Autophagy in cancer biology and therapy

Noor GAMMOH, Simon WILKINSON

Front. Biol. ›› 2014, Vol. 9 ›› Issue (1) : 35-50.

PDF(348 KB)
PDF(348 KB)
Front. Biol. ›› 2014, Vol. 9 ›› Issue (1) : 35-50. DOI: 10.1007/s11515-014-1294-2
REVIEW
REVIEW

Autophagy in cancer biology and therapy

Author information +
History +

Abstract

The role of macroautophagy (hereafter autophagy) in cancer biology and response to clinical intervention is complex. It is clear that autophagy is dysregulated in a wide variety of tumor settings, both during tumor initiation and progression, and in response to therapy. However, the pleiotropic mechanistic roles of autophagy in controlling cell behavior make it difficult to predict in a given tumor setting what the role of autophagy, and, by extension, the therapeutic outcome of targeting autophagy, might be. In this review we summarize the evidence in the literature supporting pro- and anti-tumorigenic and-therapeutic roles of autophagy in cancer. This overview encompasses roles of autophagy in nutrient management, cell death, cell senescence, regulation of proteotoxic stress and cellular homeostasis, regulation of tumor-host interactions and participation in changes in metabolism. We also try to understand, where possible, the mechanistic bases of these roles for autophagy. We specifically expand on the emerging role of genetically-engineered mouse models of cancer in shedding light on these issues in vivo. We also consider how any or all of the above functions of autophagy proteins might be targetable by extant or future classes of pharmacologic agents. We conclude by briefly exploring non-canonical roles for subsets of the key autophagy proteins in cellular processes, and how these might impact upon cancer.

Keywords

autophagy / cancer / inflammation / metabolism / apoptosis / homeostasis

Cite this article

Download citation ▾
Noor GAMMOH, Simon WILKINSON. Autophagy in cancer biology and therapy. Front. Biol., 2014, 9(1): 35‒50 https://doi.org/10.1007/s11515-014-1294-2

References

[1]
Barré B, Perkins N D (2010). The Skp2 promoter integrates signaling through the NF-κB, p53, and Akt/GSK3β pathways to regulate autophagy and apoptosis. Mol Cell, 38(4): 524–538
CrossRef Pubmed Google scholar
[2]
Behrends C, Sowa M E, Gygi S P, Harper J W (2010). Network organization of the human autophagy system. Nature, 466(7302): 68–76
CrossRef Pubmed Google scholar
[3]
Bellodi C, Lidonnici M R, Hamilton A, Helgason G V, Soliera A R, Ronchetti M, Galavotti S, Young K W, Selmi T, Yacobi R, Van Etten R A, Donato N, Hunter A, Dinsdale D, Tirrò E, Vigneri P, Nicotera P, Dyer M J, Holyoake T, Salomoni P, Calabretta B (2009). Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest, 119(5): 1109–1123
CrossRef Pubmed Google scholar
[4]
Bensaad K, Cheung E C, Vousden K H (2009). Modulation of intracellular ROS levels by TIGAR controls autophagy. EMBO J, 28(19): 3015–3026
CrossRef Pubmed Google scholar
[5]
Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol, 171(4): 603–614
CrossRef Pubmed Google scholar
[6]
Boya P, González-Polo R A, Casares N, Perfettini J L, Dessen P, Larochette N, Métivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005). Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol, 25(3): 1025–1040
CrossRef Pubmed Google scholar
[7]
Capparelli C, Guido C, Whitaker-Menezes D, Bonuccelli G, Balliet R, Pestell T G, Goldberg A F, Pestell R G, Howell A, Sneddon S, Birbe R, Tsirigos A, Martinez-Outschoorn U, Sotgia F, Lisanti M P (2012). Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle, 11(12): 2285–2302
CrossRef Pubmed Google scholar
[8]
Cesari R, Martin E S, Calin G A, Pentimalli F, Bichi R, McAdams H, Trapasso F, Drusco A, Shimizu M, Masciullo V, D’Andrilli G, Scambia G, Picchio M C, Alder H, Godwin A K, Croce C M (2003). Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci USA, 100(10): 5956–5961
CrossRef Pubmed Google scholar
[9]
Chang T K, Shravage B V, Hayes S D, Powers C M, Simin R T, Wade Harper J, Baehrecke E H (2013). Uba1 functions in Atg7- and Atg3-independent autophagy. Nat Cell Biol, 15(9): 1067–1078
CrossRef Pubmed Google scholar
[10]
Cheong H, Lindsten T, Wu J, Lu C, Thompson C B (2011). Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci USA, 108(27): 11121–11126
CrossRef Pubmed Google scholar
[11]
Cheong H, Wu J, Gonzales L K, Guttentag S H, Thompson C B, Lindsten T (2014). Analysis of a lung defect in autophagy-deficient mouse strains. Autophagy, 10(1): 45–56
CrossRef Pubmed Google scholar
[12]
Ciechanover A (2005). Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat Rev Mol Cell Biol, 6(1): 79–87
CrossRef Pubmed Google scholar
[13]
Colleran A, Ryan A, O’Gorman A, Mureau C, Liptrot C, Dockery P, Fearnhead H, Egan L J (2011). Autophagosomal IkappaB alpha degradation plays a role in the long term control of tumor necrosis factor-alpha-induced nuclear factor-kappaB (NF-κB) activity. J Biol Chem, 286(26): 22886–22893
CrossRef Pubmed Google scholar
[14]
Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison P R, Gasco M, Garrone O, Crook T, Ryan K M (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell, 126(1): 121–134
CrossRef Pubmed Google scholar
[15]
Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gélinas C, Fan Y, Nelson D A, Jin S, White E (2006). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 10(1): 51–64
CrossRef Pubmed Google scholar
[16]
Deretic V, Saitoh T, Akira S (2013). Autophagy in infection, inflammation and immunity. Nat Rev Immunol, 13(10): 722–737
CrossRef Pubmed Google scholar
[17]
Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M, Pagliarini V, Matteoni S, Fuoco C, Giunta L, D’Amelio M, Nardacci R, Romagnoli A, Piacentini M, Cecconi F, Fimia G M (2010). The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol, 191(1): 155–168
CrossRef Pubmed Google scholar
[18]
Djavaheri-Mergny M, Amelotti M, Mathieu J, Besançon F, Bauvy C, Souquère S, Pierron G, Codogno P (2006). NF-κB activation represses tumor necrosis factor-α-induced autophagy. J Biol Chem, 281(41): 30373–30382
CrossRef Pubmed Google scholar
[19]
Dörr J R, Yu Y, Milanovic M, Beuster G, Zasada C, Däbritz J H, Lisec J, Lenze D, Gerhardt A, Schleicher K, Kratzat S, Purfürst B, Walenta S, Mueller-Klieser W, Gräler M, Hummel M, Keller U, Buck A K, Dörken B, Willmitzer L, Reimann M, Kempa S, Lee S, Schmitt C A (2013). Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature, 501(7467): 421–425
CrossRef Pubmed Google scholar
[20]
Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V (2011). Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J, 30(23): 4701–4711
CrossRef Pubmed Google scholar
[21]
Duran A, Amanchy R, Linares J F, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J, Diaz-Meco M T (2011). p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell, 44(1): 134–146
CrossRef Pubmed Google scholar
[22]
Elgendy M, Sheridan C, Brumatti G, Martin S J (2011). Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell, 42(1): 23–35
CrossRef Pubmed Google scholar
[23]
Fliss P M, Jowers T P, Brinkmann M M, Holstermann B, Mack C, Dickinson P, Hohenberg H, Ghazal P, Brune W (2012). Viral mediated redirection of NEMO/IKKγ to autophagosomes curtails the inflammatory cascade. PLoS Pathog, 8(2): e1002517
CrossRef Pubmed Google scholar
[24]
Gammoh N, Florey O, Overholtzer M, Jiang X (2013). Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and-independent autophagy. Nat Struct Mol Biol, 20(2): 144–149
CrossRef Pubmed Google scholar
[25]
Ganley I G, Lam H, Wang J, Ding X, Chen S, Jiang X (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem, 284(18): 12297–12305
CrossRef Pubmed Google scholar
[26]
Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T, Fu W, Zhang J, Wu W, Zhang X, Chen Y G (2010a). Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol, 12(8): 781–790
CrossRef Pubmed Google scholar
[27]
Gao Z, Gammoh N, Wong P M, Erdjument-Bromage H, Tempst P, Jiang X (2010b). Processing of autophagic protein LC3 by the 20S proteasome. Autophagy, 6(1): 126–137
CrossRef Pubmed Google scholar
[28]
Garg A D, Dudek A M, Ferreira G B, Verfaillie T, Vandenabeele P, Krysko D V, Mathieu C, Agostinis P (2013). ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy, 9(9): 1292–1307
CrossRef Pubmed Google scholar
[29]
Geng J, Klionsky D J (2008). The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep, 9(9): 859–864
CrossRef Pubmed Google scholar
[30]
Goussetis D J, Gounaris E, Wu E J, Vakana E, Sharma B, Bogyo M, Altman J K, Platanias L C (2012). Autophagic degradation of the BCR-ABL oncoprotein and generation of antileukemic responses by arsenic trioxide. Blood, 120(17): 3555–3562
CrossRef Pubmed Google scholar
[31]
Grivennikov S I, Greten F R, Karin M (2010). Immunity, inflammation, and cancer. Cell, 140(6): 883–899
CrossRef Pubmed Google scholar
[32]
Guo J Y, Chen H Y, Mathew R, Fan J, Strohecker A M, Karsli-Uzunbas G, Kamphorst J J, Chen G, Lemons J M, Karantza V, Coller H A, Dipaola R S, Gelinas C, Rabinowitz J D, White E (2011). Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev, 25(5): 460–470
CrossRef Pubmed Google scholar
[33]
Guo J Y, Karsli-Uzunbas G, Mathew R, Aisner S C, Kamphorst J J, Strohecker A M, Chen G, Price S, Lu W, Teng X, Snyder E, Santanam U, Dipaola R S, Jacks T, Rabinowitz J D, White E (2013). Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev, 27(13): 1447–1461
CrossRef Pubmed Google scholar
[34]
He C, Wei Y, Sun K, Li B, Dong X, Zou Z, Liu Y, Kinch L N, Khan S, Sinha S, Xavier R J, Grishin N V, Xiao G, Eskelinen E L, Scherer P E, Whistler J L, Levine B (2013). Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism. Cell, 154(5): 1085–1099
CrossRef Pubmed Google scholar
[35]
Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M, Lee M S, Tanaka K, Komatsu M (2011). Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol, 193(2): 275–284
CrossRef Pubmed Google scholar
[36]
Isakson P, Bjørås M, Bøe S O, Simonsen A (2010). Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood, 116(13): 2324–2331
CrossRef Pubmed Google scholar
[37]
Jia L, Gopinathan G, Sukumar J T, Gribben J G (2012). Blocking autophagy prevents bortezomib-induced NF-κB activation by reducing I-κBα degradation in lymphoma cells. PLoS ONE, 7(2): e32584
CrossRef Pubmed Google scholar
[38]
Jin S M, Youle R J (2012). PINK1- and Parkin-mediated mitophagy at a glance. J Cell Sci, 125(Pt 4): 795–799
CrossRef Pubmed Google scholar
[39]
Johansen T, Lamark T (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7(3): 279–296
CrossRef Pubmed Google scholar
[40]
Jung C H, Jun C B, Ro S H, Kim Y M, Otto N M, Cao J, Kundu M, Kim D H (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell, 20(7): 1992–2003
CrossRef Pubmed Google scholar
[41]
Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, White E (2007). Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev, 21(13): 1621–1635
CrossRef Pubmed Google scholar
[42]
Kenzelmann Broz D, Spano Mello S, Bieging K T, Jiang D, Dusek R L, Brady C A, Sidow A, Attardi L D (2013). Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev, 27(9): 1016–1031
CrossRef Pubmed Google scholar
[43]
Kim J, Kim Y C, Fang C, Russell R C, Kim J H, Fan W, Liu R, Zhong Q, Guan K L (2013a). Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell, 152(1–2): 290–303
CrossRef Pubmed Google scholar
[44]
Kim J, Kundu M, Viollet B, Guan K L (2011a). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 13(2): 132–141
CrossRef Pubmed Google scholar
[45]
Kim K W, Paul P, Qiao J, Chung D H (2013b). Autophagy mediates paracrine regulation of vascular endothelial cells. Lab Invest, 93(6): 639–645
CrossRef Pubmed Google scholar
[46]
Kim M J, Woo S J, Yoon C H, Lee J S, An S, Choi Y H, Hwang S G, Yoon G, Lee S J (2011b). Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J Biol Chem, 286(15): 12924–12932
CrossRef Pubmed Google scholar
[47]
Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou Y S, Ueno I, Sakamoto A, Tong K I, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol, 12(3): 213–223
Pubmed
[48]
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol, 169(3): 425–434
CrossRef Pubmed Google scholar
[49]
Kon M, Kiffin R, Koga H, Chapochnick J, Macian F, Varticovski L, Cuervo A M (2011). Chaperone-mediated autophagy is required for tumor growth. Sci Transl Med, 3: 109ra117
[50]
Kraft C, Peter M, Hofmann K (2010). Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol, 12(9): 836–841
CrossRef Pubmed Google scholar
[51]
Kuballa P, Nolte W M, Castoreno A B, Xavier R J (2012). Autophagy and the immune system. Annu Rev Immunol, 30(1): 611–646
CrossRef Pubmed Google scholar
[52]
Kuo T C, Chen C T, Baron D, Onder T T, Loewer S, Almeida S, Weismann C M, Xu P, Houghton J M, Gao F B, Daley G Q, Doxsey S (2011). Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol, 13(10): 1214–1223
CrossRef Pubmed Google scholar
[53]
Lau A, Zheng Y, Tao S, Wang H, Whitman S A, White E, Zhang D D (2013). Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner. Mol Cell Biol, 33(12): 2436–2446
CrossRef Pubmed Google scholar
[54]
Lee E J, Tournier C (2011). The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy, 7(7): 689–695
CrossRef Pubmed Google scholar
[55]
Lee I H, Kawai Y, Fergusson M M, Rovira I I, Bishop A J, Motoyama N, Cao L, Finkel T (2012). Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science, 336(6078): 225–228
CrossRef Pubmed Google scholar
[56]
Lee S J, Kim H P, Jin Y, Choi A M, Ryter S W (2011). Beclin 1 deficiency is associated with increased hypoxia-induced angiogenesis. Autophagy, 7(8): 829–839
CrossRef Pubmed Google scholar
[57]
Levine B, Mizushima N, Virgin H W (2011). Autophagy in immunity and inflammation. Nature, 469(7330): 323–335
CrossRef Pubmed Google scholar
[58]
Liu H, He Z, von Rutte T, Yousefi S, Hunger R E, Simon H U (2013). Down-Regulation of Autophagy-Related Protein 5 (ATG5) Contributes to the Pathogenesis of Early-Stage Cutaneous Melanoma. Sci Transl Med, 5: 202ra123
[59]
Lock R, Roy S, Kenific C M, Su J S, Salas E, Ronen S M, Debnath J (2011). Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell, 22(2): 165–178
CrossRef Pubmed Google scholar
[60]
Lu Z, Luo R Z, Lu Y, Zhang X, Yu Q, Khare S, Kondo S, Kondo Y, Yu Y, Mills G B, Liao W S, Bast R C Jr (2008). The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest, 118(12): 3917–3929
Pubmed
[61]
Lum J J, Bauer D E, Kong M, Harris M H, Li C, Lindsten T, Thompson C B (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell, 120(2): 237–248
CrossRef Pubmed Google scholar
[62]
Maes H, Rubio N, Garg A D, Agostinis P (2013). Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med, 19(7): 428–446
CrossRef Pubmed Google scholar
[63]
Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friis R, Simon H U (2013). ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nature Commun, 4: 2130
[64]
Mathew R, Karp C M, Beaudoin B, Vuong N, Chen G, Chen H Y, Bray K, Reddy A, Bhanot G, Gelinas C, Dipaola R S, Karantza-Wadsworth V, White E (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell, 137(6): 1062–1075
CrossRef Pubmed Google scholar
[65]
Mathew R, Kongara S, Beaudoin B, Karp C M, Bray K, Degenhardt K, Chen G, Jin S, White E (2007). Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev, 21(11): 1367–1381
CrossRef Pubmed Google scholar
[66]
Maycotte P, Aryal S, Cummings C T, Thorburn J, Morgan M J, Thorburn A (2012). Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy, 8(2): 200–212
CrossRef Pubmed Google scholar
[67]
Michaud M, Martins I, Sukkurwala A Q, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G, Rello-Varona S, Tailler M, Menger L, Vacchelli E, Galluzzi L, Ghiringhelli F, di Virgilio F, Zitvogel L, Kroemer G (2011). Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science, 334(6062): 1573–1577
CrossRef Pubmed Google scholar
[68]
Mizushima N, Komatsu M (2011). Autophagy: renovation of cells and tissues. Cell, 147(4): 728–741
CrossRef Pubmed Google scholar
[69]
Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001). Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol, 152(4): 657–668
CrossRef Pubmed Google scholar
[70]
Mortensen M, Soilleux E J, Djordjevic G, Tripp R, Lutteropp M, Sadighi-Akha E, Stranks A J, Glanville J, Knight S, Jacobsen S E, Kranc K R, Simon A K (2011). The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J Exp Med, 208(3): 455–467
CrossRef Pubmed Google scholar
[71]
Musiwaro P, Smith M, Manifava M, Walker S A, Ktistakis N T (2013). Characteristics and requirements of basal autophagy in HEK 293 cells. Autophagy, 9(9): 1407–1417
CrossRef Pubmed Google scholar
[72]
Narita M, Young A R, Arakawa S, Samarajiwa S A, Nakashima T, Yoshida S, Hong S, Berry L S, Reichelt S, Ferreira M, Tavaré S, Inoki K, Shimizu S, Narita M (2011). Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science, 332(6032): 966–970
CrossRef Pubmed Google scholar
[73]
Newman A C, Scholefield C L, Kemp A J, Newman M, McIver E G, Kamal A, Wilkinson S (2012). TBK1 kinase addiction in lung cancer cells is mediated via autophagy of Tax1bp1/Ndp52 and non-canonical NF-κB signalling. PLoS ONE, 7(11): e50672
CrossRef Pubmed Google scholar
[74]
Noman M Z, Janji B, Kaminska B, Van Moer K, Pierson S, Przanowski P, Buart S, Berchem G, Romero P, Mami-Chouaib F, Chouaib S (2011). Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res, 71(18): 5976–5986
CrossRef Pubmed Google scholar
[75]
Paul S, Kashyap A K, Jia W, He Y W, Schaefer B C (2012). Selective autophagy of the adaptor protein Bcl10 modulates T cell receptor activation of NF-κB. Immunity, 36(6): 947–958
CrossRef Pubmed Google scholar
[76]
Penna F, Costamagna D, Pin F, Camperi A, Fanzani A, Chiarpotto E M, Cavallini G, Bonelli G, Baccino F M, Costelli P (2013). Autophagic degradation contributes to muscle wasting in cancer cachexia. Am J Pathol, 182(4): 1367–1378
CrossRef Pubmed Google scholar
[77]
Petherick K J, Williams A C, Lane J D, Ordóñez-Morán P, Huelsken J, Collard T J, Smartt H J, Batson J, Malik K, Paraskeva C, Greenhough A (2013). Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J, 32(13): 1903–1916
CrossRef Pubmed Google scholar
[78]
Pohl C, Jentsch S (2009). Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat Cell Biol, 11(1): 65–70
CrossRef Pubmed Google scholar
[79]
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen E L, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest, 112(12): 1809–1820
Pubmed
[80]
Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C, Debnath J (2010). ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell, 142(4): 590–600
CrossRef Pubmed Google scholar
[81]
Reggiori F, Komatsu M, Finley K, Simonsen A (2012). Autophagy: more than a nonselective pathway. Int J Cell Biol, 2012: 219625
CrossRef Pubmed Google scholar
[82]
Rosenfeldt M T, O’Prey J, Morton J P, Nixon C, MacKay G, Mrowinska A, Au A, Rai T S, Zheng L, Ridgway R, Adams P D, Anderson K I, Gottlieb E, Sansom O J, Ryan K M (2013). p53 status determines the role of autophagy in pancreatic tumour development. Nature, 504(7479): 296–300
CrossRef Pubmed Google scholar
[83]
Rubinstein A D, Eisenstein M, Ber Y, Bialik S, Kimchi A (2011). The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell, 44(5): 698–709
CrossRef Pubmed Google scholar
[84]
Rubinsztein D C, Shpilka T, Elazar Z (2012). Mechanisms of autophagosome biogenesis. Curr Biol, 22(1): R29–R34
CrossRef Pubmed Google scholar
[85]
Russell R C, Tian Y, Yuan H, Park H W, Chang Y Y, Kim J, Kim H, Neufeld T P, Dillin A, Guan K L (2013). ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol, 15(7): 741–750
CrossRef Pubmed Google scholar
[86]
Saitoh T, Fujita N, Jang M H, Uematsu S, Yang B G, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S (2008). Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature, 456(7219): 264–268
CrossRef Pubmed Google scholar
[87]
Sandilands E, Serrels B, McEwan D G, Morton J P, Macagno J P, McLeod K, Stevens C, Brunton V G, Langdon W Y, Vidal M, Sansom O J, Dikic I, Wilkinson S, Frame M C (2012a). Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat Cell Biol, 14(1): 51–60
CrossRef Pubmed Google scholar
[88]
Sandilands E, Serrels B, Wilkinson S, Frame M C (2012b). Src-dependent autophagic degradation of Ret in FAK-signalling-defective cancer cells. EMBO Rep, 13(8): 733–740
CrossRef Pubmed Google scholar
[89]
Shang L, Wang X (2011). AMPK and mTOR coordinate the regulation of Ulk1 and mammalian autophagy initiation. Autophagy, 7(8): 924–926
CrossRef Pubmed Google scholar
[90]
Sheen J H, Zoncu R, Kim D, Sabatini D M (2011). Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell, 19(5): 613–628
CrossRef Pubmed Google scholar
[91]
Shibata T, Ohta T, Tong K I, Kokubu A, Odogawa R, Tsuta K, Asamura H, Yamamoto M, Hirohashi S (2008). Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci USA, 105(36): 13568–13573
CrossRef Pubmed Google scholar
[92]
Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson C B, Tsujimoto Y (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol, 6(12): 1221–1228
CrossRef Pubmed Google scholar
[93]
Shoji-Kawata S, Sumpter R, Leveno M, Campbell G R, Zou Z, Kinch L, Wilkins A D, Sun Q, Pallauf K, MacDuff D, Huerta C, Virgin H W, Helms J B, Eerland R, Tooze S A, Xavier R, Lenschow D J, Yamamoto A, King D, Lichtarge O, Grishin N V, Spector S A, Kaloyanova D V, Levine B (2013). Identification of a candidate therapeutic autophagy-inducing peptide. Nature, 494(7436): 201–206
CrossRef Pubmed Google scholar
[94]
Stingele S, Stoehr G, Peplowska K, Cox J, Mann M, Storchova Z (2012). Global analysis of genome, transcriptome and proteome reveals the response to aneuploidy in human cells. Mol Syst Biol, 8: 608
CrossRef Pubmed Google scholar
[95]
Strohecker A M, Guo J Y, Karsli-Uzunbas G, Price S M, Chen G J, Mathew R, McMahon M, White E (2013). Autophagy sustains mitochondrial glutamine metabolism and growth of BRAFV600E-driven lung tumors. Cancer Discov. doi: 10.1158/2159-8290.CD-13-0397
[96]
Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q, Wang X, He C, Pan H (2013). Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis, 4(10): e838
CrossRef Pubmed Google scholar
[97]
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011). Autophagy-deficient mice develop multiple liver tumors. Genes Dev, 25(8): 795–800
CrossRef Pubmed Google scholar
[98]
Tang Y C, Williams B R, Siegel J J, Amon A (2011). Identification of aneuploidy-selective antiproliferation compounds. Cell, 144(4): 499–512
CrossRef Pubmed Google scholar
[99]
Wang R C, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B (2012a). Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science, 338(6109): 956–959
CrossRef Pubmed Google scholar
[100]
Wang Y, Wang X D, Lapi E, Sullivan A, Jia W, He Y W, Ratnayaka I, Zhong S, Goldin R D, Goemans C G, Tolkovsky A M, Lu X (2012b). Autophagic activity dictates the cellular response to oncogenic RAS. Proc Natl Acad Sci USA, 109(33): 13325–13330
CrossRef Pubmed Google scholar
[101]
Wei H, Wei S, Gan B, Peng X, Zou W, Guan J L (2011). Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev, 25(14): 1510–1527
CrossRef Pubmed Google scholar
[102]
Wei Y, Zou Z, Becker N, Anderson M, Sumpter R, Xiao G, Kinch L, Koduru P, Christudass C S, Veltri R W, Grishin N V, Peyton M, Minna J, Bhagat G, Levine B (2013). EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell, 154(6): 1269–1284
CrossRef Pubmed Google scholar
[103]
Weidberg H, Shpilka T, Shvets E, Abada A, Shimron F, Elazar Z (2011). LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev Cell, 20(4): 444–454
CrossRef Pubmed Google scholar
[104]
Wild P, Farhan H, McEwan D G, Wagner S, Rogov V V, Brady N R, Richter B, Korac J, Waidmann O, Choudhary C, Dötsch V, Bumann D, Dikic I (2011). Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science, 333(6039): 228–233
CrossRef Pubmed Google scholar
[105]
Wilkinson S, O’Prey J, Fricker M, Ryan K M (2009). Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity. Genes Dev, 23(11): 1283–1288
CrossRef Pubmed Google scholar
[106]
Wirawan E, Vanden Berghe T, Lippens S, Agostinis P, Vandenabeele P (2012). Autophagy: for better or for worse. Cell Res, 22(1): 43–61
CrossRef Pubmed Google scholar
[107]
Wong P M, Puente C, Ganley I G, Jiang X (2013). The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy, 9(2): 124–137
CrossRef Pubmed Google scholar
[108]
Xie Z, Klionsky D J (2007). Autophagosome formation: core machinery and adaptations. Nat Cell Biol, 9(10): 1102–1109
CrossRef Pubmed Google scholar
[109]
Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel J M, Dell’antonio G, Mautner J, Tonon G, Haigis M, Shirihai O S, Doglioni C, Bardeesy N, Kimmelman A C (2011). Pancreatic cancers require autophagy for tumor growth. Genes Dev, 25(7): 717–729
CrossRef Pubmed Google scholar
[110]
Yee K S, Wilkinson S, James J, Ryan K M, Vousden K H (2009). PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ, 16(8): 1135–1145
CrossRef Pubmed Google scholar
[111]
Young A R, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot J F, Tavaré S, Arakawa S, Shimizu S, Watt F M, Narita M (2009). Autophagy mediates the mitotic senescence transition. Genes Dev, 23(7): 798–803
CrossRef Pubmed Google scholar
[112]
Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon H U (2006). Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol, 8(10): 1124–1132
CrossRef Pubmed Google scholar
[113]
Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke E H, Lenardo M J (2004). Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science, 304(5676): 1500–1502
CrossRef Pubmed Google scholar
[114]
Yu L, Wan F, Dutta S, Welsh S, Liu Z, Freundt E, Baehrecke E H, Lenardo M (2006). Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci USA, 103(13): 4952–4957
CrossRef Pubmed Google scholar
[115]
Yue Z, Jin S, Yang C, Levine A J, Heintz N (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA, 100(25): 15077–15082
CrossRef Pubmed Google scholar
[116]
Zhao Y, Yang J, Liao W, Liu X, Zhang H, Wang S, Wang D, Feng J, Yu L, Zhu W G (2010). Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat Cell Biol, 12(7): 665–675
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(348 KB)

Accesses

Citations

Detail

Sections
Recommended

/