Structural biology of the macroautophagy machinery
Leon H. CHEW, Calvin K. YIP
Structural biology of the macroautophagy machinery
Macroautophagy is a conserved degradative process mediated through formation of a unique double-membrane structure, the autophagosome. The discovery of autophagy-related (Atg) genes required for autophagosome formation has led to the characterization of approximately 20 genes mediating this process. Recent structural studies of the Atg proteins have provided the molecular basis for their function. Here we summarize the recent progress in elucidating the structural basis for autophagosome formation.
macroautophagy / autophagy / Atg proteins / structural biology / X-ray crystallography / single-particle electron microscopy
[1] |
AitaV M, LiangX H, MurtyV V, PincusD L, YuW, CayanisE, KalachikovS, GilliamT C, LevineB (1999). Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics, 59(1): 59–65
CrossRef
Pubmed
Google scholar
|
[2] |
ArakiY, KuW C, AkiokaM, MayA I, HayashiY, ArisakaF, IshihamaY, OhsumiY (2013). Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. J Cell Biol, 203(2): 299–313
CrossRef
Pubmed
Google scholar
|
[3] |
AshrafiG, SchwarzT L (2013). The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ, 20(1): 31–42
CrossRef
Pubmed
Google scholar
|
[4] |
AxeE L, WalkerS A, ManifavaM, ChandraP, RoderickH L, HabermannA, GriffithsG, KtistakisN T (2008). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol, 182(4): 685–701
CrossRef
Pubmed
Google scholar
|
[5] |
BaskaranS, RagusaM J, BouraE, HurleyJ H (2012). Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. Mol Cell, 47(3): 339–348
CrossRef
Pubmed
Google scholar
|
[6] |
BirgisdottirA B, LamarkT, JohansenT (2013). The LIR motif- crucial for selective autophagy. J Cell Sci, 126(Pt 15): 3237–3247
Pubmed
|
[7] |
BurdaP, PadillaS M, SarkarS, EmrS D (2002). Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J Cell Sci, 115(Pt 20): 3889–3900
CrossRef
Pubmed
Google scholar
|
[8] |
ChanE Y W, LongattiA, McKnightN C, ToozeS A (2009). Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol, 29(1): 157–171
CrossRef
Pubmed
Google scholar
|
[9] |
CheongH, NairU, GengJ, KlionskyD J (2008). The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol Biol Cell, 19(2): 668–681
CrossRef
Pubmed
Google scholar
|
[10] |
CheongH, YorimitsuT, ReggioriF, LegakisJ E, WangC W, KlionskyD J (2005). Atg17 regulates the magnitude of the autophagic response. Mol Biol Cell, 16(7): 3438–3453
CrossRef
Pubmed
Google scholar
|
[132] |
ChewL H, SetiaputraD, KlionskyD J, YipC K (2013). Structural characterization of the Saccharomyces cerevisiae autophagy regulatory complex Atg17-Atg31-Atg29. Autophagy, 9: 1467–1474
|
[11] |
ChoiA M K, RyterS W, LevineB (2013). Autophagy in human health and disease. N Engl J Med, 368(7): 651–662
CrossRef
Pubmed
Google scholar
|
[12] |
CoyleJ E, QamarS, RajashankarK R, NikolovD B (2002). Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding. Neuron, 33(1): 63–74
CrossRef
Pubmed
Google scholar
|
[13] |
DoveS K, PiperR C, McEwenR K, YuJ W, KingM C, HughesD C, ThuringJ, HolmesA B, CookeF T, MichellR H, ParkerP J, LemmonM A (2004). Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO J, 23(9): 1922–1933
CrossRef
Pubmed
Google scholar
|
[14] |
FanW, NassiriA, ZhongQ (2011). Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci USA, 108(19): 7769–7774
CrossRef
Pubmed
Google scholar
|
[15] |
FengW, HuangS, WuH, ZhangM (2007). Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol, 372(1): 223–235
CrossRef
Pubmed
Google scholar
|
[16] |
FogelA I, DlouhyB J, WangC, RyuS W, NeutznerA, HassonS A, SiderisD P, AbeliovichH, YouleR J (2013). Role of membrane association and Atg14-dependent phosphorylation in beclin-1-mediated autophagy. Mol Cell Biol, 33(18): 3675–3688
CrossRef
Pubmed
Google scholar
|
[17] |
FujiokaY, NodaN N, NakatogawaH, OhsumiY, InagakiF (2010). Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J Biol Chem, 285(2): 1508–1515
CrossRef
Pubmed
Google scholar
|
[18] |
FuruyaN, YuJ, ByfieldM, PattingreS, LevineB (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy, 1(1): 46–52
CrossRef
Pubmed
Google scholar
|
[19] |
GammohN, FloreyO, OverholtzerM, JiangX (2013). Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and-independent autophagy. Nat Struct Mol Biol, 20(2): 144–149
CrossRef
Pubmed
Google scholar
|
[20] |
GanleyI G, LamH, WangJ, DingX, ChenS, JiangX (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem, 284(18): 12297–12305
CrossRef
Pubmed
Google scholar
|
[21] |
GaugelA, BakulaD, HoffmannA, Proikas-CezanneT (2012). Defining regulatory and phosphoinositide-binding sites in the human WIPI-1 β-propeller responsible for autophagosomal membrane localization downstream of mTORC1 inhibition. J Mol Signal, 7(1): 16
CrossRef
Pubmed
Google scholar
|
[22] |
HaileyD W, RamboldA S, Satpute-KrishnanP, MitraK, SougratR, KimP K, Lippincott-SchwartzJ (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 141(4): 656–667
CrossRef
Pubmed
Google scholar
|
[23] |
HamasakiM, FurutaN, MatsudaA, NezuA, YamamotoA, FujitaN, OomoriH, NodaT, HaraguchiT, HiraokaY, AmanoA, YoshimoriT (2013). Autophagosomes form at ER-mitochondria contact sites. Nature, 495(7441): 389–393
CrossRef
Pubmed
Google scholar
|
[24] |
Hayashi-NishinoM, FujitaN, NodaT, YamaguchiA, YoshimoriT, YamamotoA (2009). A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol, 11(12): 1433–1437
CrossRef
Pubmed
Google scholar
|
[25] |
HeenanE J, VanhookeJ L, TempleB R, BettsL, SondekJ E, DohlmanH G (2009). Structure and function of Vps15 in the endosomal G protein signaling pathway. Biochemistry, 48(27): 6390–6401
CrossRef
Pubmed
Google scholar
|
[26] |
HongS B, KimB W, KimJ H, SongH K (2012). Structure of the autophagic E2 enzyme Atg10. Acta Crystallogr D Biol Crystallogr, 68(Pt 10): 1409–1417
CrossRef
Pubmed
Google scholar
|
[27] |
HongS B, KimB W, LeeK E, KimS W, JeonH, KimJ, SongH K (2011). Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat Struct Mol Biol, 18(12): 1323–1330
CrossRef
Pubmed
Google scholar
|
[28] |
HosokawaN, SasakiT, IemuraS, NatsumeT, HaraT, MizushimaN (2009). Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy, 5(7): 973–979
CrossRef
Pubmed
Google scholar
|
[29] |
HuangW, ChoiW, HuW, MiN, GuoQ, MaM, LiuM, TianY, LuP, WangF L, DengH, LiuL, GaoN, YuL, ShiY (2012). Crystal structure and biochemical analyses reveal Beclin 1 as a novel membrane binding protein. Cell Res, 22(3): 473–489
CrossRef
Pubmed
Google scholar
|
[30] |
IchimuraY, KirisakoT, TakaoT, SatomiY, ShimonishiY, IshiharaN, MizushimaN, TanidaI, KominamiE, OhsumiM, NodaT, OhsumiY (2000). A ubiquitin-like system mediates protein lipidation. Nature, 408(6811): 488–492
CrossRef
Pubmed
Google scholar
|
[31] |
ItakuraE, KishiC, InoueK, MizushimaN (2008). Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell, 19(12): 5360–5372
CrossRef
Pubmed
Google scholar
|
[32] |
JaoC C, RagusaM J, StanleyR E, HurleyJ H (2013). A HORMA domain in Atg13 mediates PI 3-kinase recruitment in autophagy. Proc Natl Acad Sci USA, 110(14): 5486–5491
CrossRef
Pubmed
Google scholar
|
[33] |
KabeyaY, KamadaY, BabaM, TakikawaH, SasakiM, OhsumiY (2005). Atg17 functions in cooperation with Atg1 and Atg13 in yeast autophagy. Mol Biol Cell, 16(5): 2544–2553
CrossRef
Pubmed
Google scholar
|
[34] |
KabeyaY, MizushimaN, YamamotoA, Oshitani-OkamotoS, OhsumiY, YoshimoriT (2004). LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci, 117(Pt 13): 2805–2812
CrossRef
Pubmed
Google scholar
|
[133] |
KabeyaY, MizushimaN, UenoT, YamamotoA, KirisakoT, NodaT, KominamiE, OhsumiY, YoshimoriT (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 19: 5720–5728
|
[35] |
KabeyaY, NodaN N, FujiokaY, SuzukiK, InagakiF, OhsumiY (2009). Characterization of the Atg17-Atg29-Atg31 complex specifically required for starvation-induced autophagy in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 389(4): 612–615
CrossRef
Pubmed
Google scholar
|
[36] |
KaiserS E, MaoK, TaherbhoyA M, YuS, OlszewskiJ L, DudaD M, KurinovI, DengA, FennT D, KlionskyD J, SchulmanB A (2012). Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol, 19(12): 1242–1249
CrossRef
Pubmed
Google scholar
|
[37] |
KakutaS, YamamotoH, NegishiL, Kondo-KakutaC, HayashiN, OhsumiY (2012). Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site. J Biol Chem, 287(53): 44261–44269
CrossRef
Pubmed
Google scholar
|
[38] |
KamadaY, FunakoshiT, ShintaniT, NaganoK, OhsumiM, OhsumiY (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol, 150(6): 1507–1513
CrossRef
Pubmed
Google scholar
|
[39] |
KaranasiosE, StapletonE, ManifavaM, KaizukaT, MizushimaN, WalkerS A, KtistakisN T (2013). Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J Cell Sci, 126(Pt 22): 5224–5238
CrossRef
Pubmed
Google scholar
|
[40] |
KiharaA, NodaT, IshiharaN, OhsumiY (2001). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol, 152, 519–30
|
[41] |
KijanskaM, DohnalI, ReiterW, KasparS, StoffelI, AmmererG, KraftC, PeterM (2010). Activation of Atg1 kinase in autophagy by regulated phosphorylation. Autophagy, 6(8): 1168–1178
CrossRef
Pubmed
Google scholar
|
[42] |
KimJ, KunduM, ViolletB, GuanK L (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 13(2): 132–141
CrossRef
Pubmed
Google scholar
|
[43] |
KnightD, HarrisR, McAlisterM S B, PhelanJ P, GeddesS, MossS J, DriscollP C, KeepN H (2002). The X-ray crystal structure and putative ligand-derived peptide binding properties of gamma-aminobutyric acid receptor type A receptor-associated protein. J Biol Chem, 277(7): 5556–5561
CrossRef
Pubmed
Google scholar
|
[44] |
KobayashiT, SuzukiK, OhsumiY (2012). Autophagosome formation can be achieved in the absence of Atg18 by expressing engineered PAS-targeted Atg2. FEBS Lett, 586(16): 2473–2478
CrossRef
Pubmed
Google scholar
|
[45] |
Kondo-OkamotoN, NodaN N, SuzukiS W, NakatogawaH, TakahashiI, MatsunamiM, HashimotoA, InagakiF, OhsumiY, OkamotoK (2012). Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J Biol Chem, 287(13): 10631–10638
CrossRef
Pubmed
Google scholar
|
[46] |
KraftC, DeplazesA, SohrmannM, PeterM (2008). Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol, 10(5): 602–610
CrossRef
Pubmed
Google scholar
|
[47] |
KraftC, KijanskaM, KalieE, SiergiejukE, LeeS S, SemplicioG, StoffelI, BrezovichA, VermaM, HansmannI, AmmererG, HofmannK, ToozeS, PeterM (2012). Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J, 31(18): 3691–3703
CrossRef
Pubmed
Google scholar
|
[48] |
KrickR, BusseR A, ScaciocA, StephanM, JanshoffA, ThummM, KühnelK (2012). Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a β-propeller protein family. Proc Natl Acad Sci USA, 109(30): E2042–E2049
CrossRef
Pubmed
Google scholar
|
[49] |
KrickR, MueheY, PrickT, BremerS, SchlotterhoseP, EskelinenE L, MillenJ, GoldfarbD S, ThummM (2008). Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. Mol Biol Cell, 19(10): 4492–4505
CrossRef
Pubmed
Google scholar
|
[50] |
KuB, WooJ S, LiangC, LeeK H, HongH S, eX, KimK S, JungJ U, OhB H (2008). Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gamma-herpesvirus 68. PLoS Pathog, 4(2): e25
CrossRef
Pubmed
Google scholar
|
[51] |
KumaA, MizushimaN, IshiharaN, OhsumiY (2002). Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem, 277(21): 18619–18625
CrossRef
Pubmed
Google scholar
|
[52] |
KumanomidouT, MizushimaT, KomatsuM, SuzukiA, TanidaI, SouY S, UenoT, KominamiE, TanakaK, YamaneT (2006). The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J Mol Biol, 355(4): 612–618
CrossRef
Pubmed
Google scholar
|
[53] |
KumetaH, WatanabeM, NakatogawaH, YamaguchiM, OguraK, AdachiW, FujiokaY, NodaN N, OhsumiY, InagakiF (2010). The NMR structure of the autophagy-related protein Atg8. J Biomol NMR, 47(3): 237–241
CrossRef
Pubmed
Google scholar
|
[54] |
LambC A, YoshimoriT, ToozeS A (2013). The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol, 14(12): 759–774
CrossRef
Pubmed
Google scholar
|
[55] |
LiX, HeL, CheK H, FunderburkS F, PanL, PanN, ZhangM, YueZ, ZhaoY (2012). Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG. Nat Commun, 3: 662
CrossRef
Pubmed
Google scholar
|
[56] |
LiangX H, JacksonS, SeamanM, BrownK, KempkesB, HibshooshH, LevineB (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 402(6762): 672–676
CrossRef
Pubmed
Google scholar
|
[57] |
LiangX H, KleemanL K, JiangH H, GordonG, GoldmanJ E, BerryG, HermanB, LevineB (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol, 72(11): 8586–8596
Pubmed
|
[134] |
LipatovaZ, BelogortsevaN, ZhangX Q, KimJ, TaussigD, SegevN (2012). Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc Natl Acad Sci U S A, 109: 6981–6986
|
[58] |
LiuK, CzajaM J (2013). Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ, 20(1): 3–11
CrossRef
Pubmed
Google scholar
|
[59] |
LiuX, DaiS, ZhuY, MarrackP, KapplerJ W (2003). The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity, 19(3): 341–352
CrossRef
Pubmed
Google scholar
|
[60] |
MaoK, ChewL H, Inoue-AonoY, CheongH, NairU, PopelkaH, YipC K, KlionskyD J (2013). Atg29 phosphorylation regulates coordination of the Atg17-Atg31-Atg29 complex with the Atg11 scaffold during autophagy initiation. Proc Natl Acad Sci USA, 110(31): E2875–E2884
CrossRef
Pubmed
Google scholar
|
[61] |
MatsunagaK, SaitohT, TabataK, OmoriH, SatohT, KurotoriN, MaejimaI, Shirahama-NodaK, IchimuraT, IsobeT, AkiraS, NodaT, YoshimoriT (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol, 11(4): 385–396
CrossRef
Pubmed
Google scholar
|
[62] |
MatsushitaM, SuzukiN N, ObaraK, FujiokaY, OhsumiY, InagakiF (2007). Structure of Atg5.Atg16, a complex essential for autophagy. J Biol Chem, 282(9): 6763–6772
CrossRef
Pubmed
Google scholar
|
[63] |
MatsuuraA, TsukadaM, WadaY, OhsumiY (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene, 192, 245–250
|
[64] |
MautheM, JacobA, FreibergerS, HentschelK, StierhofY D, CodognoP, Proikas-CezanneT (2011). Resveratrol-mediated autophagy requires WIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy, 7(12): 1448–1461
CrossRef
Pubmed
Google scholar
|
[65] |
Meiling-WesseK, BarthH, VossC, EskelinenE L, EppleU D, ThummM (2004). Atg21 is required for effective recruitment of Atg8 to the preautophagosomal structure during the Cvt pathway. J Biol Chem, 279(36): 37741–37750
CrossRef
Pubmed
Google scholar
|
[66] |
MercerC A, KaliappanA, DennisP B (2009). A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 5(5): 649–662
CrossRef
Pubmed
Google scholar
|
[67] |
MetlagelZ, OtomoC, TakaesuG, OtomoT (2013). Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Proc Natl Acad Sci USA, 110(47): 18844–18849
CrossRef
Pubmed
Google scholar
|
[68] |
MillerS, TavshanjianB, OleksyA, PerisicO, HousemanB T, ShokatK M, WilliamsR L (2010). Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science, 327(5973): 1638–1642
CrossRef
Pubmed
Google scholar
|
[69] |
MizushimaN, NodaT, YoshimoriT, TanakaY, IshiiT, GeorgeM D, KlionskyD J, OhsumiM, OhsumiY (1998). A protein conjugation system essential for autophagy. Nature, 395(6700): 395–398
CrossRef
Pubmed
Google scholar
|
[70] |
MizushimaN, YoshimoriT, OhsumiY (2011). The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol, 27(1): 107–132
CrossRef
Pubmed
Google scholar
|
[71] |
MoreauK, RavikumarB, RennaM, PuriC, RubinszteinD C (2011). Autophagosome precursor maturation requires homotypic fusion. Cell, 146(2): 303–317
CrossRef
Pubmed
Google scholar
|
[72] |
MoreauK, RennaM, RubinszteinD C (2013). Connections between SNAREs and autophagy. Trends Biochem Sci, 38(2): 57–63
CrossRef
Pubmed
Google scholar
|
[73] |
NairU, JotwaniA, GengJ, GammohN, RichersonD, YenW L, GriffithJ, NagS, WangK, MossT, BabaM, McNewJ A, JiangX, ReggioriF, MeliaT J, KlionskyD J (2011). SNARE proteins are required for macroautophagy. Cell, 146(2): 290–302
CrossRef
Pubmed
Google scholar
|
[74] |
NairU, YenW L, MariM, CaoY, XieZ, BabaM, ReggioriF, KlionskyD J (2012). A role for Atg8-PE deconjugation in autophagosome biogenesis. Autophagy, 8(5): 780–793
CrossRef
Pubmed
Google scholar
|
[75] |
NakatogawaH, IchimuraY, OhsumiY (2007). Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell, 130(1): 165–178
CrossRef
Pubmed
Google scholar
|
[76] |
NakatogawaH, IshiiJ, AsaiE, OhsumiY (2012). Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy, 8(2): 1–10
CrossRef
Pubmed
Google scholar
|
[77] |
NakatogawaH, SuzukiK, KamadaY, OhsumiY (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol, 10(7): 458–467
CrossRef
Pubmed
Google scholar
|
[78] |
NishimuraT, KaizukaT, CadwellK, SahaniM H, SaitohT, AkiraS, VirginH W, MizushimaN (2013). FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep, 14(3): 284–291
CrossRef
Pubmed
Google scholar
|
[79] |
NodaN N, FujiokaY, HanadaT, OhsumiY, InagakiF (2013). Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep, 14(2): 206–211
CrossRef
Pubmed
Google scholar
|
[80] |
NodaN N, KobayashiT, AdachiW, FujiokaY, OhsumiY, InagakiF (2012). Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy. J Biol Chem, 287(20): 16256–16266
CrossRef
Pubmed
Google scholar
|
[81] |
NodaN N, KumetaH, NakatogawaH, SatooK, AdachiW, IshiiJ, FujiokaY, OhsumiY, InagakiF (2008). Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells, 13(12): 1211–1218
CrossRef
Pubmed
Google scholar
|
[82] |
NodaN N, OhsumiY, InagakiF (2009). ATG systems from the protein structural point of view. Chem Rev, 109(4): 1587–1598
CrossRef
Pubmed
Google scholar
|
[83] |
NodaN N, SatooK, FujiokaY, KumetaH, OguraK, NakatogawaH, OhsumiY, InagakiF (2011). Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell, 44(3): 462–475
CrossRef
Pubmed
Google scholar
|
[84] |
NodaT, KimJ, HuangW P, BabaM, TokunagaC, OhsumiY, KlionskyD J (2000). Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol, 148(3): 465–480
CrossRef
Pubmed
Google scholar
|
[85] |
NodaT, MatsunagaK, Taguchi-AtarashiN, YoshimoriT (2010). Regulation of membrane biogenesis in autophagy via PI3P dynamics. Semin Cell Dev Biol, 21(7): 671–676
CrossRef
Pubmed
Google scholar
|
[86] |
ObaraK, NodaT, NiimiK, OhsumiY (2008a). Transport of phosphatidylinositol 3-phosphate into the vacuole via autophagic membranes in Saccharomyces cerevisiae. Genes Cells, 13(6): 537–547
CrossRef
Pubmed
Google scholar
|
[87] |
ObaraK, SekitoT, NiimiK, OhsumiY (2008b). The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem, 283(35): 23972–23980
CrossRef
Pubmed
Google scholar
|
[88] |
ObaraK, SekitoT, OhsumiY (2006). Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae. Mol Biol Cell, 17(4): 1527–1539
CrossRef
Pubmed
Google scholar
|
[89] |
ObersteinA, JeffreyP D, ShiY (2007). Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem, 282(17): 13123–13132
CrossRef
Pubmed
Google scholar
|
[90] |
OtomoC, MetlagelZ, TakaesuG, OtomoT (2013). Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol, 20(1): 59–66
CrossRef
Pubmed
Google scholar
|
[91] |
PanaretouC, DominJ, CockcroftS, WaterfieldM D (1997). Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase.Substrate presentation by phosphatidylinositol transfer protein to the p150.Ptdins 3-kinase complex. J Biol Chem, 272(4): 2477–2485
CrossRef
Pubmed
Google scholar
|
[92] |
PazY, ElazarZ, FassD (2000). Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Aut7p. J Biol Chem, 275(33): 25445–25450
CrossRef
Pubmed
Google scholar
|
[135] |
PetrosA M, NettesheimD G, WangY, OlejniczakE T, MeadowsR P, MackJ, SwiftK, MatayoshiE D, ZhangH, ThompsonC B, FesikS W (2010). Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci, 9: 2528–2534
|
[93] |
PolsonH E J, de LartigueJ, RigdenD J, ReedijkM, UrbéS, ClagueM J, ToozeS A (2010). Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy, 6(4): 506–522
CrossRef
Pubmed
Google scholar
|
[94] |
Proikas-CezanneT, WaddellS, GaugelA, FrickeyT, LupasA, NordheimA (2004). WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene, 23(58): 9314–9325
CrossRef
Pubmed
Google scholar
|
[95] |
PuriC, RennaM, BentoC F, MoreauK, RubinszteinD C (2013). Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell, 154(6): 1285–1299
CrossRef
Pubmed
Google scholar
|
[96] |
RagusaM J, StanleyR E, HurleyJ H (2012). Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell, 151(7): 1501–1512
CrossRef
Pubmed
Google scholar
|
[97] |
RavikumarB, MoreauK, JahreissL, PuriC, RubinszteinD C (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol, 12(8): 747–757
CrossRef
Pubmed
Google scholar
|
[98] |
ReggioriF, KlionskyD J (2013). Autophagic processes in yeast: mechanism, machinery and regulation. Genetics, 194(2): 341–361
CrossRef
Pubmed
Google scholar
|
[99] |
ReggioriF, TuckerK A, StromhaugP E, KlionskyD J (2004). The Atg1-Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre-autophagosomal structure. Dev Cell, 6(1): 79–90
CrossRef
Pubmed
Google scholar
|
[100] |
RennerL D, WeibelD B (2011). Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci USA, 108(15): 6264–6269
CrossRef
Pubmed
Google scholar
|
[101] |
RieterE, VinkeF, BakulaD, CebolleroE, UngermannC, Proikas-CezanneT, ReggioriF (2013). Atg18 function in autophagy is regulated by specific sites within its β-propeller. J Cell Sci, 126(Pt 2): 593–604
CrossRef
Pubmed
Google scholar
|
[136] |
RomanovJ, WalczakM, IbiricuI, SchüchnerS, OgrisE, KraftC, MartensS (2012). Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J, 31: 4304–4317
CrossRef
Pubmed
Google scholar
|
[102] |
SattlerM, LiangH, NettesheimD, MeadowsR P, HarlanJ E, EberstadtM, YoonH S, ShukerS B, ChangB S, MinnA J, ThompsonC B, FesikS W (1997). Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science, 275: 983–986
|
[102] |
SatooK, NodaN N, KumetaH, FujiokaY, MizushimaN, OhsumiY, InagakiF (2009). The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J, 28(9): 1341–1350
CrossRef
Pubmed
Google scholar
|
[103] |
SchwartenM, StoldtM, MohrlüderJ, WillboldD (2010). Solution structure of Atg8 reveals conformational polymorphism of the N-terminal domain. Biochem Biophys Res Commun, 395(3): 426–431
CrossRef
Pubmed
Google scholar
|
[104] |
SeglenP O, GordonP B (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA, 79(6): 1889–1892
CrossRef
Pubmed
Google scholar
|
[105] |
SekitoT, KawamataT, IchikawaR, SuzukiK, OhsumiY (2009). Atg17 recruits Atg9 to organize the pre-autophagosomal structure. Genes Cells, 14(5): 525–538
CrossRef
Pubmed
Google scholar
|
[106] |
SironiL, MapelliM, KnappS, De AntoniA, JeangK T, MusacchioA (2002). Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint. EMBO J, 21(10): 2496–2506
CrossRef
Pubmed
Google scholar
|
[107] |
StrϕmhaugP E, ReggioriF, GuanJ, WangC W, KlionskyD J (2004). Atg21 is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell, 15(8): 3553–3566
CrossRef
Pubmed
Google scholar
|
[108] |
SugawaraK, SuzukiN N, FujiokaY, MizushimaN, OhsumiY, InagakiF (2004). The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells, 9(7): 611–618
CrossRef
Pubmed
Google scholar
|
[109] |
SugawaraK, SuzukiN N, FujiokaY, MizushimaN, OhsumiY, InagakiF (2005). Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J Biol Chem, 280(48): 40058–40065
CrossRef
Pubmed
Google scholar
|
[110] |
SunL L, LiM, SuoF, LiuX M, ShenE Z, YangB, DongM Q, HeW Z, DuL L (2013). Global analysis of fission yeast mating genes reveals new autophagy factors. PLoS Genet, 9(8): e1003715
CrossRef
Pubmed
Google scholar
|
[111] |
SuzukiK (2013). Selective autophagy in budding yeast. Cell Death Differ, 20(1): 43–48
CrossRef
Pubmed
Google scholar
|
[112] |
SuzukiK, KubotaY, SekitoT, OhsumiY (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells, 12(2): 209–218
CrossRef
Pubmed
Google scholar
|
[113] |
SuzukiK, OhsumiY (2007). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett, 581(11): 2156–2161
CrossRef
Pubmed
Google scholar
|
[114] |
SuzukiN N, YoshimotoK, FujiokaY, OhsumiY, InagakiF (2005). The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy, 1(2): 119–126
CrossRef
Pubmed
Google scholar
|
[115] |
TaherbhoyA M, TaitS W, KaiserS E, WilliamsA H, DengA, NourseA, HammelM, KurinovI, RockC O, GreenD R, SchulmanB A (2011). Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol Cell, 44(3): 451–461
CrossRef
Pubmed
Google scholar
|
[116] |
TakeshigeK, BabaM, TsuboiS, NodaT, OhsumiY (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol, 119(2): 301–311
CrossRef
Pubmed
Google scholar
|
[117] |
TsukadaM, OhsumiY (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett, 333(1-2): 169–174
CrossRef
Pubmed
Google scholar
|
[118] |
WatanabeY, KobayashiT, YamamotoH, HoshidaH, AkadaR, InagakiF, OhsumiY, NodaN N (2012). Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J Biol Chem, 287(38): 31681–31690
CrossRef
Pubmed
Google scholar
|
[119] |
WeidbergH, ShpilkaT, ShvetsE, AbadaA, ShimronF, ElazarZ (2011a). LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev Cell, 20(4): 444–454
CrossRef
Pubmed
Google scholar
|
[120] |
WeidbergH, ShvetsE, ElazarZ (2011b). Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem, 80(1): 125–156
CrossRef
Pubmed
Google scholar
|
[121] |
WeidbergH, ShvetsE, ShpilkaT, ShimronF, ShinderV, ElazarZ (2010). LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J, 29(11): 1792–1802
CrossRef
Pubmed
Google scholar
|
[122] |
WuY T, TanH L, ShuiG, BauvyC, HuangQ, WenkM R, OngC N, CodognoP, ShenH M (2010). Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem, 285(14): 10850–10861
CrossRef
Pubmed
Google scholar
|
[123] |
XieZ, NairU, KlionskyD J (2008). Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell, 19(8): 3290–3298
CrossRef
Pubmed
Google scholar
|
[124] |
YamadaY, SuzukiN N, HanadaT, IchimuraY, KumetaH, FujiokaY, OhsumiY, InagakiF (2007). The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J Biol Chem, 282(11): 8036–8043
CrossRef
Pubmed
Google scholar
|
[125] |
YamaguchiM, MatobaK, SawadaR, FujiokaY, NakatogawaH, YamamotoH, KobashigawaY, HoshidaH, AkadaR, OhsumiY, NodaN N, InagakiF (2012a). Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat Struct Mol Biol, 19(12): 1250–1256
CrossRef
Pubmed
Google scholar
|
[126] |
YamaguchiM, NodaN N, NakatogawaH, KumetaH, OhsumiY, InagakiF (2010). Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J Biol Chem, 285(38): 29599–29607
CrossRef
Pubmed
Google scholar
|
[127] |
YamaguchiM, NodaN N, YamamotoH, ShimaT, KumetaH, KobashigawaY, AkadaR, OhsumiY, InagakiF (2012b). Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure, 20(7): 1244–1254
CrossRef
Pubmed
Google scholar
|
[128] |
YamamotoH, KakutaS, WatanabeT M, KitamuraA, SekitoT, Kondo-KakutaC, IchikawaR, KinjoM, OhsumiY (2012). Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol, 198(2): 219–233
CrossRef
Pubmed
Google scholar
|
[138] |
YehY Y, ShahK H, ChouC C, HsiaoH H, WrasmanK M, StephanJ S, StamatakosD, KhooK H, HermanP K (2011). The identification and analysis of phosphorylation sites on the Atg1 protein kinase. Autophagy, 7: 716–726
|
[129] |
Ylä-AnttilaP, VihinenH, JokitaloE, EskelinenE L (2009). 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy, 5(8): 1180–1185
CrossRef
Pubmed
Google scholar
|
[130] |
YuZ Q, NiT, HongB, WangH Y, JiangF J, ZouS, ChenY, ZhengX L, KlionskyD J, LiangY, XieZ (2012). Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy, 8(6): 1–10
CrossRef
Pubmed
Google scholar
|
[131] |
ZhongY, WangQ J, LiX, YanY, BackerJ M, ChaitB T, HeintzN, YueZ (2009). Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol, 11(4): 468–476
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |