
dsRNA binding protein PACT/RAX in gene silencing, development and diseases
Yue YONG, Jia LUO, Zun-Ji KE
Front. Biol. ›› 2014, Vol. 9 ›› Issue (5) : 382-388.
dsRNA binding protein PACT/RAX in gene silencing, development and diseases
PACT (Protein kinase, interferon-inducible double stranded RNA dependent activator) and its murine ortholog RAX (PKR-associated protein X) were originally identified as a protein activator for the dsRNA-dependent, interferon-inducible protein kinase (PKR). Endogenous PACT/RAX activates PKR in response to diverse stress signals such as serum starvation, and peroxide or arsenite treatment. PACT/RAX heterodimerized with PKR and activated it with its third motif in the absence of dsRNA. The activation of PKR leads to enhanced eIF2α phosphorylation followed by apoptosis or inhibition of growth. Besides the role of activating PKR, PACT is associated with a ~500 kDa complex that contains Dicer, hAgo2, and TRBP (TAR RNA binding protein) and it associates with Dicer to facilitate the production of small interfering RNA. PACT/RAX plays an important role in diverse physiological and pathological processes. Pact-/- mice exhibit notable developmental abnormalities including microtia, with craniofacial ear, and hearing defects. Pact-/- mice had smaller body sizes and fertility defects, both of which were caused by defective pituitary functions. It was found that dRAX disrupted fly embryos homozygous, displayed highly abnormal commissural axon structure of the central nervous system, and 70% of the flies homozygous for the mutant allele died prior to adulthood. Using high density SNP genotyping arrays, it was found that a mutation in PRKRA (the PACT/RAX gene) is the causative genetic mutation in DYT16, a novel autosomal recessive dystonia-parkinsonism syndrome in Brazilian patients.
PACT/RAX / PKR / TRBP / Dicer / DYT16
[1] |
Abraham N, Stojdl D F, Duncan P I, Méthot N, Ishii T, Dubé M, Vanderhyden B C, Atkins H L, Gray D A, McBurney M W, Koromilas A E, Brown E G, Sonenberg N, Bell J C (1999). Characterization of transgenic mice with targeted disruption of the catalytic domain of the double-stranded RNA-dependent protein kinase, PKR. J Biol Chem, 274(9): 5953–5962
CrossRef
Pubmed
Google scholar
|
[2] |
Bando Y, Onuki R, Katayama T, Manabe T, Kudo T, Taira K, Tohyama M (2005). Double-strand RNA dependent protein kinase (PKR) is involved in the extrastriatal degeneration in Parkinson’s disease and Huntington’s disease. Neurochem Int, 46(1): 11–18
CrossRef
Pubmed
Google scholar
|
[3] |
Bennett R L, Blalock W L, Abtahi D M, Pan Y, Moyer S A, May W S (2006). RAX, the PKR activator, sensitizes cells to inflammatory cytokines, serum withdrawal, chemotherapy, and viral infection. Blood, 108(3): 821–829
CrossRef
Pubmed
Google scholar
|
[4] |
Bennett R L, Blalock W L, Choi E J, Lee Y J, Zhang Y, Zhou L, Oh S P, May W S (2008). RAX is required for fly neuronal development and mouse embryogenesis. Mech Dev, 125(9-10): 777–785
CrossRef
Pubmed
Google scholar
|
[5] |
Bennett R L, Blalock W L, May W S (2004). Serine 18 phosphorylation of RAX, the PKR activator, is required for PKR activation and consequent translation inhibition. J Biol Chem, 279(41): 42687–42693
CrossRef
Pubmed
Google scholar
|
[6] |
Bennett R L, Pan Y, Christian J, Hui T, May W S Jr (2012). The RAX/PACT-PKR stress response pathway promotes p53 sumoylation and activation, leading to G₁ arrest. Cell Cycle, 11(2): 407–417
CrossRef
Pubmed
Google scholar
|
[7] |
Bernstein E, Caudy A A, Hammond S M, Hannon G J (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818): 363–366
CrossRef
Pubmed
Google scholar
|
[8] |
Camargos S, Scholz S, Simón-Sánchez J, Paisán-Ruiz C, Lewis P, Hernandez D, Ding J, Gibbs J R, Cookson M R, Bras J, Guerreiro R, Oliveira C R, Lees A, Hardy J, Cardoso F, Singleton A B (2008). DYT16, a novel young-onset dystonia-parkinsonism disorder: identification of a segregating mutation in the stress-response protein PRKRA. Lancet Neurol, 7(3): 207–215
CrossRef
Pubmed
Google scholar
|
[9] |
Carmell M A, Xuan Z, Zhang M Q, Hannon G J (2002). The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev, 16(21): 2733–2742
CrossRef
Pubmed
Google scholar
|
[10] |
Chen G, Ma C, Bower K A, Ke Z, Luo J (2006). Interaction between RAX and PKR modulates the effect of ethanol on protein synthesis and survival of neurons. J Biol Chem, 281(23): 15909–15915
CrossRef
Pubmed
Google scholar
|
[11] |
Chendrimada T P, Gregory R I, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436(7051): 740–744
CrossRef
Pubmed
Google scholar
|
[12] |
Clemens M J, Elia A (1997). The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res, 17(9): 503–524
CrossRef
Pubmed
Google scholar
|
[13] |
Daher A, Laraki G, Singh M, Melendez-Peña C E, Bannwarth S, Peters A H, Meurs E F, Braun R E, Patel R C, Gatignol A (2009). TRBP control of PACT-induced phosphorylation of protein kinase R is reversed by stress. Mol Cell Biol, 29(1): 254–265
CrossRef
Pubmed
Google scholar
|
[14] |
Doi N, Zenno S, Ueda R, Ohki-Hamazaki H, Ui-Tei K, Saigo K (2003). Short-interfering-RNA-mediated gene silencing in mammalian cells requires Dicer and eIF2C translation initiation factors. Curr Biol, 13(1): 41–46
CrossRef
Pubmed
Google scholar
|
[15] |
Fierro-Monti I, Mathews M B (2000). Proteins binding to duplexed RNA: one motif, multiple functions. Trends Biochem Sci, 25(5): 241–246
CrossRef
Pubmed
Google scholar
|
[16] |
Galabru J, Hovanessian A (1987). Autophosphorylation of the protein kinase dependent on double-stranded RNA. J Biol Chem, 262(32): 15538–15544
Pubmed
|
[17] |
Hannon G J (2002). RNA interference. Nature, 418(6894): 244–251
CrossRef
Pubmed
Google scholar
|
[18] |
Hovanessian A G (1989). The double stranded RNA-activated protein kinase induced by interferon: dsRNA-PK. J Interferon Res, 9(6): 641–647
CrossRef
Pubmed
Google scholar
|
[19] |
Huang X, Hutchins B, Patel R C (2002). The C-terminal, third conserved motif of the protein activator PACT plays an essential role in the activation of double-stranded-RNA-dependent protein kinase (PKR). Biochem J, 366(Pt 1): 175–186
Pubmed
|
[20] |
Ito T, Yang M, May W S (1999). RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. J Biol Chem, 274(22): 15427–15432
CrossRef
Pubmed
Google scholar
|
[21] |
Koh H R, Kidwell M A, Ragunathan K, Doudna J A, Myong S (2013). ATP-independent diffusion of double-stranded RNA binding proteins. Proc Natl Acad Sci USA, 110(1): 151–156
CrossRef
Pubmed
Google scholar
|
[22] |
Kok K H, Ng M H, Ching Y P, Jin D Y (2007). Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J Biol Chem, 282(24): 17649–17657
CrossRef
Pubmed
Google scholar
|
[23] |
Koscianska E, Starega-Roslan J, Krzyzosiak W J (2011). The role of Dicer protein partners in the processing of microRNA precursors. PLoS ONE, 6(12): e28548
CrossRef
Pubmed
Google scholar
|
[24] |
Lee E S, Yoon C H, Kim Y S, Bae Y S (2007). The double-strand RNA-dependent protein kinase PKR plays a significant role in a sustained ER stress-induced apoptosis. FEBS Lett, 581(22): 4325–4332
CrossRef
Pubmed
Google scholar
|
[25] |
Lee H Y, Zhou K, Smith A M, Noland C L, Doudna J A (2013). Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing. Nucleic Acids Res, 41(13): 6568–6576
CrossRef
Pubmed
Google scholar
|
[26] |
Lee Y, Hur I, Park S Y, Kim Y K, Suh M R, Kim V N (2006). The role of PACT in the RNA silencing pathway. EMBO J, 25(3): 522–532
CrossRef
Pubmed
Google scholar
|
[27] |
Li S, Peters G A, Ding K, Zhang X, Qin J, Sen G C (2006). Molecular basis for PKR activation by PACT or dsRNA. Proc Natl Acad Sci USA, 103(26): 10005–10010
CrossRef
Pubmed
Google scholar
|
[28] |
Liu J, Carmell M A, Rivas F V, Marsden C G, Thomson J M, Song J J, Hammond S M, Joshua-Tor L, Hannon G J (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science, 305(5689): 1437–1441
Pubmed
|
[29] |
Meister G, Landthaler M, Peters L, Chen P Y, Urlaub H, Lührmann R, Tuschl T (2005). Identification of novel argonaute-associated proteins. Curr Biol, 15(23): 2149–2155
CrossRef
Pubmed
Google scholar
|
[30] |
Patel C V, Handy I, Goldsmith T, Patel R C (2000). PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR. J Biol Chem, 275(48): 37993–37998
CrossRef
Pubmed
Google scholar
|
[31] |
Patel R C, Sen G C (1998). PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J, 17(15): 4379–4390
CrossRef
Pubmed
Google scholar
|
[32] |
Peters G A, Hartmann R, Qin J, Sen G C (2001). Modular structure of PACT: distinct domains for binding and activating PKR. Mol Cell Biol, 21(6): 1908–1920
CrossRef
Pubmed
Google scholar
|
[33] |
Peters G A, Li S, Sen G C (2006). Phosphorylation of specific serine residues in the PKR activation domain of PACT is essential for its ability to mediate apoptosis. J Biol Chem, 281(46): 35129–35136
CrossRef
Pubmed
Google scholar
|
[34] |
Peters G A, Seachrist D D, Keri R A, Sen G C (2009). The double-stranded RNA-binding protein, PACT, is required for postnatal anterior pituitary proliferation. Proc Natl Acad Sci USA, 106(26): 10696–10701
CrossRef
Pubmed
Google scholar
|
[35] |
Pires-daSilva A, Nayernia K, Engel W, Torres M, Stoykova A, Chowdhury K, Gruss P (2001). Mice deficient for spermatid perinuclear RNA-binding protein show neurologic, spermatogenic, and sperm morphological abnormalities. Dev Biol, 233(2): 319–328
CrossRef
Pubmed
Google scholar
|
[36] |
Proud C G (1995). PKR: a new name and new roles. Trends Biochem Sci, 20(6): 241–246
CrossRef
Pubmed
Google scholar
|
[37] |
Provost P, Dishart D, Doucet J, Frendewey D, Samuelsson B, Rådmark O (2002). Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J, 21(21): 5864–5874
CrossRef
Pubmed
Google scholar
|
[38] |
Redfern A D, Colley S M, Beveridge D J, Ikeda N, Epis M R, Li X, Foulds C E, Stuart L M, Barker A, Russell V J, Ramsay K, Kobelke S J, Li X, Hatchell E C, Payne C, Giles K M, Messineo A, Gatignol A, Lanz R B, O’Malley B W, Leedman P J (2013). RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc Natl Acad Sci USA, 110(16): 6536–6541
CrossRef
Pubmed
Google scholar
|
[39] |
Rowe T M, Rizzi M, Hirose K, Peters G A, Sen G C (2006). A role of the double-stranded RNA-binding protein PACT in mouse ear development and hearing. Proc Natl Acad Sci USA, 103(15): 5823–5828
CrossRef
Pubmed
Google scholar
|
[40] |
Ryter J M, Schultz S C (1998). Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J, 17(24): 7505–7513
CrossRef
Pubmed
Google scholar
|
[41] |
Samuel C E (1993). The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem, 268(11): 7603–7606
Pubmed
|
[42] |
Samuel C E, Duncan R, Knutson G S, Hershey J W (1984). Mechanism of interferon action. Increased phosphorylation of protein synthesis initiation factor eIF-2 alpha in interferon-treated, reovirus-infected mouse L929 fibroblasts in vitro and in vivo. J Biol Chem, 259(21): 13451–13457
Pubmed
|
[43] |
Saunders L R, Barber G N (2003). The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J, 17(9): 961–983
CrossRef
Pubmed
Google scholar
|
[44] |
Seeman N C, Rosenberg J M, Rich A (1976). Sequence-specific recognition of double helical nucleic acids by proteins. Proc Natl Acad Sci USA, 73(3): 804–808
CrossRef
Pubmed
Google scholar
|
[45] |
Singh M, Patel R C (2012). Increased interaction between PACT molecules in response to stress signals is required for PKR activation. J Cell Biochem, 113(8): 2754–2764
CrossRef
Pubmed
Google scholar
|
[46] |
St Johnston D, Brown N H, Gall J G, Jantsch M (1992). A conserved double-stranded RNA-binding domain. Proc Natl Acad Sci USA, 89(22): 10979–10983
CrossRef
Pubmed
Google scholar
|
[47] |
Stalder L, Heusermann W, Sokol L, Trojer D, Wirz J, Hean J, Fritzsche A, Aeschimann F, Pfanzagl V, Basselet P, Weiler J, Hintersteiner M, Morrissey D V, Meisner-Kober N C (2013). The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing. EMBO J, 32(8): 1115–1127
CrossRef
Pubmed
Google scholar
|
[48] |
Takahashi T, Miyakawa T, Zenno S, Nishi K, Tanokura M, Ui-Tei K (2013). Distinguishable in vitro binding mode of monomeric TRBP and dimeric PACT with siRNA. PLoS ONE, 8(5): e63434
CrossRef
Pubmed
Google scholar
|
[49] |
Tomari Y, Zamore P D (2005). Perspective: machines for RNAi. Genes Dev, 19(5): 517–529
CrossRef
Pubmed
Google scholar
|
[50] |
Wang Q, Khillan J, Gadue P, Nishikura K(2000). Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science, 290(5497): 1765–1768
Pubmed
|
[51] |
Williams B R (1997). Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochem Soc Trans, 25(2): 509–513
Pubmed
|
[52] |
Yang Y L, Reis L F, Pavlovic J, Aguzzi A, Schäfer R, Kumar A, Williams B R, Aguet M, Weissmann C (1995). Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J, 14(24): 6095–6106
Pubmed
|
/
〈 |
|
〉 |