The correlation between iron homeostasis and telomere maintenance
Caiguo ZHANG
The correlation between iron homeostasis and telomere maintenance
Eukaryotic organisms require iron to sustain genome stability, cell proliferation and development. Chromosomes contain telomeres to ensure complete replications and avoid fusions. Numerous evidences reveal that iron can act directly or indirectly on telomere maintenance. In human, disruption of systemic or cellular iron homeostasis is reportedly to cause serious health problems such as iron overload (hereditary hemochromatosis), iron deficiency anemia, carcinogenesis and acceleration of aging process. These processes commonly associate with abnormal telomere length. Additionally, cells containing mutations in iron-containing proteins such as DNA polymerases (Polα, δ, and ϵ), regulator of telomere length 1 (RTEL1) and the small subunit of ribonucleotide reductases (RNRs) have abnormal telomere length. This review briefly summarizes current understandings on iron homeostasis and telomere maintenance in cancer and aging process, followed by discussing their direct and indirect correlation, and the possible regulatory mechanisms.
iron homeostasis / telomere / telomere maintenance / cancer / aging
[1] |
Adams Martin A, Dionne I, Wellinger R J, Holm C (2000). The function of DNA polymerase alpha at telomeric G tails is important for telomere homeostasis. Mol Cell Biol, 20(3): 786–796
CrossRef
Pubmed
Google scholar
|
[2] |
Addinall S G, Holstein E M, Lawless C, Yu M, Chapman K, Banks A P, Ngo H P, Maringele L, Taschuk M, Young A, Ciesiolka A, Lister A L, Wipat A, Wilkinson D J, Lydall D (2011). Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects. PLoS Genet, 7(4): e1001362
CrossRef
Pubmed
Google scholar
|
[3] |
Andrews N C, Schmidt P J (2007). Iron homeostasis. Annu Rev Physiol, 69(1): 69–85
CrossRef
Pubmed
Google scholar
|
[4] |
Askree S H, Yehuda T, Smolikov S, Gurevich R, Hawk J, Coker C, Krauskopf A, Kupiec M, McEachern M J (2004). A genome-wide screen for Saccharomyces cerevisiae deletion mutants that affect telomere length. Proc Natl Acad Sci USA, 101(23): 8658–8663
CrossRef
Pubmed
Google scholar
|
[5] |
Aubert G, Lansdorp P M (2008). Telomeres and aging. Physiol Rev, 88(2): 557–579
CrossRef
Pubmed
Google scholar
|
[6] |
Beaumont C (2010). Multiple regulatory mechanisms act in concert to control ferroportin expression and heme iron recycling by macrophages. Haematologica, 95(8): 1233–1236
CrossRef
Pubmed
Google scholar
|
[7] |
Bischoff C, Petersen H C, Graakjaer J, Andersen-Ranberg K, Vaupel J W, Bohr V A, Kølvraa S, Christensen K (2006). No association between telomere length and survival among the elderly and oldest old. Epidemiology, 17(2): 190–194
CrossRef
Pubmed
Google scholar
|
[8] |
Brookes M J, Hughes S, Turner F E, Reynolds G, Sharma N, Ismail T, Berx G, McKie A T, Hotchin N, Anderson G J, Iqbal T, Tselepis C (2006). Modulation of iron transport proteins in human colorectal carcinogenesis. Gut, 55(10): 1449–1460
CrossRef
Pubmed
Google scholar
|
[9] |
Brown K E, Meleah Mathahs M, Broadhurst K A, Coleman M C, Ridnour L A, Schmidt W N, Spitz D R (2007). Increased hepatic telomerase activity in a rat model of iron overload: a role for altered thiol redox state? Free Radic Biol Med, 42(2): 228–235
CrossRef
Pubmed
Google scholar
|
[10] |
Calado R, Young N (2012). Telomeres in disease. F1000 Med Rep, 4: 8
Pubmed
|
[11] |
Carson J L, Adamson, J W (2010). Iron deficiency and heart disease: ironclad evidence? Hematology, 2010(1): 348–350
|
[12] |
Chung M, Chan J A, Moorthy D, Hadar N, Ratichek S J, Concannon T W, Lau J (2013). In Biomarkers for Assessing and Managing Iron Deficiency Anemia in Late-Stage Chronic Kidney Disease: Future Research Needs: Identification of Future Research Needs From. Comparative Effectiveness Review No 83 (Rockville (MD)). www.effectivehealthcare.ahrq.gov/reports/final.cfm
|
[13] |
Cong Y S, Wright W E, Shay J W (2002). Human telomerase and its regulation. Microbiol Mol Biol Rev, 66(3): 407–425
CrossRef
Pubmed
Google scholar
|
[14] |
Cosme-Blanco W, Shen M F, Lazar A J, Pathak S, Lozano G, Multani A S, Chang S (2007). Telomere dysfunction suppresses spontaneous tumorigenesis in vivo by initiating p53-dependent cellular senescence. EMBO Rep, 8(5): 497–503
CrossRef
Pubmed
Google scholar
|
[15] |
de Lange T (2005). Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev, 19(18): 2100–2110
CrossRef
Pubmed
Google scholar
|
[16] |
de Lange T (2009). How telomeres solve the end-protection problem. Science, 326(5955): 948–952
CrossRef
Pubmed
Google scholar
|
[17] |
de Lange T (2010). Telomere biology and DNA repair: enemies with benefits. FEBS Lett, 584(17): 3673–3674
CrossRef
Pubmed
Google scholar
|
[18] |
Denchi E L, de Lange T (2007). Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature, 448(7157): 1068–1071
CrossRef
Pubmed
Google scholar
|
[19] |
Deng Z, Atanasiu C, Burg J S, Broccoli D, Lieberman P M (2003). Telomere repeat binding factors TRF1, TRF2, and hRAP1 modulate replication of Epstein-Barr virus OriP. J Virol, 77(22): 11992–12001
CrossRef
Pubmed
Google scholar
|
[20] |
Deng Z, Lezina L, Chen C J, Shtivelband S, So W, Lieberman P M (2002). Telomeric proteins regulate episomal maintenance of Epstein-Barr virus origin of plasmid replication. Mol Cell, 9(3): 493–503
CrossRef
Pubmed
Google scholar
|
[21] |
Denic S, Agarwal M M (2007). Nutritional iron deficiency: an evolutionary perspective. Nutrition, 23(7-8): 603–614
CrossRef
Pubmed
Google scholar
|
[22] |
Diotti R, Loayza D (2011). Shelterin complex and associated factors at human telomeres. Nucleus, 2(2): 119–135
CrossRef
Pubmed
Google scholar
|
[23] |
Dlouhy A C, Outten C E (2013). The iron metallome in eukaryotic organisms. Metal Ions in Life Sciences12: 241–278
|
[24] |
Donate L E, Blasco M A (2011). Telomeres in cancer and ageing. Philos Trans R Soc Lond B Biol Sci, 366(1561): 76–84
CrossRef
Pubmed
Google scholar
|
[25] |
Fikus M U, Mieczkowski P A, Koprowski P, Rytka J, Sledziewska-Gójska E, Ciésla Z (2000). The product of the DNA damage-inducible gene of Saccharomyces cerevisiae, DIN7, specifically functions in mitochondria. Genetics, 154(1): 73–81
Pubmed
|
[26] |
Fuster J J, Andrés V (2006). Telomere biology and cardiovascular disease. Circ Res, 99(11): 1167–1180
CrossRef
Pubmed
Google scholar
|
[27] |
Fyhrquist F, Saijonmaa O, Strandberg T (2013). The roles of senescence and telomere shortening in cardiovascular disease. Nat Rev Cardiol, 10(5): 274–283
CrossRef
Pubmed
Google scholar
|
[28] |
Ganz T (2011). Hepcidin and iron regulation, 10 years later. Blood, 117(17): 4425–4433
CrossRef
Pubmed
Google scholar
|
[29] |
Ghio A J, Stonehuerner J G, Richards J H, Crissman K M, Roggli V L, Piantadosi C A, Carraway M S (2008). Iron homeostasis and oxidative stress in idiopathic pulmonary alveolar proteinosis: a case-control study. Respir Res, 9(1): 10
CrossRef
Pubmed
Google scholar
|
[30] |
Green N S, Mayeux R (2006). The long and short of it: telomeres and the brain. Lancet Neurol, 5(12): 999–1000
CrossRef
Pubmed
Google scholar
|
[31] |
Gupta A, Sharma S, Reichenbach P, Marjavaara L, Nilsson A K, Lingner J, Chabes A, Rothstein R, Chang M (2013). Telomere length homeostasis responds to changes in intracellular dNTP pools. Genetics, 193(4): 1095–1105
CrossRef
Pubmed
Google scholar
|
[32] |
Hanson E H, Imperatore G, Burke W (2001). HFE gene and hereditary hemochromatosis: a HuGE review. Human Genome Epidemiology. Am J Epidemiol, 154(3): 193–206
CrossRef
Pubmed
Google scholar
|
[33] |
Hatcher H C, Singh R N, Torti F M, Torti S V (2009). Synthetic and natural iron chelators: therapeutic potential and clinical use. Future Med Chem, 1: 1643–1670
|
[34] |
Heath J L, Weiss J M, Lavau C P, Wechsler D S (2013). Iron deprivation in cancer—potential therapeutic implications. Nutrients, 5(8): 2836–2859
CrossRef
Pubmed
Google scholar
|
[35] |
Herbig U, Jobling W A, Chen B P, Chen D J, Sedivy J M (2004). Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell, 14(4): 501–513
CrossRef
Pubmed
Google scholar
|
[36] |
Houben J M, Giltay E J, Rius-Ottenheim N, Hageman G J, Kromhout D (2011). Telomere length and mortality in elderly men: the Zutphen Elderly Study. J Gerontol A Biol Sci Med Sci, 66(1): 38–44
CrossRef
Pubmed
Google scholar
|
[37] |
Huang M, Elledge S J (1997). Identification of RNR4, encoding a second essential small subunit of ribonucleotide reductase in Saccharomyces cerevisiae. Mol Cell Biol, 17(10): 6105–6113
Pubmed
|
[38] |
Jain S, Sugawara N, Lydeard J, Vaze M, Tanguy Le Gac N, Haber J E (2009). A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev, 23(3): 291–303
CrossRef
Pubmed
Google scholar
|
[39] |
Jakupciak J P, Wang W, Barker P E, Srivastava S, Atha D H (2004). Analytical validation of telomerase activity for cancer early detection: TRAP/PCR-CE and hTERT mRNA quantification assay for high-throughput screening of tumor cells. J Mol Diagn, 6(3): 157–165
CrossRef
Pubmed
Google scholar
|
[40] |
Jian, J, Pelle E, Huang X (2009). Iron and menopause: does increased iron affect the health of postmenopausal women? Antioxidants Redox Signal, 11: 2939–2943
|
[41] |
Kaplan J, McVey Ward D, Crisp R J, Philpott C C (2006). Iron-dependent metabolic remodeling in S. cerevisiae. Biochim Biophys Acta, 1763(7): 646–651
CrossRef
Pubmed
Google scholar
|
[42] |
Kaur D, Andersen J K (2002). Ironing out Parkinson’s disease: is therapeutic treatment with iron chelators a real possibility? Aging Cell, 1(1): 17–21
CrossRef
Pubmed
Google scholar
|
[43] |
Kawasaki Y, Sugino A (2001). Yeast replicative DNA polymerases and their role at the replication fork. Mol Cells, 12(3): 277–285
Pubmed
|
[44] |
Killilea D W, Wong S L, Cahaya H S, Atamna H, Ames B N (2004). Iron accumulation during cellular senescence. Ann N Y Acad Sci, 1019(1): 365–367
CrossRef
Pubmed
Google scholar
|
[45] |
Kim Sh S H, Kaminker P, Campisi J (2002). Telomeres, aging and cancer: in search of a happy ending. Oncogene, 21(4): 503–511
CrossRef
Pubmed
Google scholar
|
[46] |
Koziel J E, Fox M J, Steding C E, Sprouse A A, Herbert B S (2011). Medical genetics and epigenetics of telomerase. J Cell Mol Med, 15(3): 457–467
CrossRef
Pubmed
Google scholar
|
[47] |
Kozlitina J, Garcia C K (2012). Red blood cell size is inversely associated with leukocyte telomere length in a large multi-ethnic population. PLoS ONE, 7(12): e51046
CrossRef
Pubmed
Google scholar
|
[48] |
Kremastinos D T, Farmakis D (2011). Iron overload cardiomyopathy in clinical practice. Circulation, 124(20): 2253–2263
CrossRef
Pubmed
Google scholar
|
[49] |
Lamy P J, Durigova A, Jacot W (2014). Iron homeostasis and anemia markers in early breast cancer: Iron and breast cancer. Clin Chim acta, 434: 34–40
|
[50] |
Lawen A, Lane D J (2013). Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxid Redox Signal, 18: 2473–2507
|
[51] |
Le Guen T, Jullien L, Touzot F, Schertzer M, Gaillard L, Perderiset M, Carpentier W, Nitschke P, Picard C, Couillault G, Soulier J, Fischer A, Callebaut I, Jabado N, Londono-Vallejo A, de Villartay J P, Revy P (2013). Human RTEL1 deficiency causes Hoyeraal-Hreidarsson syndrome with short telomeres and genome instability. Hum Mol Genet, 22(16): 3239–3249
CrossRef
Pubmed
Google scholar
|
[52] |
Li H, Mapolelo D T, Dingra N N, Naik S G, Lees N S, Hoffman B M, Riggs-Gelasco P J, Huynh B H, Johnson M K, Outten C E (2009). The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation. Biochemistry, 48(40): 9569–9581
CrossRef
Pubmed
Google scholar
|
[53] |
Lill R (2009). Function and biogenesis of iron-sulphur proteins. Nature, 460(7257): 831–838
CrossRef
Pubmed
Google scholar
|
[54] |
Lis E T, O’Neill B M, Gil-Lamaignere C, Chin J K, Romesberg F E (2008). Identification of pathways controlling DNA damage induced mutation in Saccharomyces cerevisiae. DNA Repair (Amst), 7(5): 801–810
CrossRef
Pubmed
Google scholar
|
[55] |
Liu L, Berletch J B, Green J G, Pate M S, Andrews L G, Tollefsbol T O (2004). Telomerase inhibition by retinoids precedes cytodifferentiation of leukemia cells and may contribute to terminal differentiation. Mol Cancer Ther, 3(8): 1003–1009
Pubmed
|
[56] |
Ludlow A T, Ludlow L W, Roth S M (2013). Do telomeres adapt to physiological stress? Exploring the effect of exercise on telomere length and telomere-related proteins. Biomed Res Int, 2013: 601368
|
[58] |
Ma H, Zhou Z, Wei S, Liu Z, Pooley K A, Dunning A M, Svenson U, Roos G, Hosgood H D 3rd, Shen M, Wei Q (2011). Shortened telomere length is associated with increased risk of cancer: a meta-analysis. PLoS ONE, 6(6): e20466
CrossRef
Pubmed
Google scholar
|
[59] |
Mainous A G 3rd, Wright R U, Hulihan M M, Twal W O, McLaren C E, Diaz V A, McLaren G D, Argraves W S, Grant A M (2013). Telomere length and elevated iron: the influence of phenotype and HFE genotype. Am J Hematol, 88(6): 492–496
CrossRef
Pubmed
Google scholar
|
[60] |
Marques O, da Silva B M, Porto G, Lopes C (2014). Iron homeostasis in breast cancer. Cancer Lett, 347(1): 1–14
CrossRef
Pubmed
Google scholar
|
[61] |
Martínez P, Blasco M A (2011). Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer, 11(3): 161–176
CrossRef
Pubmed
Google scholar
|
[62] |
Miller J L (2013). Iron deficiency anemia: a common and curable disease. Cold Spring Harb Perspect Med, 3(7). pii: a011866
|
[63] |
Moslehi J, DePinho R A, Sahin E (2012). Telomeres and mitochondria in the aging heart. Circ Res, 110(9): 1226–1237
CrossRef
Pubmed
Google scholar
|
[64] |
Mourkioti F, Kustan J, Kraft P, Day J W, Zhao M M, Kost-Alimova M, Protopopov A, DePinho R A, Bernstein D, Meeker A K, Blau H M (2013). Role of telomere dysfunction in cardiac failure in Duchenne muscular dystrophy. Nat Cell Biol, 15(8): 895–904
CrossRef
Pubmed
Google scholar
|
[65] |
Neumann A A, Watson C M, Noble J R, Pickett H A, Tam P P, Reddel R R (2013). Alternative lengthening of telomeres in normal mammalian somatic cells. Genes Dev, 27(1): 18–23
CrossRef
Pubmed
Google scholar
|
[66] |
Njajou O T, Hsueh W C, Blackburn E H, Newman A B, Wu S H, Li R, Simonsick E M, Harris T M, Cummings S R, Cawthon R M, the Health ABC study (2009). Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study. J Gerontol A Biol Sci Med Sci, 64(8): 860–864
CrossRef
Pubmed
Google scholar
|
[67] |
Nordlund P, Reichard P (2006). Ribonucleotide reductases. Annu Rev Biochem, 75(1): 681–706
CrossRef
Pubmed
Google scholar
|
[68] |
Oh H, Wang S C, Prahash A, Sano M, Moravec C S, Taffet G E, Michael L H, Youker K A, Entman M L, Schneider M D (2003). Telomere attrition and Chk2 activation in human heart failure. Proc Natl Acad Sci USA, 100(9): 5378–5383
CrossRef
Pubmed
Google scholar
|
[69] |
Ohya T, Kawasaki Y, Hiraga S, Kanbara S, Nakajo K, Nakashima N, Suzuki A, Sugino A (2002). The DNA polymerase domain of pol(epsilon) is required for rapid, efficient, and highly accurate chromosomal DNA replication, telomere length maintenance, and normal cell senescence in Saccharomyces cerevisiae. J Biol Chem, 277(31): 28099–28108
CrossRef
Pubmed
Google scholar
|
[70] |
Oliveira L, Drapier J C (2000). Down-regulation of iron regulatory protein 1 gene expression by nitric oxide. Proc Natl Acad Sci USA, 97(12): 6550–6555
CrossRef
Pubmed
Google scholar
|
[71] |
Orrenius S, Nicotera P, Zhivotovsky B (2011). Cell death mechanisms and their implications in toxicology. Toxicol Sci, 119: 3–19
|
[72] |
Palm W, de Lange T (2008). How shelterin protects mammalian telomeres. Annu Rev Genet, 42(1): 301–334
CrossRef
Pubmed
Google scholar
|
[73] |
Pantopoulos K (2004). Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci, 1012(1): 1–13
CrossRef
Pubmed
Google scholar
|
[74] |
Pantopoulos K, Porwal S K, Tartakoff A, Devireddy L (2012). Mechanisms of mammalian iron homeostasis. Biochemistry, 51(29): 5705–5724
CrossRef
Pubmed
Google scholar
|
[75] |
Ponka P (1997). Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood, 89(1): 1–25
Pubmed
|
[76] |
Pouillot A, Polla A, Polla B S (2013). Iron and iron chelators: a review on potential effects on skin aging. Curr Aging Sci, 6: 225–231
|
[77] |
Rehkopf D H, Dow W H, Rosero-Bixby L, Lin J, Epel E S, Blackburn E H (2013). Longer leukocyte telomere length in Costa Rica’s Nicoya Peninsula: a population-based study. Exp Gerontol, 48(11): 1266–1273
CrossRef
Pubmed
Google scholar
|
[78] |
Ritchie K B, Mallory J C, Petes T D (1999). Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol Cell Biol, 19(9): 6065–6075
Pubmed
|
[79] |
Romero A, Ramos E, de Los Ríos C, Egea J, Del Pino J, Reiter R J (2014). A review of metal-catalyzed molecular damage: protection by melatonin. J Pineal Res, 56(4): 343–370
CrossRef
Pubmed
Google scholar
|
[80] |
Rouault T, Klausner R (1997). Regulation of iron metabolism in eukaryotes. Curr Top Cell Regul, 35: 1–19
CrossRef
Pubmed
Google scholar
|
[81] |
Sanvisens N, Bañó M C, Huang M, Puig S (2011). Regulation of ribonucleotide reductase in response to iron deficiency. Mol Cell, 44(5): 759–769
CrossRef
Pubmed
Google scholar
|
[82] |
Serrano A L, Andrés V (2004). Telomeres and cardiovascular disease: does size matter? Circ Res, 94(5): 575–584
CrossRef
Pubmed
Google scholar
|
[84] |
Shay J W, Zou Y, Hiyama E, Wright W E (2001). Telomerase and cancer. Hum Mol Genet, 10(7): 677–685
CrossRef
Pubmed
Google scholar
|
[85] |
Simonet T, Zaragosi L E, Philippe C, Lebrigand K, Schouteden C, Augereau A, Bauwens S, Ye J, Santagostino M, Giulotto E, Magdinier F, Horard B, Barbry P, Waldmann R, Gilson E (2011). The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats. Cell Res, 21(7): 1028–1038
CrossRef
Pubmed
Google scholar
|
[87] |
Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer M R, Schnapp G, de Lange T (2000). Control of human telomere length by TRF1 and TRF2. Mol Cell Biol, 20(5): 1659–1668
CrossRef
Pubmed
Google scholar
|
[88] |
Soe-Lin S, Apte S S, Andriopoulos B Jr, Andrews M C, Schranzhofer M, Kahawita T, Garcia-Santos D, Ponka P (2009). Nramp1 promotes efficient macrophage recycling of iron following erythrophagocytosis in vivo. Proc Natl Acad Sci USA, 106(14): 5960–5965
CrossRef
Pubmed
Google scholar
|
[111] |
Stehling Q, Vashisht A A, Mascarenhas J, Jonsson Z Q, Sharma T, Netz D J, Pierik A J, Wohlschlegel J A, LillR (2012). MMS19 assembles iron-sulfur protein required for DNA metabolism and genomic integrity. Science, 337: 195–199
|
[89] |
Sun J, Yang Y, Wan K, Mao N, Yu T Y, Lin Y C, DeZwaan D C, Freeman B C, Lin J J, Lue N F, Lei M (2011). Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase α. Cell Res, 21(2): 258–274
CrossRef
Pubmed
Google scholar
|
[90] |
Takata H, Kanoh Y, Gunge N, Shirahige K, Matsuura A (2004). Reciprocal association of the budding yeast ATM-related proteins Tel1 and Mec1 with telomeres in vivo. Mol Cell, 14(4): 515–522
CrossRef
Pubmed
Google scholar
|
[91] |
Takata H, Tanaka Y, Matsuura A (2005). Late S phase-specific recruitment of Mre11 complex triggers hierarchical assembly of telomere replication proteins in Saccharomyces cerevisiae. Mol Cell, 17(4): 573–583
CrossRef
Pubmed
Google scholar
|
[92] |
Tang D, Kang R, Zeh H J 3rd, Lotze M T (2011). High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal, 14: 1315–1335
|
[93] |
Tang Y D, Katz S D (2006). Anemia in chronic heart failure: prevalence, etiology, clinical correlates, and treatment options. Circulation, 113(20): 2454–2461
CrossRef
Pubmed
Google scholar
|
[94] |
Torti S V, Torti F M (2013). Iron and cancer: more ore to be mined. Nat Rev Cancer, 13(5): 342–355
CrossRef
Pubmed
Google scholar
|
[95] |
Turrens J F (2003). Mitochondrial formation of reactive oxygen species. J Physiol, 552(Pt 2): 335–344
CrossRef
Pubmed
Google scholar
|
[96] |
Uringa E J, Youds J L, Lisaingo K, Lansdorp P M, Boulton S J (2011). RTEL1: an essential helicase for telomere maintenance and the regulation of homologous recombination. Nucleic Acids Res, 39(5): 1647–1655
CrossRef
Pubmed
Google scholar
|
[97] |
van der Harst P, van Veldhuisen D J, Samani N J (2008). Expanding the concept of telomere dysfunction in cardiovascular disease. Arterioscler Thromb Vasc Biol, 28(5): 807–808
CrossRef
Pubmed
Google scholar
|
[98] |
van Steensel B, de Lange T (1997). Control of telomere length by the human telomeric protein TRF1. Nature, 385(6618): 740–743
CrossRef
Pubmed
Google scholar
|
[99] |
Vespa L, Couvillion M, Spangler E, Shippen D E (2005). ATM and ATR make distinct contributions to chromosome end protection and the maintenance of telomeric DNA in Arabidopsis. Genes Dev, 19(18): 2111–2115
CrossRef
Pubmed
Google scholar
|
[100] |
Wang W, Deng Z, Hatcher H, Miller L D, Di X, Tesfay L, Sui G, D’Agostino R B Jr, Torti F M, Torti S V (2014). IRP2 regulates breast tumor growth. Cancer Res, 74(2): 497–507
CrossRef
Pubmed
Google scholar
|
[101] |
Watson J M, Shippen D E (2007). Telomere rapid deletion regulates telomere length in Arabidopsis thaliana. Mol Cell Biol, 27(5): 1706–1715
CrossRef
Pubmed
Google scholar
|
[102] |
White M F, Dillingham M S (2012). Iron-sulphur clusters in nucleic acid processing enzymes. Curr Opin Struct Biol, 22(1): 94–100
CrossRef
Pubmed
Google scholar
|
[103] |
Wong L S, de Boer R A, Samani N J, van Veldhuisen D J, van der Harst P (2008). Telomere biology in heart failure. Eur J Heart Fail, 10(11): 1049–1056
CrossRef
Pubmed
Google scholar
|
[104] |
Xin Z T, Beauchamp A D, Calado R T, Bradford J W, Regal J A, Shenoy A, Liang Y, Lansdorp P M, Young N S, Ly H (2007). Functional characterization of natural telomerase mutations found in patients with hematologic disorders. Blood, 109(2): 524–532
CrossRef
Pubmed
Google scholar
|
[105] |
Ye H, Rouault T A (2010). Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry, 49(24): 4945–4956
CrossRef
Pubmed
Google scholar
|
[106] |
Zavlaris M, Angelopoulou K, Vlemmas I, Papaioannou N (2009). Telomerase reverse transcriptase (TERT) expression in canine mammary tissues: a specific marker for malignancy? Anticancer Res, 29(1): 319–325
Pubmed
|
[107] |
Zhang A S (2010). Control of systemic iron homeostasis by the hemojuvelin-hepcidin axis. Adv Nutr, 1: 38–45
|
[108] |
Zhang C (2014). Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell, doi: 10.1007/s13238-014-0083-7
|
[109] |
Zhang Y, Lyver E R, Nakamaru-Ogiso E, Yoon H, Amutha B, Lee D W, Bi E, Ohnishi T, Daldal F, Pain D, Dancis A (2008). Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis. Mol Cell Biol, 28(18): 5569–5582
CrossRef
Pubmed
Google scholar
|
[110] |
Zhu Z, Wilson A T, Gopalakrishna K, Brown K E, Luxon B A, Schmidt W N (2010). Hepatitis C virus core protein enhances telomerase activity in Huh7 cells. J Med Virol, 82(2): 239–248
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |