A, Marciano D, Morse A T, Murphy K D, Nigoghossian E, Okach L, Oommachen S, Reyes R, Rife C L, Schimmel P, Trout C V, van den Bedem H, Weekes D, White A, Xu Q, Hodgson K O, Wooley J, Deacon A M, Godzik A, Lesley S A, Wilson I A (2007). Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA. Proteins: Struct, Funct. Bioinf, 69: 234–243
|
/
〈 | 〉 |