RNA-binding proteins in pluripotency, differentiation, and reprogramming

Diana GUALLAR, Jianlong WANG

PDF(669 KB)
PDF(669 KB)
Front. Biol. ›› 2014, Vol. 9 ›› Issue (5) : 389-409. DOI: 10.1007/s11515-014-1326-y
REVIEW
REVIEW

RNA-binding proteins in pluripotency, differentiation, and reprogramming

Author information +
History +

Abstract

Embryonic stem cell maintenance, differentiation, and somatic cell reprogramming require the interplay of multiple pluripotency factors, epigenetic remodelers, and extracellular signaling pathways. RNA-binding proteins (RBPs) are involved in a wide range of regulatory pathways, from RNA metabolism to epigenetic modifications. In recent years we have witnessed more and more studies on the discovery of new RBPs and the assessment of their functions in a variety of biological systems, including stem cells. We review the current studies on RBPs and focus on those that have functional implications in pluripotency, differentiation, and/or reprogramming in both the human and mouse systems.

Keywords

RNA-binding protein / embryonic stem cell / pluripotency / differentiation / somatic cell reprogramming / lncRNA

Cite this article

Download citation ▾
Diana GUALLAR, Jianlong WANG. RNA-binding proteins in pluripotency, differentiation, and reprogramming. Front. Biol., 2014, 9(5): 389‒409 https://doi.org/10.1007/s11515-014-1326-y

References

[1]
Adamo A, Sesé B, Boue S, Castaño J, Paramonov I, Barrero M J, Izpisua Belmonte J C (2011). LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat Cell Biol, 13(6): 652–659
CrossRef Pubmed Google scholar
[2]
Ahn E Y, DeKelver R C, Lo M C, Nguyen T A, Matsuura S, Boyapati A, Pandit S, Fu X D, Zhang D E (2011). SON controls cell-cycle progression by coordinated regulation of RNA splicing. Mol Cell, 42(2): 185–198
CrossRef Pubmed Google scholar
[3]
Altschul S F, Gish W, Miller W, Myers E W, Lipman D J (1990). Basic local alignment search tool. J Mol Biol, 215(3): 403–410
CrossRef Pubmed Google scholar
[4]
Amarasinghe G K, De Guzman R N, Turner R B, Chancellor K J, Wu Z R, Summers M F (2000). NMR structure of the HIV-1 nucleocapsid protein bound to stem-loop SL2 of the psi-RNA packaging signal. Implications for genome recognition. J Mol Biol, 301(2): 491–511
CrossRef Pubmed Google scholar
[245]
Ang Y S, Tsai S Y, Lee D F, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, Wang J, Rendl M, Bernstein E, Schaniel C, Lemischka I R (2011). Wdr5 mediates self-renewal and reprogramming via the embryonic stemcell core transcriptional network. Cell, 145(2): 183–197
[5]
Änkö M L, Müller-McNicoll M, Brandl H, Curk T, Gorup C, Henry I, Ule J, Neugebauer K M (2012). The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biol, 13(3): R17
CrossRef Pubmed Google scholar
[6]
Anokye-Danso F, Trivedi C M, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber P J, Epstein J A, Morrisey E E (2011). Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8(4): 376–388
CrossRef Pubmed Google scholar
[7]
Apostolou E, Hochedlinger K (2013). Chromatin dynamics during cellular reprogramming. Nature, 502(7472): 462–471
CrossRef Pubmed Google scholar
[8]
Atlasi Y, Mowla S J, Ziaee S A, Gokhale P J, Andrews P W (2008). OCT4 spliced variants are differentially expressed in human pluripotent and nonpluripotent cells. Stem Cells, 26(12): 3068–3074
CrossRef Pubmed Google scholar
[9]
Augui S, Nora E P, Heard E (2011). Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet, 12(6): 429–442
CrossRef Pubmed Google scholar
[10]
Baltz A G, Munschauer M, Schwanhäusser B, Vasile A, Murakawa Y, Schueler M, Youngs N, Penfold-Brown D, Drew K, Milek M, Wyler E, Bonneau R, Selbach M, Dieterich C, Landthaler M (2012). The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell, 46(5): 674–690
CrossRef Pubmed Google scholar
[11]
Balzer E, Heine C, Jiang Q, Lee V M, Moss E G (2010). LIN28 alters cell fate succession and acts independently of the let-7 microRNA during neurogliogenesis in vitro. Development, 137(6): 891–900
CrossRef Pubmed Google scholar
[12]
Bartel D P (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2): 215–233
CrossRef Pubmed Google scholar
[13]
Bedard K M, Daijogo S, Semler B L (2007). A nucleo-cytoplasmic SR protein functions in viral IRES-mediated translation initiation. EMBO J, 26(2): 459–467
CrossRef Pubmed Google scholar
[14]
Bernstein E, Kim S Y, Carmell M A, Murchison E P, Alcorn H, Li M Z, Mills A A, Elledge S J, Anderson K V, Hannon G J (2003). Dicer is essential for mouse development. Nat Genet, 35(3): 215–217
CrossRef Pubmed Google scholar
[15]
Bond C S, Fox A H (2009). Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol, 186(5): 637–644
CrossRef Pubmed Google scholar
[16]
Bongso A, Fong C Y, Ng S C, Ratnam S (1994). Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod, 9(11): 2110–2117
Pubmed
[17]
Borozdin W, Wright M J, Hennekam R C, Hannibal M C, Crow Y J, Neumann T E, Kohlhase J (2004). Novel mutations in the gene SALL4 provide further evidence for acro-renal-ocular and Okihiro syndromes being allelic entities, and extend the phenotypic spectrum. J Med Genet, 41(8): e102
CrossRef Pubmed Google scholar
[18]
Boussadia O, Amiot F, Cases S, Triqueneaux G, Jacquemin-Sablon H, Dautry F (1997). Transcription of unr (upstream of N-ras) down-modulates N-ras expression in vivo. FEBS Lett, 420(1): 20–24
CrossRef Pubmed Google scholar
[19]
Boutet S C, Cheung T H, Quach N L, Liu L, Prescott S L, Edalati A, Iori K, Rando T A (2012). Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell, 10(3): 327–336
CrossRef Pubmed Google scholar
[20]
Boyer L A, Mathur D, Jaenisch R (2006). Molecular control of pluripotency. Curr Opin Genet Dev, 16(5): 455–462
CrossRef Pubmed Google scholar
[21]
Braeutigam C, Rago L, Rolke A, Waldmeier L, Christofori G, Winter J (2014). The RNA-binding protein Rbfox2: an essential regulator of EMT-driven alternative splicing and a mediator of cellular invasion. Oncogene, 33(9): 1082–1092
CrossRef Pubmed Google scholar
[22]
Brimacombe R, Stiege W, Kyriatsoulis A, Maly P (1988). Intra-RNA and RNA-protein cross-linking techniques in Escherichia coli ribosomes. Methods Enzymol, 164: 287–309
CrossRef Pubmed Google scholar
[23]
Brockdorff N (2013). Noncoding RNA and Polycomb recruitment. RNA, 19(4): 429–442
CrossRef Pubmed Google scholar
[24]
Brogna S, Wen J (2009). Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol, 16(2): 107–113
CrossRef Pubmed Google scholar
[25]
Brooks A N, Choi P S, de Waal L, Sharifnia T, Imielinski M, Saksena G, Pedamallu C S, Sivachenko A, Rosenberg M, Chmielecki J, Lawrence M S, DeLuca D S, Getz G, Meyerson M (2014). A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS ONE, 9(1): e87361
CrossRef Pubmed Google scholar
[26]
Buganim Y, Faddah D A, Jaenisch R (2013). Mechanisms and models of somatic cell reprogramming. Nat Rev Genet, 14(6): 427–439
CrossRef Pubmed Google scholar
[27]
Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones R S, Zhang Y (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science, 298(5595): 1039–1043
CrossRef Pubmed Google scholar
[243]
Caretti G, Schiltz R L, Dilworth F J, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace F V, Hoffman E P, Tapscott S J, Sartorelli V (2006). The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell, 11: 547–560
[28]
Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann B M, Strein C, Davey N E, Humphreys D T, Preiss T, Steinmetz L M, Krijgsveld J, Hentze M W (2012). Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 149(6): 1393–1406
CrossRef Pubmed Google scholar
[29]
Cerase A, Smeets D, Tang Y A, Gdula M, Kraus F, Spivakov M, Moindrot B, Leleu M, Tattermusch A, Demmerle J, Nesterova T B, Green C, Otte A P, Schermelleh L, Brockdorff N (2014). Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proc Natl Acad Sci USA, 111(6): 2235–2240
CrossRef Pubmed Google scholar
[30]
Chamberlain S J, Yee D, Magnuson T (2008). Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells, 26(6): 1496–1505
CrossRef Pubmed Google scholar
[31]
Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, Vrana J, Jones K, Grotewold L, Smith A (2007). Nanog safeguards pluripotency and mediates germline development. Nature, 450(7173): 1230–1234
CrossRef Pubmed Google scholar
[32]
Chambers I, Tomlinson S R (2009). The transcriptional foundation of pluripotency. Development, 136(14): 2311–2322
CrossRef Pubmed Google scholar
[33]
Chang K Y, Ramos A (2005). The double-stranded RNA-binding motif, a versatile macromolecular docking platform. FEBS J, 272(9): 2109–2117
CrossRef Pubmed Google scholar
[34]
Chen L L, Carmichael G G (2009). Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell, 35(4): 467–478
CrossRef Pubmed Google scholar
[35]
Cheong C Y, Lon Ng P M, Ponnampalam R, Tsai H H, Bourque G, Lufkin T (2011). In silico tandem affinity purification refines an Oct4 interaction list. Stem Cell Res Ther, 2(3): 26
CrossRef Pubmed Google scholar
[36]
Chi S W, Zang J B, Mele A, Darnell R B (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 460(7254): 479–486
Pubmed
[37]
Chia N Y, Chan Y S, Feng B, Lu X, Orlov Y L, Moreau D, Kumar P, Yang L, Jiang J, Lau M S, Huss M, Soh B S, Kraus P, Li P, Lufkin T, Lim B, Clarke N D, Bard F, Ng H H (2010). A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature, 468(7321): 316–320
CrossRef Pubmed Google scholar
[38]
Cho J, Chang H, Kwon S C, Kim B, Kim Y, Choe J, Ha M, Kim Y K, Kim V N (2012). LIN28A is a suppressor of ER-associated translation in embryonic stem cells. Cell, 151(4): 765–777
CrossRef Pubmed Google scholar
[39]
Choi H S, Kim W T, Kim H, Kim J J, Ko J Y, Lee S W, Jang Y J, Kim S J, Lee M J, Jung H S, Kzhyshkowska J, Um S J, Lee M Y, Lee S H, Kim C H, Ryu C J (2011). Identification and characterization of adenovirus early region 1B-associated protein 5 as a surface marker on undifferentiated human embryonic stem cells. Stem Cells Dev, 20(4): 609–620
CrossRef Pubmed Google scholar
[40]
Clemson C M, Hutchinson J N, Sara S A, Ensminger A W, Fox A H, Chess A, Lawrence J B (2009). An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell, 33(6): 717–726
CrossRef Pubmed Google scholar
[41]
Cordin O, Banroques J, Tanner N K, Linder P (2006). The DEAD-box protein family of RNA helicases. Gene, 367: 17–37
CrossRef Pubmed Google scholar
[42]
da Rocha S T, Boeva V, Escamilla-Del-Arenal M, Ancelin K, Granier C, Matias N R, Sanulli S, Chow J, Schulz E, Picard C, Kaneko S, Helin K, Reinberg D, Stewart A F, Wutz A, Margueron R, Heard E (2014). Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome. Mol Cell, 53(2): 301–316
CrossRef Pubmed Google scholar
[43]
Dai Q, Luan G, Deng L, Lei T, Kang H, Song X, Zhang Y, Xiao Z X, Li Q (2014). Primordial Dwarfism Gene Maintains Lin28 Expression to Safeguard Embryonic Stem Cells from Premature Differentiation. Cell Rep, 7(3): 735–746
[44]
Darnell R B (2010). HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA, 1(2): 266–286
CrossRef Pubmed Google scholar
[45]
Das S, Jena S, Levasseur D N (2011). Alternative splicing produces Nanog protein variants with different capacities for self-renewal and pluripotency in embryonic stem cells. J Biol Chem, 286(49): 42690–42703
CrossRef Pubmed Google scholar
[46]
Davidovich C, Zheng L, Goodrich K J, Cech T R (2013). Promiscuous RNA binding by Polycomb repressive complex 2. Nat Struct Mol Biol, 20(11): 1250–1257
CrossRef Pubmed Google scholar
[47]
Di Ruscio A, Ebralidze A K, Benoukraf T, Amabile G, Goff L A, Terragni J, Figueroa M E, De Figueiredo Pontes L L, Alberich-Jorda M, Zhang P, Wu M, D’Alò F, Melnick A, Leone G, Ebralidze K K, Pradhan S, Rinn J L, Tenen D G (2013). DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 503(7476): 371–376
CrossRef Pubmed Google scholar
[48]
Dichmann D S, Harland R M (2012). fus/TLS orchestrates splicing of developmental regulators during gastrulation. Genes Dev, 26(12): 1351–1363
CrossRef Pubmed Google scholar
[49]
Ding L, Paszkowski-Rogacz M, Nitzsche A, Slabicki M M, Heninger A K, de Vries I, Kittler R, Junqueira M, Shevchenko A, Schulz H, Hubner N, Doss M X, Sachinidis A, Hescheler J, Iacone R, Anastassiadis K, Stewart A F, Pisabarro M T, Caldarelli A, Poser I, Theis M, Buchholz F (2009). A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell Stem Cell, 4(5): 403–415
CrossRef Pubmed Google scholar
[50]
Dinger M E, Amaral P P, Mercer T R, Pang K C, Bruce S J, Gardiner B B, Askarian-Amiri M E, Ru K, Soldà G, Simons C, Sunkin S M, Crowe M L, Grimmond S M, Perkins A C, Mattick J S (2008). Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res, 18(9): 1433–1445
CrossRef Pubmed Google scholar
[51]
Doyle M, Badertscher L, Jaskiewicz L, Güttinger S, Jurado S, Hugenschmidt T, Kutay U, Filipowicz W (2013). The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal. RNA, 19(9): 1238–1252
CrossRef Pubmed Google scholar
[52]
Dreyfuss G, Matunis M J, Piñol-Roma S, Burd C G (1993). hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem, 62(1): 289–321
CrossRef Pubmed Google scholar
[53]
Edwards T A, Pyle S E, Wharton R P, Aggarwal A K (2001). Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell, 105(2): 281–289
CrossRef Pubmed Google scholar
[54]
Elatmani H, Dormoy-Raclet V, Dubus P, Dautry F, Chazaud C, Jacquemin-Sablon H (2011). The RNA-binding protein Unr prevents mouse embryonic stem cells differentiation toward the primitive endoderm lineage. Stem Cells, 29(10): 1504–1516
CrossRef Pubmed Google scholar
[55]
Elkon R, Ugalde A P, Agami R (2013). Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet, 14(7): 496–506
CrossRef Pubmed Google scholar
[56]
Evans M J, Kaufman M H (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819): 154–156
CrossRef Pubmed Google scholar
[57]
Fagoonee S, Bearzi C, Di Cunto F, Clohessy J G, Rizzi R, Reschke M, Tolosano E, Provero P, Pandolfi P P, Silengo L, Altruda F (2013). The RNA-binding protein ESRP1 fine-tunes the expression of pluripotency-related factors in mouse embryonic stem cells. PLoS ONE, 8(8): e72300
CrossRef Pubmed Google scholar
[58]
Fagoonee S, Hobbs R M, De Chiara L, Cantarella D, Piro R M, Tolosano E, Medico E, Provero P, Pandolfi P P, Silengo L, Altruda F (2010). Generation of functional hepatocytes from mouse germ line cell-derived pluripotent stem cells in vitro. Stem Cells Dev, 19(8): 1183–1194
CrossRef Pubmed Google scholar
[59]
Filipovska A, Razif M F, Nygård K K, Rackham O (2011). A universal code for RNA recognition by PUF proteins. Nat Chem Biol, 7(7): 425–427
CrossRef Pubmed Google scholar
[60]
Flavell S W, Kim T K, Gray J M, Harmin D A, Hemberg M, Hong E J, Markenscoff-Papadimitriou E, Bear D M, Greenberg M E (2008). Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron, 60(6): 1022–1038
CrossRef Pubmed Google scholar
[61]
Florea L, Hartzell G, Zhang Z, Rubin G M, Miller W (1998). A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res, 8(9): 967–974
Pubmed
[62]
Fox A H, Lam Y W, Leung A K, Lyon C E, Andersen J, Mann M, Lamond A I (2002). Paraspeckles: a novel nuclear domain. Curr Biol, 12(1): 13–25
CrossRef Pubmed Google scholar
[63]
Fox A H, Lamond A I (2010). Paraspeckles. Cold Spring Harb Perspect Biol, 2(7): a000687
CrossRef Pubmed Google scholar
[64]
Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O’Hanlon D, Sung H K, Alvarez M, Talukder S, Pan Q, Mazzoni E O, Nedelec S, Wichterle H, Woltjen K, Hughes T R, Zandstra P W, Nagy A, Wrana J L, Blencowe B J (2011). An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell, 147(1): 132–146
CrossRef Pubmed Google scholar
[65]
Galgano A, Forrer M, Jaskiewicz L, Kanitz A, Zavolan M, Gerber A P (2008). Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. PLoS ONE, 3(9): e3164
CrossRef Pubmed Google scholar
[66]
García M A, Meurs E F, Esteban M (2007). The dsRNA protein kinase PKR: virus and cell control. Biochimie, 89(6-7): 799–811
CrossRef Pubmed Google scholar
[67]
Gerber A P, Luschnig S, Krasnow M A, Brown P O, Herschlag D (2006). Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc Natl Acad Sci USA, 103(12): 4487–4492
CrossRef Pubmed Google scholar
[68]
Glisovic T, Bachorik J L, Yong J, Dreyfuss G (2008). RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett, 582(14): 1977–1986
CrossRef Pubmed Google scholar
[69]
Godin K S, Varani G (2007). How arginine-rich domains coordinate mRNA maturation events. RNA Biol, 4(2): 69–75
CrossRef Pubmed Google scholar
[70]
Gomez J A, Wapinski O L, Yang Y W, Bureau J F, Gopinath S, Monack D M, Chang H Y, Brahic M, Kirkegaard K (2013). The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell, 152(4): 743–754
CrossRef Pubmed Google scholar
[71]
Gopalakrishnan S, Van Emburgh B O, Shan J, Su Z, Fields C R, Vieweg J, Hamazaki T, Schwartz P H, Terada N, Robertson K D (2009). A novel DNMT3B splice variant expressed in tumor and pluripotent cells modulates genomic DNA methylation patterns and displays altered DNA binding. Mol Cancer Res, 7(10): 1622–1634
CrossRef Pubmed Google scholar
[72]
Gupta R A, Shah N, Wang K C, Kim J, Horlings H M, Wong D J, Tsai M C, Hung T, Argani P, Rinn J L, Wang Y, Brzoska P, Kong B, Li R, West R B, van de Vijver M J, Sukumar S, Chang H Y (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature, 464(7291): 1071–1076
CrossRef Pubmed Google scholar
[73]
Guttman M, Donaghey J, Carey B W, Garber M, Grenier J K, Munson G, Young G, Lucas A B, Ach R, Bruhn L, Yang X, Amit I, Meissner A, Regev A, Rinn J L, Root D E, Lander E S (2011). lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature, 477(7364): 295–300
CrossRef Pubmed Google scholar
[74]
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp A C, Munschauer M, Ulrich A, Wardle G S, Dewell S, Zavolan M, Tuschl T (2010a). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell, 141(1): 129–141
CrossRef Pubmed Google scholar
[75]
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp A C, Munschauer M, Ulrich A, Wardle G S, Dewell S, Zavolan M, Tuschl T (2010b). PAR-CliP—a method to identify transcriptome-wide the binding sites of RNA binding proteins. J Vis Exp, (41): 2034
Pubmed
[76]
Hafner M, Max K E, Bandaru P, Morozov P, Gerstberger S, Brown M, Molina H, Tuschl T (2013). Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition. RNA, 19(5): 613–626
CrossRef Pubmed Google scholar
[77]
Hagan J P, Piskounova E, Gregory R I (2009). Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol, 16(10): 1021–1025
CrossRef Pubmed Google scholar
[78]
Han H, Irimia M, Ross P J, Sung H K, Alipanahi B, David L, Golipour A, Gabut M, Michael I P, Nachman E N, Wang E, Trcka D, Thompson T, O’Hanlon D, Slobodeniuc V, Barbosa-Morais N L, Burge C B, Moffat J, Frey B J, Nagy A, Ellis J, Wrana J L, Blencowe B J (2013). MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature, 498(7453): 241–245
CrossRef Pubmed Google scholar
[79]
Hanina S A, Mifsud W, Down T A, Hayashi K, O’Carroll D, Lao K, Miska E A, Surani M A (2010). Genome-wide identification of targets and function of individual MicroRNAs in mouse embryonic stem cells. PLoS Genet, 6(10): e1001163
CrossRef Pubmed Google scholar
[80]
Hanna J H, Saha K, Jaenisch R (2010). Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell, 143(4): 508–525
CrossRef Pubmed Google scholar
[81]
Hata K, Nishimura R, Muramatsu S, Matsuda A, Matsubara T, Amano K, Ikeda F, Harley V R, Yoneda T (2008). Paraspeckle protein p54nrb links Sox9-mediated transcription with RNA processing during chondrogenesis in mice. J Clin Invest, 118(9): 3098–3108
CrossRef Pubmed Google scholar
[82]
Hayashi K, Lopes S M, Tang F, Surani M A (2008). Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell, 3(4): 391–401
CrossRef Pubmed Google scholar
[83]
Heo I, Joo C, Cho J, Ha M, Han J, Kim V N (2008). Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell, 32(2): 276–284
CrossRef Pubmed Google scholar
[84]
Heo I, Joo C, Kim Y K, Ha M, Yoon M J, Cho J, Yeom K H, Han J, Kim V N (2009). TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell, 138(4): 696–708
CrossRef Pubmed Google scholar
[85]
Hu G, Kim J, Xu Q, Leng Y, Orkin S H, Elledge S J (2009). A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev, 23(7): 837–848
CrossRef Pubmed Google scholar
[86]
Huang Y, Gattoni R, Stévenin J, Steitz J A (2003). SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol Cell, 11(3): 837–843
CrossRef Pubmed Google scholar
[87]
Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E, Pettett R, Pocock M, Potter S, Rust A, Schmidt E, Searle S, Slater G, Smith J, Spooner W, Stabenau A, Stalker J, Stupka E, Ureta-Vidal A, Vastrik I, Clamp M (2002). The Ensembl genome database project. Nucleic Acids Res, 30(1): 38–41
CrossRef Pubmed Google scholar
[88]
Hutvágner G, McLachlan J, Pasquinelli A E, Bálint E, Tuschl T, Zamore P D (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293(5531): 834–838
CrossRef Pubmed Google scholar
[89]
Hutvagner G, Simard M J (2008). Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol, 9(1): 22–32
CrossRef Pubmed Google scholar
[90]
Imielinski M, Berger A H, Hammerman P S, Hernandez B, Pugh T J, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A, Sougnez C, Auclair D, Lawrence M S, Stojanov P, Cibulskis K, Choi K, de Waal L, Sharifnia T, Brooks A, Greulich H, Banerji S, Zander T, Seidel D, Leenders F, Ansén S, Ludwig C, Engel-Riedel W, Stoelben E, Wolf J, Goparju C, Thompson K, Winckler W, Kwiatkowski D, Johnson B E, Jänne P A, Miller V A, Pao W, Travis W D, Pass H I, Gabriel S B, Lander E S, Thomas R K, Garraway L A, Getz G, Meyerson M (2012). Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell, 150(6): 1107–1120
CrossRef Pubmed Google scholar
[91]
Ishigaki S, Masuda A, Fujioka Y, Iguchi Y, Katsuno M, Shibata A, Urano F, Sobue G, Ohno K (2012). Position-dependent FUS-RNA interactions regulate alternative splicing events and transcriptions. Sci Rep, 2: 529
CrossRef Pubmed Google scholar
[92]
Ivanov I, Lo K C, Hawthorn L, Cowell J K, Ionov Y (2007). Identifying candidate colon cancer tumor suppressor genes using inhibition of nonsense-mediated mRNA decay in colon cancer cells. Oncogene, 26(20): 2873–2884
CrossRef Pubmed Google scholar
[93]
Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, Lemischka I R (2006). Dissecting self-renewal in stem cells with RNA interference. Nature, 442(7102): 533–538
CrossRef Pubmed Google scholar
[94]
Iwabuchi K A, Yamakawa T, Sato Y, Ichisaka T, Takahashi K, Okita K, Yamanaka S (2011). ECAT11/L1td1 is enriched in ESCs and rapidly activated during iPSC generation, but it is dispensable for the maintenance and induction of pluripotency. PLoS ONE, 6(5): e20461
CrossRef Pubmed Google scholar
[95]
Jangi M, Boutz P L, Paul P, Sharp P A (2014). Rbfox2 controls autoregulation in RNA-binding protein networks. Genes Dev, 28(6): 637–651
CrossRef Pubmed Google scholar
[96]
Jensen K B, Darnell R B (2008). CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. Methods Mol Biol, 488: 85–98
CrossRef Pubmed Google scholar
[97]
Ji Y, Tulin A V (2012). Poly(ADP-ribose) controls DE-cadherin-dependent stem cell maintenance and oocyte localization. Nat Commun, 3: 760
CrossRef Pubmed Google scholar
[98]
Ji Z, Lee J Y, Pan Z H, Jiang B J, Tian B (2009). Progressive lengthening of 3 ' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci USA, 106(17): 9535–9535
CrossRef Google scholar
[99]
Ji Z, Tian B (2009). Reprogramming of 3 ' Untranslated Regions of mRNAs by Alternative Polyadenylation in Generation of Pluripotent Stem Cells from Different Cell Types. PLoS ONE, 4(12): e8419
[100]
Johnson J M, Castle J, Garrett-Engele P, Kan Z, Loerch P M, Armour C D, Santos R, Schadt E E, Stoughton R, Shoemaker D D (2003). Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 302(5653): 2141–2144
CrossRef Pubmed Google scholar
[101]
Judson R L, Babiarz J E, Venere M, Blelloch R (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol, 27(5): 459–461
CrossRef Pubmed Google scholar
[102]
Kaneko S, Bonasio R, Saldaña-Meyer R, Yoshida T, Son J, Nishino K, Umezawa A, Reinberg D (2014). Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin. Mol Cell, 53(2): 290–300
CrossRef Pubmed Google scholar
[103]
Kaneko S, Li G, Son J, Xu C F, Margueron R, Neubert T A, Reinberg D (2010). Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and up-regulates its binding to ncRNA. Genes Dev, 24(23): 2615–2620
CrossRef Pubmed Google scholar
[104]
Kaneko S, Son J, Shen S S, Reinberg D, Bonasio R (2013). PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat Struct Mol Biol, 20(11): 1258–1264
CrossRef Pubmed Google scholar
[105]
Kanellopoulou C, Muljo S A, Kung A L, Ganesan S, Drapkin R, Jenuwein T, Livingston D M, Rajewsky K (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev, 19(4): 489–501
CrossRef Pubmed Google scholar
[106]
Kanhere A, Viiri K, Araújo C C, Rasaiyaah J, Bouwman R D, Whyte W A, Pereira C F, Brookes E, Walker K, Bell G W, Pombo A, Fisher A G, Young R A, Jenner R G (2010). Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol Cell, 38(5): 675–688
CrossRef Pubmed Google scholar
[107]
Karwacki-Neisius V, Göke J, Osorno R, Halbritter F, Ng J H, Weiße A Y, Wong F C, Gagliardi A, Mullin N P, Festuccia N, Colby D, Tomlinson S R, Ng H H, Chambers I (2013). Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog. Cell Stem Cell, 12(5): 531–545
CrossRef Pubmed Google scholar
[108]
Kashyap V, Rezende N C, Scotland K B, Shaffer S M, Persson J L, Gudas L J, Mongan N P (2009). Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev, 18(7): 1093–1108
CrossRef Pubmed Google scholar
[109]
Katahira J (2012). mRNA export and the TREX complex. Biochim Biophys Acta, 1819(6): 507–513
CrossRef Pubmed Google scholar
[110]
Khalil A M, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein B E, van Oudenaarden A, Regev A, Lander E S, Rinn J L (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA, 106(28): 11667–11672
CrossRef Pubmed Google scholar
[111]
Kiledjian M, Dreyfuss G (1992). Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J, 11(7): 2655–2664
Pubmed
[112]
Kim B M, Choi M Y (2012). Non-canonical microRNAs miR-320 and miR-702 promote proliferation in Dgcr8-deficient embryonic stem cells. Biochem Biophys Res Commun, 426(2): 183–189
CrossRef Pubmed Google scholar
[113]
Kim D H, Saetrom P, Snøve O Jr, Rossi J J (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA, 105(42): 16230–16235
CrossRef Pubmed Google scholar
[114]
Kirmizis A, Bartley S M, Kuzmichev A, Margueron R, Reinberg D, Green R, Farnham P J (2004). Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev, 18(13): 1592–1605
CrossRef Pubmed Google scholar
[115]
Krol J, Loedige I, Filipowicz W (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 11(9): 597–610
Pubmed
[116]
Kunarso G, Wong K Y, Stanton L W, Lipovich L (2008). Detailed characterization of the mouse embryonic stem cell transcriptome reveals novel genes and intergenic splicing associated with pluripotency. BMC Genomics, 9(1): 155
CrossRef Pubmed Google scholar
[117]
Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D (2002). Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev, 16(22): 2893–2905
CrossRef Pubmed Google scholar
[118]
Kwon S C, Yi H, Eichelbaum K, Föhr S, Fischer B, You K T, Castello A, Krijgsveld J, Hentze M W, Kim V N (2013). The RNA-binding protein repertoire of embryonic stem cells. Nat Struct Mol Biol, 20(9): 1122–1130
CrossRef Pubmed Google scholar
[119]
Lackford B, Yao C, Charles G M, Weng L, Zheng X, Choi E A, Xie X, Wan J, Xing Y, Freudenberg J M, Yang P, Jothi R, Hu G, Shi Y (2014). Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal. EMBO J, 33(8): 878–889
CrossRef Pubmed Google scholar
[120]
Lander E S, Linton L M, Birren B, Nusbaum C, Zody M C, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov J P, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin J C, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston R H, Wilson R K, Hillier L W, McPherson J D, Marra M A, Mardis E R, Fulton L A, Chinwalla A T, Pepin K H, Gish W R, Chissoe S L, Wendl M C, Delehaunty K D, Miner T L, Delehaunty A, Kramer J B, Cook L L, Fulton R S, Johnson D L, Minx P J, Clifton S W, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng J F, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs R A, Muzny D M, Scherer S E, Bouck J B, Sodergren E J, Worley K C, Rives C M, Gorrell J H, Metzker M L, Naylor S L, Kucherlapati R S, Nelson D L, Weinstock G M, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith D R, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee H M, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis R W, Federspiel N A, Abola A P, Proctor M J, Myers R M, Schmutz J, Dickson M, Grimwood J, Cox D R, Olson M V, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans G A, Athanasiou M, Schultz R, Roe B A, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie W R, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey J A, Bateman A, Batzoglou S, Birney E, Bork P, Brown D G, Burge C B, Cerutti L, Chen H C, Church D, Clamp M, Copley R R, Doerks T, Eddy S R, Eichler E E, Furey T S, Galagan J, Gilbert J G, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson L S, Jones T A, Kasif S, Kaspryzk A, Kennedy S, Kent W J, Kitts P, Koonin E V, Korf I, Kulp D, Lancet D, Lowe T M, McLysaght A, Mikkelsen T, Moran J V, Mulder N, Pollara V J, Ponting C P, Schuler G, Schultz J, Slater G, Smit A F, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf Y I, Wolfe K H, Yang S P, Yeh R F, Collins F, Guyer M S, Peterson J, Felsenfeld A, Wetterstrand K A, Patrinos A, Morgan M J, de Jong P, Catanese J J, Osoegawa K, Shizuya H, Choi S, Chen Y J, and the International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822): 860–921
CrossRef Pubmed Google scholar
[121]
Leeb M, Dietmann S, Paramor M, Niwa H, Smith A (2014). Genetic exploration of the exit from self-renewal using haploid embryonic stem cells. Cell Stem Cell, 14(3): 385–393
CrossRef Pubmed Google scholar
[122]
Leung A K, Young A G, Bhutkar A, Zheng G X, Bosson A D, Nielsen C B, Sharp P A (2011). Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol, 18(2): 237–244
CrossRef Pubmed Google scholar
[123]
Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q, Qin B, Xu J, Li W, Yang J, Gan Y, Qin D, Feng S, Song H, Yang D, Zhang B, Zeng L, Lai L, Esteban M A, Pei D (2010). A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 7(1): 51–63
CrossRef Pubmed Google scholar
[124]
Li X, Li L, Pandey R, Byun J S, Gardner K, Qin Z, Dou Y (2012). The histone acetyltransferase MOF is a key regulator of the embryonic stem cell core transcriptional network. Cell Stem Cell, 11(2): 163–178 doi:10.1016/j.stem.2012.04.023
Pubmed
[125]
Li X, Song J, Yi C (2014). Genome-wide mapping of cellular protein-RNA interactions enabled by chemical crosslinking. Genomics Proteomics Bioinformatics, 12(2): 72–78
CrossRef Pubmed Google scholar
[126]
Linder P, Jankowsky E (2011). From unwinding to clamping - the DEAD box RNA helicase family. Nat Rev Mol Cell Biol, 12(8): 505–516
CrossRef Pubmed Google scholar
[127]
Liu Y, Lee M R, Timani K, He J J, Broxmeyer H E (2012). Tip110 maintains expression of pluripotent factors in and pluripotency of human embryonic stem cells. Stem Cells Dev, 21(6): 829–833
CrossRef Pubmed Google scholar
[128]
Liu Y, Timani K, Ou X, Broxmeyer H E, He J J (2013). C-MYC controlled TIP110 protein expression regulates OCT4 mRNA splicing in human embryonic stem cells. Stem Cells Dev, 22(5): 689–694
CrossRef Pubmed Google scholar
[129]
Lou H, Neugebauer K M, Gagel R F, Berget S M (1998). Regulation of alternative polyadenylation by U1 snRNPs and SRp20. Mol Cell Biol, 18(9): 4977–4985
Pubmed
[130]
Lu X, Göke J, Sachs F, Jacques P E, Liang H, Feng B, Bourque G, Bubulya P A, Ng H H (2013). SON connects the splicing-regulatory network with pluripotency in human embryonic stem cells. Nat Cell Biol, 15(10): 1141–1152
CrossRef Pubmed Google scholar
[131]
Lytle J R, Yario T A, Steitz J A (2007). Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR. Proc Natl Acad Sci USA, 104(23): 9667–9672
CrossRef Pubmed Google scholar
[132]
Macias S, Plass M, Stajuda A, Michlewski G, Eyras E, Cáceres J F (2012). DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nat Struct Mol Biol, 19(8): 760–766
CrossRef Pubmed Google scholar
[133]
Manley J L, Tacke R (1996). SR proteins and splicing control. Genes Dev, 10(13): 1569–1579
CrossRef Pubmed Google scholar
[134]
Margueron R, Reinberg D (2011). The Polycomb complex PRC2 and its mark in life. Nature, 469(7330): 343–349
CrossRef Pubmed Google scholar
[135]
Maris C, Dominguez C, Allain F H (2005). The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J, 272(9): 2118–2131
CrossRef Pubmed Google scholar
[136]
Marson A, Levine S S, Cole M F, Frampton G M, Brambrink T, Johnstone S, Guenther M G, Johnston W K, Wernig M, Newman J, Calabrese J M, Dennis L M, Volkert T L, Gupta S, Love J, Hannett N, Sharp P A, Bartel D P, Jaenisch R, Young R A (2008). Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 134(3): 521–533
CrossRef Pubmed Google scholar
[137]
Martin G R (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA, 78(12): 7634–7638
CrossRef Pubmed Google scholar
[138]
Melton C, Judson R L, Blelloch R (2010). Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature, 463(7281): 621–626
CrossRef Pubmed Google scholar
[139]
Mihailovic M, Wurth L, Zambelli F, Abaza I, Militti C, Mancuso F M, Roma G, Pavesi G, Gebauer F (2012). Widespread generation of alternative UTRs contributes to sex-specific RNA binding by UNR. RNA, 18(1): 53–64
CrossRef Pubmed Google scholar
[140]
Modrek B, Resch A, Grasso C, Lee C (2001). Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res, 29(13): 2850–2859
CrossRef Pubmed Google scholar
[141]
Moran V A, Perera R J, Khalil A M (2012). Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res, 40(14): 6391–6400
CrossRef Pubmed Google scholar
[142]
Morita S, Horii T, Kimura M, Goto Y, Ochiya T, Hatada I (2007). One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics, 89(6): 687–696
CrossRef Pubmed Google scholar
[143]
Morlando M, Dini Modigliani S, Torrelli G, Rosa A, Di Carlo V, Caffarelli E, Bozzoni I (2012). FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO J, 31(24): 4502–4510
CrossRef Pubmed Google scholar
[144]
Mueller A A, Cheung T H, Rando T A (2013). All’s well that ends well: alternative polyadenylation and its implications for stem cell biology. Curr Opin Cell Biol, 25(2): 222–232
CrossRef Pubmed Google scholar
[145]
Murchison E P, Partridge J F, Tam O H, Cheloufi S, Hannon G J (2005). Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA, 102(34): 12135–12140
CrossRef Pubmed Google scholar
[146]
Nakagawa S, Naganuma T, Shioi G, Hirose T (2011). Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol, 193(1): 31–39
CrossRef Pubmed Google scholar
[147]
Närvä E, Rahkonen N, Emani M R, Lund R, Pursiheimo J P, Nästi J, Autio R, Rasool O, Denessiouk K, Lähdesmäki H, Rao A, Lahesmaa R (2012). RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells, 30(3): 452–460
CrossRef Pubmed Google scholar
[148]
Niranjanakumari S, Lasda E, Brazas R, Garcia-Blanco M A (2002). Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo. Methods, 26(2): 182–190
CrossRef Pubmed Google scholar
[149]
Niwa H, Miyazaki J, Smith A G (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 24(4): 372–376
CrossRef Pubmed Google scholar
[150]
Ohta S, Nishida E, Yamanaka S, Yamamoto T (2013a). Global splicing pattern reversion during somatic cell reprogramming. Cell Reports, 5(2): 357–366
CrossRef Pubmed Google scholar
[151]
Ohta S, Nishida E, Yamanaka S, Yamamoto T (2013b). Global splicing pattern reversion during somatic cell reprogramming. Cell Reports, 5(2): 357–366
CrossRef Pubmed Google scholar
[242]
Ostareck D H, Ostareck-Lederer A, Wilm M, Thiele B J, Mann M, Hentze M W (1997). mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3' end. Cell, 89: 597–606
[152]
Pádua Alves C, Fonseca A S, Muys B R, de Barros E Lima Bueno R, Bürger M C, de Souza J E, Valente V, Zago M A, Silva W A Jr (2013). Brief report: The lincRNA Hotair is required for epithelial-to-mesenchymal transition and stemness maintenance of cancer cell lines. Stem Cells, 31(12): 2827–2832
CrossRef Pubmed Google scholar
[153]
Park J M, Kohn M J, Bruinsma M W, Vech C, Intine R V, Fuhrmann S, Grinberg A, Mukherjee I, Love P E, Ko M S, DePamphilis M L, Maraia R J (2006). The multifunctional RNA-binding protein La is required for mouse development and for the establishment of embryonic stem cells. Mol Cell Biol, 26(4): 1445–1451
CrossRef Pubmed Google scholar
[154]
Park Y, Lee J M, Hwang M Y, Son G H, Geum D (2013). NonO binds to the CpG island of oct4 promoter and functions as a transcriptional activator of oct4 gene expression. Mol Cells, 35(1): 61–69
CrossRef Pubmed Google scholar
[155]
Pasini D, Bracken A P, Hansen J B, Capillo M, Helin K (2007). The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol, 27(10): 3769–3779
CrossRef Pubmed Google scholar
[156]
Pasini D, Cloos P A, Walfridsson J, Olsson L, Bukowski J P, Johansen J V, Bak M, Tommerup N, Rappsilber J, Helin K (2010). JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. Nature, 464(7286): 306–310
CrossRef Pubmed Google scholar
[157]
Pelham H R, Brown D D (1980). A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc Natl Acad Sci USA, 77(7): 4170–4174
CrossRef Pubmed Google scholar
[158]
Peng J C, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A, Wysocka J (2009). Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell, 139(7): 1290–1302
CrossRef Pubmed Google scholar
[159]
Peng S, Chen L L, Lei X X, Yang L, Lin H, Carmichael G G, Huang Y (2011). Genome-wide studies reveal that Lin28 enhances the translation of genes important for growth and survival of human embryonic stem cells. Stem Cells, 29(3): 496–504
CrossRef Pubmed Google scholar
[160]
Piskounova E, Polytarchou C, Thornton J E, LaPierre R J, Pothoulakis C, Hagan J P, Iliopoulos D, Gregory R I (2011). Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell, 147(5): 1066–1079
CrossRef Pubmed Google scholar
[161]
Prasanth K V, Prasanth S G, Xuan Z, Hearn S, Freier S M, Bennett C F, Zhang M Q, Spector D L (2005). Regulating gene expression through RNA nuclear retention. Cell, 123(2): 249–263
CrossRef Pubmed Google scholar
[162]
Pritsker M, Doniger T T, Kramer L C, Westcot S E, Lemischka I R (2005). Diversification of stem cell molecular repertoire by alternative splicing. Proc Natl Acad Sci USA, 102(40): 14290–14295
CrossRef Pubmed Google scholar
[163]
Qiu C, Ma Y, Wang J, Peng S, Huang Y (2010). Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Res, 38(4): 1240–1248
CrossRef Pubmed Google scholar
[164]
Quenault T, Lithgow T, Traven A (2011). PUF proteins: repression, activation and mRNA localization. Trends Cell Biol, 21(2): 104–112
CrossRef Pubmed Google scholar
[165]
Radzisheuskaya A, Chia G B, dos Santos R L, Theunissen T W, Castro L F, Nichols J, Silva J C (2013). A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nat Cell Biol, 15(6): 579–590
CrossRef Pubmed Google scholar
[166]
Radzisheuskaya A, Silva J C (2014). Do all roads lead to Oct4? the emerging concepts of induced pluripotency. Trends Cell Biol, 24(5): 275–284
CrossRef Pubmed Google scholar
[167]
Rajyaguru P, Parker R (2012). RGG motif proteins: modulators of mRNA functional states. Cell Cycle, 11(14): 2594–2599
CrossRef Pubmed Google scholar
[168]
Ramakrishna S, Suresh B, Lim K H, Cha B H, Lee S H, Kim K S, Baek K H (2011). PEST motif sequence regulating human NANOG for proteasomal degradation. Stem Cells Dev, 20(9): 1511–1519
CrossRef Pubmed Google scholar
[169]
Rao S, Zhen S, Roumiantsev S, McDonald L T, Yuan G C, Orkin S H (2010). Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol, 30(22): 5364–5380
CrossRef Pubmed Google scholar
[170]
Ray D, Kazan H, Chan E T, Peña Castillo L, Chaudhry S, Talukder S, Blencowe B J, Morris Q, Hughes T R (2009). Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat Biotechnol, 27(7): 667–670
CrossRef Pubmed Google scholar
[171]
Ray D, Kazan H, Cook K B, Weirauch M T, Najafabadi H S, Li X, Gueroussov S, Albu M, Zheng H, Yang A, Na H, Irimia M, Matzat L H, Dale R K, Smith S A, Yarosh C A, Kelly S M, Nabet B, Mecenas D, Li W, Laishram R S, Qiao M, Lipshitz H D, Piano F, Corbett A H, Carstens R P, Frey B J, Anderson R A, Lynch K W, Penalva L O, Lei E P, Fraser A G, Blencowe B J, Morris Q D, Hughes T R (2013). A compendium of RNA-binding motifs for decoding gene regulation. Nature, 499(7457): 172–177
CrossRef Pubmed Google scholar
[172]
Reynolds N, Collier B, Maratou K, Bingham V, Speed R M, Taggart M, Semple C A, Gray N K, Cooke H J (2005). Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells. Hum Mol Genet, 14(24): 3899–3909
CrossRef Pubmed Google scholar
[173]
Rinn J L, Kertesz M, Wang J K, Squazzo S L, Xu X, Brugmann S A, Goodnough L H, Helms J A, Farnham P J, Segal E, Chang H Y (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7): 1311–1323
CrossRef Pubmed Google scholar
[174]
Salomonis N, Nelson B, Vranizan K, Pico A R, Hanspers K, Kuchinsky A, Ta L, Mercola M, Conklin B R (2009). Alternative splicing in the differentiation of human embryonic stem cells into cardiac precursors. PLOS Comput Biol, 5(11): e1000553
CrossRef Pubmed Google scholar
[175]
Salomonis N, Schlieve C R, Pereira L, Wahlquist C, Colas A, Zambon A C, Vranizan K, Spindler M J, Pico A R, Cline M S, Clark T A, Williams A, Blume J E, Samal E, Mercola M, Merrill B J, Conklin B R (2010). Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA, 107(23): 10514–10519
CrossRef Pubmed Google scholar
[176]
Samavarchi-Tehrani P, Golipour A, David L, Sung H K, Beyer T A, Datti A, Woltjen K, Nagy A, Wrana J L (2010). Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell, 7(1): 64–77
CrossRef Pubmed Google scholar
[177]
Sandberg R, Neilson J R, Sarma A, Sharp P A, Burge C B (2008). Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science, 320(5883): 1643–1647
CrossRef Pubmed Google scholar
[178]
Saunders A, Faiola F, Wang J (2013). Concise review: pursuing self-renewal and pluripotency with the stem cell factor Nanog. Stem Cells, 31(7): 1227–1236
CrossRef Pubmed Google scholar
[179]
Saunders A, Wang J (2014). Export and expression: mRNAs deliver new messages for controlling pluripotency. Cell Stem Cell, 14(5): 549–550
CrossRef Pubmed Google scholar
[180]
Schulman B R, Esquela-Kerscher A, Slack F J (2005). Reciprocal expression of lin-41 and the microRNAs let-7 and mir-125 during mouse embryogenesis. Dev Dyn, 234(4): 1046–1054
CrossRef Pubmed Google scholar
[181]
Schulz E G, Heard E (2013). Role and control of X chromosome dosage in mammalian development. Curr Opin Genet Dev, 23(2): 109–115
CrossRef Pubmed Google scholar
[182]
Schulz E G, Meisig J, Nakamura T, Okamoto I, Sieber A, Picard C, Borensztein M, Saitou M, Blüthgen N, Heard E (2014). The two active X chromosomes in female ESCs block exit from the pluripotent state by modulating the ESC signaling network. Cell Stem Cell, 14(2): 203–216
CrossRef Pubmed Google scholar
[183]
Sheik Mohamed J, Gaughwin P M, Lim B, Robson P, Lipovich L (2010). Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA (New York, NY 16, 324–337
[184]
Shekar P C, Naim A, Sarathi D P, Kumar S (2011). Argonaute-2-null embryonic stem cells are retarded in self-renewal and differentiation. J Biosci, 36(4): 649–657
CrossRef Pubmed Google scholar
[244]
Shen X, Kim W, Fujiwara Y, Simon M D, Liu Y, Mysliwiec M R, Yuan G C, Lee Y, Orkin S H (2009). Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell, 139(7): 1303–1314
CrossRef Pubmed Google scholar
[185]
Shepard P J, Choi E A, Lu J, Flanagan L A, Hertel K J, Shi Y (2011). Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA, 17(4): 761–772
CrossRef Pubmed Google scholar
[186]
Shibayama M, Ohno S, Osaka T, Sakamoto R, Tokunaga A, Nakatake Y, Sato M, Yoshida N (2009). Polypyrimidine tract-binding protein is essential for early mouse development and embryonic stem cell proliferation. FEBS J, 276(22): 6658–6668
CrossRef Pubmed Google scholar
[187]
Simon B, Kirkpatrick J P, Eckhardt S, Reuter M, Rocha E A, Andrade-Navarro M A, Sehr P, Pillai R S, Carlomagno T (2011). Recognition of 2′-O-methylated 3′-end of piRNA by the PAZ domain of a Piwi protein. Structure, 19(2): 172–180
CrossRef Pubmed Google scholar
[188]
Singh G, Ricci E P, Moore M J (2014). RIPiT-Seq: a high-throughput approach for footprinting RNA:protein complexes. Methods, 65(3): 320–332
CrossRef Pubmed Google scholar
[189]
Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel C G, Zavolan M, Svoboda P, Filipowicz W (2008). MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol, 15(3): 259–267
CrossRef Pubmed Google scholar
[190]
Souquere S, Beauclair G, Harper F, Fox A, Pierron G (2010). Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol Biol Cell, 21(22): 4020–4027
CrossRef Pubmed Google scholar
[191]
Stefl R, Skrisovska L, Allain F H (2005). RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep, 6(1): 33–38
CrossRef Pubmed Google scholar
[192]
Subramanian V, Klattenhoff C A, Boyer L A (2009). Screening for novel regulators of embryonic stem cell identity. Cell Stem Cell, 4(5): 377–378
CrossRef Pubmed Google scholar
[193]
Sugnet C W, Srinivasan K, Clark T A, O’Brien G, Cline M S, Wang H, Williams A, Kulp D, Blume J E, Haussler D, Ares M Jr (2006). Unusual intron conservation near tissue-regulated exons found by splicing microarrays. PLOS Comput Biol, 2(1): e4
CrossRef Pubmed Google scholar
[194]
Sunwoo H, Dinger M E, Wilusz J E, Amaral P P, Mattick J S, Spector D L (2009). MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res, 19(3): 347–359
CrossRef Pubmed Google scholar
[195]
Tanaka T S (2009). Transcriptional heterogeneity in mouse embryonic stem cells. Reprod Fertil Dev, 21(1): 67–75
CrossRef Pubmed Google scholar
[196]
Tay Y, Zhang J, Thomson A M, Lim B, Rigoutsos I (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455(7216): 1124–1128
CrossRef Pubmed Google scholar
[197]
Teplova M, Patel D J (2008). Structural insights into RNA recognition by the alternative-splicing regulator muscleblind-like MBNL1. Nat Struct Mol Biol, 15(12): 1343–1351
CrossRef Pubmed Google scholar
[241]
Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391): 1145–1147
[198]
Thornton J E, Chang H M, Piskounova E, Gregory R I (2012). Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA, 18(10): 1875–1885
CrossRef Pubmed Google scholar
[199]
Tian B, Manley J L (2013). Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem Sci, 38(6): 312–320
CrossRef Pubmed Google scholar
[200]
Tian Y, Simanshu D K, Ma J B, Patel D J (2011). Structural basis for piRNA 2′-O-methylated 3′-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains. Proc Natl Acad Sci USA, 108(3): 903–910
CrossRef Pubmed Google scholar
[201]
Tiscornia G, Izpisúa Belmonte J C (2010). MicroRNAs in embryonic stem cell function and fate. Genes Dev, 24(24): 2732–2741
CrossRef Pubmed Google scholar
[202]
Toyooka Y, Shimosato D, Murakami K, Takahashi K, Niwa H (2008). Identification and characterization of subpopulations in undifferentiated ES cell culture. Development, 135(5): 909–918
CrossRef Pubmed Google scholar
[203]
Tsai M C, Manor O, Wan Y, Mosammaparast N, Wang J K, Lan F, Shi Y, Segal E, Chang H Y (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science, 329(5992): 689–693
CrossRef Pubmed Google scholar
[204]
Tsai S C, Chang D F, Hong C M, Xia P, Senadheera D, Trump L, Mishra S, Lutzko C (2014). Induced overexpression of OCT4A in human embryonic stem cells increases cloning efficiency. Am J Physiol Cell Physiol, 306(12): C1108–C1118
CrossRef Pubmed Google scholar
[205]
Tsui S, Dai T, Warren S T, Salido E C, Yen P H (2000). Association of the mouse infertility factor DAZL1 with actively translating polyribosomes. Biol Reprod, 62(6): 1655–1660
CrossRef Pubmed Google scholar
[206]
Ule J, Jensen K, Mele A, Darnell R B (2005). CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods, 37(4): 376–386
CrossRef Pubmed Google scholar
[207]
Ule J, Jensen K B, Ruggiu M, Mele A, Ule A, Darnell R B (2003). CLIP identifies Nova-regulated RNA networks in the brain. Science, 302(5648): 1212–1215
CrossRef Pubmed Google scholar
[208]
Underwood J G, Boutz P L, Dougherty J D, Stoilov P, Black D L (2005). Homologues of the Caenorhabditis elegans Fox-1 protein are neuronal splicing regulators in mammals. Mol Cell Biol, 25(22): 10005–10016
CrossRef Pubmed Google scholar
[209]
Valente L, Nishikura K (2005). ADAR gene family and A-to-I RNA editing: diverse roles in posttranscriptional gene regulation. Prog Nucleic Acid Res Mol Biol, 79: 299–338
CrossRef Pubmed Google scholar
[210]
Valverde R, Edwards L, Regan L (2008). Structure and function of KH domains. FEBS J, 275(11): 2712–2726
CrossRef Pubmed Google scholar
[211]
Venables J P, Brosseau J P, Gadea G, Klinck R, Prinos P, Beaulieu J F, Lapointe E, Durand M, Thibault P, Tremblay K, Rousset F, Tazi J, Abou Elela S, Chabot B (2013a). RBFOX2 is an important regulator of mesenchymal tissue-specific splicing in both normal and cancer tissues. Mol Cell Biol, 33(2): 396–405
CrossRef Pubmed Google scholar
[212]
Venables J P, Lapasset L, Gadea G, Fort P, Klinck R, Irimia M, Vignal E, Thibault P, Prinos P, Chabot B, Abou Elela S, Roux P, Lemaitre J M, Tazi J (2013b). MBNL1 and RBFOX2 cooperate to establish a splicing programme involved in pluripotent stem cell differentiation. Nat Commun, 4: 2480
CrossRef Pubmed Google scholar
[213]
Venter J C, Adams M D, Myers E W, Li P W, Mural R J, Sutton G G, Smith H O, Yandell M, Evans C A, Holt R A, Gocayne J D, Amanatides P, Ballew R M, Huson D H, Wortman J R, Zhang Q, Kodira C D, Zheng X H, Chen L, Skupski M, Subramanian G, Thomas P D, Zhang J, Gabor Miklos G L, Nelson C, Broder S, Clark A G, Nadeau J, McKusick V A, Zinder N, Levine A J, Roberts R J, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian A E, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman T J, Higgins M E, Ji R R, Ke Z, Ketchum K A, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov G V, Milshina N, Moore H M, Naik A K, Narayan V A, Neelam B, Nusskern D, Rusch D B, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng M L, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers Y H, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint N N, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril J F, Guigó R, Campbell M J, Sjolander K V, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang Y H, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X (2001). The sequence of the human genome. Science, 291(5507): 1304–1351
CrossRef Pubmed Google scholar
[214]
Wang K C, Chang H Y (2011). Molecular mechanisms of long noncoding RNAs. Mol Cell, 43(6): 904–914
CrossRef Pubmed Google scholar
[215]
Wang K C, Yang Y W, Liu B, Sanyal A, Corces-Zimmerman R, Chen Y, Lajoie B R, Protacio A, Flynn R A, Gupta R A, Wysocka J, Lei M, Dekker J, Helms J A, Chang H Y (2011). A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 472(7341): 120–124
CrossRef Pubmed Google scholar
[216]
Wang L, Miao Y L, Zheng X, Lackford B, Zhou B, Han L, Yao C, Ward J M, Burkholder A, Lipchina I, Fargo D C, Hochedlinger K, Shi Y, Williams C J, Hu G (2013). The THO complex regulates pluripotency gene mRNA export and controls embryonic stem cell self-renewal and somatic cell reprogramming. Cell Stem Cell, 13(6): 676–690
CrossRef Pubmed Google scholar
[217]
Wang X, Chang Y, Li Y, Zhang X, Goodrich D W (2006). Thoc1/Hpr1/p84 is essential for early embryonic development in the mouse. Mol Cell Biol, 26(11): 4362–4367
CrossRef Pubmed Google scholar
[218]
Wang X, McLachlan J, Zamore P D, Hall T M (2002). Modular recognition of RNA by a human pumilio-homology domain. Cell, 110(4): 501–512
CrossRef Pubmed Google scholar
[219]
Wang X, Zamore P D, Hall T M (2001). Crystal structure of a Pumilio homology domain. Mol Cell, 7(4): 855–865
CrossRef Pubmed Google scholar
[220]
Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet, 39(3): 380–385
CrossRef Pubmed Google scholar
[221]
Weyn-Vanhentenryck S M, Mele A, Yan Q, Sun S, Farny N, Zhang Z, Xue C, Herre M, Silver P A, Zhang M Q, Krainer A R, Darnell R B, Zhang C (2014). HITS-CLIP and integrative modeling define the Rbfox splicing-regulatory network linked to brain development and autism. Cell Reports, 6(6): 1139–1152
CrossRef Pubmed Google scholar
[222]
Whyte W A, Bilodeau S, Orlando D A, Hoke H A, Frampton G M, Foster C T, Cowley S M, Young R A (2012). Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature, 482(7384): 221–225
Pubmed
[223]
Wilbert M L, Huelga S C, Kapeli K, Stark T J, Liang T Y, Chen S X, Yan B Y, Nathanson J L, Hutt K R, Lovci M T, Kazan H, Vu A Q, Massirer K B, Morris Q, Hoon S, Yeo G W (2012). LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance. Mol Cell, 48(2): 195–206
CrossRef Pubmed Google scholar
[224]
Wolin S L, Cedervall T (2002). The La protein. Annu Rev Biochem, 71(1): 375–403
CrossRef Pubmed Google scholar
[225]
Wong R C, Ibrahim A, Fong H, Thompson N, Lock L F, Donovan P J (2011). L1TD1 is a marker for undifferentiated human embryonic stem cells. PLoS ONE, 6(4): e19355
CrossRef Pubmed Google scholar
[226]
Wu J Q, Habegger L, Noisa P, Szekely A, Qiu C, Hutchison S, Raha D, Egholm M, Lin H, Weissman S, Cui W, Gerstein M, Snyder M (2010). Dynamic transcriptomes during neural differentiation of human embryonic stem cells revealed by short, long, and paired-end sequencing. Proc Natl Acad Sci USA, 107(11): 5254–5259
CrossRef Pubmed Google scholar
[227]
Xu X, Tan X, Lin Q, Schmidt B, Engel W, Pantakani D V (2013). Mouse Dazl and its novel splice variant functions in translational repression of target mRNAs in embryonic stem cells. Biochim Biophys Acta, 1829(5): 425–435
CrossRef Pubmed Google scholar
[228]
Xue Y, Ouyang K, Huang J, Zhou Y, Ouyang H, Li H, Wang G, Wu Q, Wei C, Bi Y, Jiang L, Cai Z, Sun H, Zhang K, Zhang Y, Chen J, Fu X D (2013). Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits. Cell, 152(1–2): 82–96
CrossRef Pubmed Google scholar
[229]
Yan K S, Yan S, Farooq A, Han A, Zeng L, Zhou M M (2003). Structure and conserved RNA binding of the PAZ domain. Nature, 426(6965): 468–474
CrossRef Pubmed Google scholar
[230]
Yang Y W, Flynn R A, Chen Y, Qu K, Wan B, Wang K C, Lei M, Chang H Y (2014). Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. eLife, 3: e02046
[231]
Yeganeh M, Seyedjafari E, Kamrani F A, Ghaemi N (2013). RNA-binding protein Rbm47 binds to Nanog in mouse embryonic stem cells. Mol Biol Rep, 40(7): 4391–4396
CrossRef Pubmed Google scholar
[232]
Yeo G W, Coufal N G, Liang T Y, Peng G E, Fu X D, Gage F H (2009). An RNA code for the FOX2 splicing regulator revealed by mapping RNA-protein interactions in stem cells. Nat Struct Mol Biol, 16(2): 130–137
CrossRef Pubmed Google scholar
[233]
Yeo G W, Xu X, Liang T Y, Muotri A R, Carson C T, Coufal N G, Gage F H (2007). Alternative splicing events identified in human embryonic stem cells and neural progenitors. PLOS Comput Biol, 3(10): 1951–1967
CrossRef Pubmed Google scholar
[234]
Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M, Chalkidis G, Suzuki Y, Shiosaka M, Kawahata R, Yamaguchi T, Otsu M, Obara N, Sakata-Yanagimoto M, Ishiyama K, Mori H, Nolte F, Hofmann W K, Miyawaki S, Sugano S, Haferlach C, Koeffler H P, Shih L Y, Haferlach T, Chiba S, Nakauchi H, Miyano S, Ogawa S (2011). Frequent pathway mutations of splicing machinery in myelodysplasia. Nature, 478(7367): 64–69
CrossRef Pubmed Google scholar
[235]
Yu J, Vodyanik M A, Smuga-Otto K, Antosiewicz-Bourget J, Frane J L, Tian S, Nie J, Jonsdottir G A, Ruotti V, Stewart R, Slukvin I I, Thomson J A (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858): 1917–1920
CrossRef Pubmed Google scholar
[236]
Zahler A M, Lane W S, Stolk J A, Roth M B (1992). SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev, 6(5): 837–847
CrossRef Pubmed Google scholar
[237]
Zhang M, Zamore P D, Carmo-Fonseca M, Lamond A I, Green M R (1992). Cloning and intracellular localization of the U2 small nuclear ribonucleoprotein auxiliary factor small subunit. Proc Natl Acad Sci USA, 89(18): 8769–8773
CrossRef Pubmed Google scholar
[238]
Zhao J, Ohsumi T K, Kung J T, Ogawa Y, Grau D J, Sarma K, Song J J, Kingston R E, Borowsky M, Lee J T (2010). Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell, 40(6): 939–953
CrossRef Pubmed Google scholar
[239]
Zhao J, Sun B K, Erwin J A, Song J J, Lee J T (2008). Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science, 322(5902): 750–756
CrossRef Pubmed Google scholar
[240]
Zhong X Y, Wang P, Han J, Rosenfeld M G, Fu X D (2009). SR proteins in vertical integration of gene expression from transcription to RNA processing to translation. Mol Cell, 35(1): 1–10
CrossRef Pubmed Google scholar
[241]
Zwieb C, Brimacombe R (1978). RNA-protein cross-linking in Eschericia coli 30S ribosomal subunits: a method for the direct analysis of the RNA regions involved in the cross-links. Nucleic Acids Res, 5(4): 1189–1206
CrossRef Pubmed Google scholar

Acknowledgements

We are grateful to Arven Saunders for critical reading and comments on the manuscript. The research in the Wang laboratory was funded by grants from the National Institutes of Health (NIH) and the Empire State Stem Cell Fund through New York State Department of Health (NYSTEM). J.W. is also a recipient of Irma T. Hirschl and Weill-Caulier Trusts Career Scientist Award.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(669 KB)

Accesses

Citations

Detail

Sections
Recommended

/