The anatomy, function, and development of mammalian Aβ low-threshold mechanoreceptors

Michael S. FLEMING, Wenqin LUO

PDF(310 KB)
PDF(310 KB)
Front. Biol. ›› 2013, Vol. 8 ›› Issue (4) : 408-420. DOI: 10.1007/s11515-013-1271-1
REVIEW
REVIEW

The anatomy, function, and development of mammalian Aβ low-threshold mechanoreceptors

Author information +
History +

Abstract

Touch sensation is critical for our social and environmental interactions. In mammals, most discriminative light touch sensation is mediated by the Aβ low-threshold mechanoreceptors. Cell bodies of Aβ low-threshold mechanoreceptors are located in the dorsal root ganglia and trigeminal ganglia, which extend a central projection innervating the spinal cord and brain stem and a peripheral projection innervating the specialized mechanosensory end organs. These specialized mechanosensory end organs include Meissner’s corpuscles, Pacinian corpuscles, lanceolate endings, Merkel cells, and Ruffini corpuscles. The morphologies and physiological properties of these mechanosensory end organs and their innervating neurons have been investigated for over a century. In addition, recent advances in mouse genetics have enabled the identification of molecular mechanisms underlying the development of Aβ low-threshold mechanoreceptors, which highlight the crucial roles of neurotrophic factor signaling and transcription factor activity in this process. Here, we will review the anatomy, physiological properties, and development of mammalian low-threshold Aβ mechanoreceptors.

Keywords

mechanoreceptor / Meissner’s corpuscle / Pacinian corpuscle / lanceolate ending / Merkel cell / Ruffini corpuscle / dorsal root ganglion

Cite this article

Download citation ▾
Michael S. FLEMING, Wenqin LUO. The anatomy, function, and development of mammalian Aβ low-threshold mechanoreceptors. Front Biol, 2013, 8(4): 408‒420 https://doi.org/10.1007/s11515-013-1271-1

References

[1]
Abdo H, Li L, Lallemend F, Bachy I, Xu X J, Rice F L, Ernfors P (2011). Dependence on the transcription factor Shox2 for specification of sensory neurons conveying discriminative touch. Eur J Neurosci, 34(10): 1529–1541
CrossRef Pubmed Google scholar
[2]
Airaksinen M S, Koltzenburg M, Lewin G R, Masu Y, Helbig C, Wolf E, Brem G, Toyka K V, Thoenen H, Meyer M (1996). Specific subtypes of cutaneous mechanoreceptors require neurotrophin-3 following peripheral target innervation. Neuron, 16(2): 287–295
CrossRef Pubmed Google scholar
[3]
Albrecht F L R P J (2008). Cutaneous Mechanisms of Tactile Perception: Morphological and Chemical Organization of the Innervation to the Skin. The Senses: A Comprehensive Reference. San Diego, Academic Press. 6: 1-32.
[4]
Bell J, Bolanowski S, Holmes M H (1994). The structure and function of Pacinian corpuscles: a review. Prog Neurobiol, 42(1): 79–128
CrossRef Pubmed Google scholar
[5]
Bentivoglio M, Pacini P (1995). Filippo Pacini: a determined observer. Brain Res Bull, 38(2): 161–165
CrossRef Pubmed Google scholar
[6]
Biemesderfer D, Munger B L, Binck J, Dubner R (1978). The pilo-Ruffini complex: a non-sinus hair and associated slowly-adapting mechanoreceptor in primate facial skin. Brain Res, 142(2): 197–222
CrossRef Pubmed Google scholar
[7]
Boulais N, Misery L (2007). Merkel cells. J Am Acad Dermatol, 57(1): 147–165
CrossRef Pubmed Google scholar
[8]
Bourane S, Garces A, Venteo S, Pattyn A, Hubert T, Fichard A, Puech S, Boukhaddaoui H, Baudet C, Takahashi S, Valmier J, Carroll P (2009). Low-threshold mechanoreceptor subtypes selectively express MafA and are specified by Ret signaling. Neuron, 64(6): 857–870
CrossRef Pubmed Google scholar
[9]
Brisben A J, Hsiao S S, Johnson K O (1999). Detection of vibration transmitted through an object grasped in the hand. J Neurophysiol, 81(4): 1548–1558
Pubmed
[10]
Brown A G (1981). Organization in the spinal cord: the anatomy and physiology of identified neurones. Berlin; New York, Springer-Verlag
[11]
Brown A G, Fyffe R E, Noble R (1980). Projections from Pacinian corpuscles and rapidly adapting mechanoreceptors of glabrous skin to the cat’s spinal cord. J Physiol, 307: 385–400
Pubmed
[12]
Burgess P R P E.R. (1973). Cutaneious mechanoreceptors and nociceptors. Handbook of Sensory Physiology. A. Iggo. Berlin, Springer. 11:29–78
[13]
Byers M R (1985). Sensory innervation of periodontal ligament of rat molars consists of unencapsulated Ruffini-like mechanoreceptors and free nerve endings. J Comp Neurol, 231(4): 500–518
CrossRef Pubmed Google scholar
[14]
Calavia M G, Feito J, López-Iglesias L, de Carlos F, García-Suarez O, Pérez-Piñera P, Cobo J, Vega J A (2010). The lamellar cells in human Meissner corpuscles express TrkB. Neurosci Lett, 468(2): 106–109
CrossRef Pubmed Google scholar
[15]
Carroll P, Lewin G R, Koltzenburg M, Toyka K V, Thoenen H (1998). A role for BDNF in mechanosensation. Nat Neurosci, 1(1): 42–46
CrossRef Pubmed Google scholar
[16]
Cauna N (1956). Nerve supply and nerve endings in Meissner’s corpuscles. Am J Anat, 99(2): 315–350
CrossRef Pubmed Google scholar
[17]
Cauna N, Mannan G (1958). The structure of human digital pacinian corpuscles (corpus cula lamellosa) and its functional significance. J Anat, 92(1): 1–20
Pubmed
[18]
Cauna N, Ross L L (1960). The fine structure of Meissner’s touch corpuscles of human fingers. J Biophys Biochem Cytol, 8(2): 467–482
CrossRef Pubmed Google scholar
[19]
Chambers M R, Andres K H, von Duering M, Iggo A (1972). The structure and function of the slowly adapting type II mechanoreceptor in hairy skin. Q J Exp Physiol Cogn Med Sci, 57(4): 417–445
Pubmed
[20]
Cronk K M, Wilkinson G A, Grimes R, Wheeler E F, Jhaveri S, Fundin B T, Silos-Santiago I, Tessarollo L, Reichardt L F, Rice F L (2002). Diverse dependencies of developing Merkel innervation on the trkA and both full-length and truncated isoforms of trkC. Development, 129(15): 3739–3750
Pubmed
[21]
Diamond J, Mills L R, Mearow K M (1988). Evidence that the Merkel cell is not the transducer in the mechanosensory Merkel cell-neurite complex. Prog Brain Res, 74: 51–56
CrossRef Pubmed Google scholar
[22]
English K B, Burgess P R, Kavka-Van Norman D (1980). Development of rat Merkel cells. J Comp Neurol, 194(2): 475–496
CrossRef Pubmed Google scholar
[23]
Fagan B M, Cahusac P M (2001). Evidence for glutamate receptor mediated transmission at mechanoreceptors in the skin. Neuroreport, 12(2): 341–347
CrossRef Pubmed Google scholar
[24]
Fundin B T, Silos-Santiago I, Ernfors P, Fagan A M, Aldskogius H, DeChiara T M, Phillips H S, Barbacid M, Yancopoulos G D, Rice F L (1997). Differential dependency of cutaneous mechanoreceptors on neurotrophins, trk receptors, and P75 LNGFR. Dev Biol, 190(1): 94–116
CrossRef Pubmed Google scholar
[25]
Gardner E P, Palmer C I (1990). Simulation of motion on the skin. III. Mechanisms used by rapidly adapting cutaneous mechanoreceptors in the primate hand for spatiotemporal resolution and two-point discrimination. J Neurophysiol, 63(4): 841–859
Pubmed
[26]
González-Martínez T, Fariñas I, Del Valle M E, Feito J, Germanà G, Cobo J, Vega J A (2005). BDNF, but not NT-4, is necessary for normal development of Meissner corpuscles. Neurosci Lett, 377(1): 12–15
CrossRef Pubmed Google scholar
[27]
González-Martínez T, Germanà G P, Monjil D F, Silos-Santiago I, de Carlos F, Germanà G, Cobo J, Vega J A (2004). Absence of Meissner corpuscles in the digital pads of mice lacking functional TrkB. Brain Res, 1002(1-2): 120–128
CrossRef Pubmed Google scholar
[28]
Gottschaldt K M, Iggo A, Young D W (1973). Functional characteristics of mechanoreceptors in sinus hair follicles of the cat. J Physiol, 235(2): 287–315
Pubmed
[29]
Gottschaldt K M, Vahle-Hinz C (1981). Merkel cell receptors: structure and transducer function. Science, 214(4517): 183–186
CrossRef Pubmed Google scholar
[30]
Grim M, Halata Z (2000). Developmental origin of avian Merkel cells. Anat Embryol (Berl), 202(5): 401–410
CrossRef Pubmed Google scholar
[31]
Haeberle H, Fujiwara M, Chuang J, Medina M M, Panditrao M V, Bechstedt S, Howard J, Lumpkin E A (2004). Molecular profiling reveals synaptic release machinery in Merkel cells. Proc Natl Acad Sci USA, 101(40): 14503–14508
CrossRef Pubmed Google scholar
[32]
Halata Z (1977). The ultrastructure of the sensory nerve endings in the articular capsule of the knee joint of the domestic cat (Ruffini corpuscles and Pacinian corpuscles). J Anat, 124(Pt 3): 717–729
Pubmed
[33]
Halata Z, Grim M, Bauman K I (2003). Friedrich Sigmund Merkel and his “Merkel cell”, morphology, development, and physiology: review and new results. Anat Rec A Discov Mol Cell Evol Biol, 271(1): 225–239
CrossRef Pubmed Google scholar
[34]
Halata Z, Munger B L (1980). The sensory innervation of primate eyelid. Anat Rec, 198(4): 657–670
CrossRef Pubmed Google scholar
[35]
Halata Z, Munger B L (1980). Sensory nerve endings in rhesus monkey sinus hairs. J Comp Neurol, 192(4): 645–663
CrossRef Pubmed Google scholar
[36]
Heidenreich M, Lechner S G, Vardanyan V, Wetzel C, Cremers C W, De Leenheer E M, Aránguez G, Moreno-Pelayo M Á, Jentsch T J, Lewin G R (2012). KCNQ4 K(+) channels tune mechanoreceptors for normal touch sensation in mouse and man. Nat Neurosci, 15(1): 138–145
CrossRef Pubmed Google scholar
[37]
Hoggan G, Hoggan F E (1893). Forked Nerve Endings on Hairs. J Anat Physiol, 27(Pt 2): 224–231
[38]
Honma Y, Kawano M, Kohsaka S, Ogawa M (2010). Axonal projections of mechanoreceptive dorsal root ganglion neurons depend on Ret. Development, 137(14): 2319–2328
CrossRef Pubmed Google scholar
[39]
Hoshino N, Harada F, Alkhamrah B A, Aita M, Kawano Y, Hanada K, Maeda T (2003). Involvement of brain-derived neurotrophic factor (BDNF) in the development of periodontal Ruffini endings. Anat Rec A Discov Mol Cell Evol Biol, 274(1): 807–816
CrossRef Pubmed Google scholar
[40]
Hu J, Huang T, Li T, Guo Z, Cheng L (2012). c-Maf is required for the development of dorsal horn laminae III/IV neurons and mechanoreceptive DRG axon projections. J Neurosci, 32(16): 5362–5373
[41]
Hubbard S J (1958). A study of rapid mechanical events in a mechanoreceptor. J Physiol, 141(2): 198–218
Pubmed
[42]
Hunt C C (1961). On the nature of vibration receptors in the hind limb of the cat. J Physiol, 155: 175–186
Pubmed
[43]
Iggo A (1985). Sensory receptors in the skin of mammals and their sensory functions. Rev Neurol (Paris), 141(10): 599–613
Pubmed
[44]
Iggo A, Andres K H (1982). Morphology of cutaneous receptors. Annu Rev Neurosci, 5(1): 1–31
CrossRef Pubmed Google scholar
[45]
Iggo A, Muir A R (1969). The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol, 200(3): 763–796
Pubmed
[46]
Iggo A, Ogawa H (1977). Correlative physiological and morphological studies of rapidly adapting mechanoreceptors in cat’s glabrous skin. J Physiol, 266(2): 275–296
Pubmed
[47]
Ikeda I, Yamashita Y, Ono T, Ogawa H (1994). Selective phototoxic destruction of rat Merkel cells abolishes responses of slowly adapting type I mechanoreceptor units. J Physiol, 479(Pt 2): 247–256
Pubmed
[48]
Johansson R S, Vallbo A B (1979). Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol, 286: 283–300
Pubmed
[49]
Johnson K O (2001). The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol, 11(4): 455–461
CrossRef Pubmed Google scholar
[50]
Johnson K O, Yoshioka T, Vega-Bermudez F (2000). Tactile functions of mechanoreceptive afferents innervating the hand. J Clin Neurophysiol, 17(6): 539–558
CrossRef Pubmed Google scholar
[51]
Kinkelin I, Stucky C L, Koltzenburg M (1999). Postnatal loss of Merkel cells, but not of slowly adapting mechanoreceptors in mice lacking the neurotrophin receptor p75. Eur J Neurosci, 11(11): 3963–3969
CrossRef Pubmed Google scholar
[52]
Knibestöl M (1973). Stimulus-response functions of rapidly adapting mechanoreceptors in human glabrous skin area. J Physiol, 232(3): 427–452
Pubmed
[53]
Kramer I, Sigrist M, de Nooij J C, Taniuchi I, Jessell T M, Arber S (2006). A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron, 49(3): 379–393
CrossRef Pubmed Google scholar
[54]
Krimm R F, Davis B M, Noel T, Albers K M (2006). Overexpression of neurotrophin 4 in skin enhances myelinated sensory endings but does not influence sensory neuron number. J Comp Neurol, 498(4): 455–465
CrossRef Pubmed Google scholar
[55]
LeMaster A M, Krimm R F, Davis B M, Noel T, Forbes M E, Johnson J E, Albers K M (1999). Overexpression of brain-derived neurotrophic factor enhances sensory innervation and selectively increases neuron number. J Neurosci, 19(14): 5919–5931
Pubmed
[56]
Levanon D, Bettoun D, Harris-Cerruti C, Woolf E, Negreanu V, Eilam R, Bernstein Y, Goldenberg D, Xiao C, Fliegauf M, Kremer E, Otto F, Brenner O, Lev-Tov A, Groner Y (2002). The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. EMBO J, 21(13): 3454–3463
CrossRef Pubmed Google scholar
[57]
Li L, Rutlin M, Abraira V E, Cassidy C, Kus L, Gong S, Jankowski M P, Luo W, Heintz N, Koerber H R, Woodbury C J, Ginty D D (2011). The functional organization of cutaneous low-threshold mechanosensory neurons. Cell, 147(7): 1615–1627
CrossRef Pubmed Google scholar
[58]
Loewenstein W R, Mendelson M (1965). Components of Receptor Adaptation in a Pacinian Corpuscle. J Physiol, 177: 377–397
Pubmed
[59]
Lou S, Duan B, Vong L, Lovell B B, Ma Q (2013). Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors. J Neurosci, 33(3): 870–882
[60]
Lucarz A, Brand G (2007). Current considerations about Merkel cells. Eur J Cell Biol, 86(5): 243–251
CrossRef Pubmed Google scholar
[61]
Luo W, Enomoto H, Rice F L, Milbrandt J, Ginty D D (2009). Molecular identification of rapidly adapting mechanoreceptors and their developmental dependence on ret signaling. Neuron, 64(6): 841–856
CrossRef Pubmed Google scholar
[62]
Maklad A, Conway M, Hodges C, Hansen L A (2010). Development of innervation to maxillary whiskers in mice. Anat Rec (Hoboken), 293(9): 1553–1567
CrossRef Pubmed Google scholar
[63]
Maksimovic S, Baba Y, Lumpkin E A (2013). Neurotransmitters and synaptic components in the Merkel cell-neurite complex, a gentle-touch receptor. Ann N Y Acad Sci, 1279(1): 13–21
CrossRef Pubmed Google scholar
[64]
Maricich S M, Morrison K M, Mathes E L, Brewer B M (2012). Rodents rely on Merkel cells for texture discrimination tasks. J Neurosci, 32(10): 3296–3300
CrossRef Pubmed Google scholar
[65]
Maricich S M, Wellnitz S A, Nelson A M, Lesniak D R, Gerling G J, Lumpkin E A, Zoghbi H Y (2009). Merkel cells are essential for light-touch responses. Science, 324(5934): 1580–1582
CrossRef Pubmed Google scholar
[66]
Maruyama Y, Harada F, Jabbar S, Saito I, Aita M, Kawano Y, Suzuki A, Nozawa-Inoue K, Maeda T (2005). Neurotrophin-4/5-depletion induces a delay in maturation of the periodontal Ruffini endings in mice. Arch Histol Cytol, 68(4): 267–288
CrossRef Pubmed Google scholar
[67]
Matsuo S, Ichikawa H, Silos-Santiago I, Kiyomiya K, Kurebe M, Arends J J, Jacquin M F (2002). Ruffini endings are absent from the periodontal ligament of trkB knockout mice. Somatosens Mot Res, 19(3): 213–217
CrossRef Pubmed Google scholar
[68]
Mendelson M, Lowenstein W R (1964). Mechanisms of Receptor Adaptation. Science, 144(3618): 554–555
CrossRef Pubmed Google scholar
[69]
Merkel F (1875). Tastzellen and Tastkoerperchen bei den Hausthieren und beim Menschen. Arch Mikrosc Anat, 11(S1): 636–652
CrossRef Google scholar
[70]
Montaño J A, Pérez-Piñera P, García-Suárez O, Cobo J, Vega J A (2010). Development and neuronal dependence of cutaneous sensory nerve formations: Lessons from neurotrophins. Microsc Res Tech, 73(5): 513–529
Pubmed
[71]
Morrison K M, Miesegaes G R, Lumpkin E A, Maricich S M (2009). Mammalian Merkel cells are descended from the epidermal lineage. Dev Biol, 336(1): 76–83
CrossRef Pubmed Google scholar
[72]
Mosconi T M, Rice F L, Song M J (1993). Sensory innervation in the inner conical body of the vibrissal follicle-sinus complex of the rat. J Comp Neurol, 328(2): 232–251
CrossRef Pubmed Google scholar
[73]
Mountcastle V B (1957). Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol, 20(4): 408–434
Pubmed
[74]
Munger B L, Ide C (1988). The structure and function of cutaneous sensory receptors. Arch Histol Cytol, 51(1): 1–34
CrossRef Pubmed Google scholar
[75]
Nakamura S, Senzaki K, Yoshikawa M, Nishimura M, Inoue K, Ito Y, Ozaki S, Shiga T (2008). Dynamic regulation of the expression of neurotrophin receptors by Runx3. Development, 135(9): 1703–1711
CrossRef Pubmed Google scholar
[76]
Ogawa H (1996). The Merkel cell as a possible mechanoreceptor cell. Prog Neurobiol, 49(4): 317–334
Pubmed
[77]
Palmer C I, Gardner E P (1990). Simulation of motion on the skin. IV. Responses of Pacinian corpuscle afferents innervating the primate hand to stripe patterns on the OPTACON. J Neurophysiol, 64(1): 236–247
Pubmed
[78]
Paré M, Behets C, Cornu O (2003). Paucity of presumptive ruffini corpuscles in the index finger pad of humans. J Comp Neurol, 456(3): 260–266
CrossRef Pubmed Google scholar
[79]
Paré M, Elde R, Mazurkiewicz J E, Smith A M, Rice F L (2001). The Meissner corpuscle revised: a multiafferented mechanoreceptor with nociceptor immunochemical properties. J Neurosci, 21(18): 7236–7246
Pubmed
[80]
Paré M, Smith A M, Rice F L (2002). Distribution and terminal arborizations of cutaneous mechanoreceptors in the glabrous finger pads of the monkey. J Comp Neurol, 445(4): 347–359
CrossRef Pubmed Google scholar
[81]
Pease D C, Pallie W (1959). Electron microscopy of digital tactile corpuscles and small cutaneous nerves. J Ultrastruct Res, 2(3): 352–365
CrossRef Pubmed Google scholar
[82]
Pease D C, Quilliam T A (1957). Electron microscopy of the pacinian corpuscle. J Biophys Biochem Cytol, 3(3): 331–342
CrossRef Pubmed Google scholar
[83]
Perez-Pinera P, García-Suarez O, Germanà A, Díaz-Esnal B, de Carlos F, Silos-Santiago I, del Valle M E, Cobo J, Vega J A (2008). Characterization of sensory deficits in TrkB knockout mice. Neurosci Lett, 433(1): 43–47
CrossRef Pubmed Google scholar
[84]
Peters E M, Botchkarev V A, Müller-Röver S, Moll I, Rice F L, Paus R (2002). Developmental timing of hair follicle and dorsal skin innervation in mice. J Comp Neurol, 448(1): 28–52
CrossRef Pubmed Google scholar
[85]
Quilliam T A, Sato M (1955). The distribution of myelin on nerve fibres from Pacinian corpuscles. J Physiol, 129(1): 167–176
Pubmed
[86]
Rasmusson D D, Turnbull B G (1986). Sensory innervation of the raccoon forepaw: 2. Response properties and classification of slowly adapting fibers. Somatosens Res, 4(1): 63–75
CrossRef Pubmed Google scholar
[87]
Rice F L, Rasmusson D D (2000). Innervation of the digit on the forepaw of the raccoon. J Comp Neurol, 417(4): 467–490
CrossRef Pubmed Google scholar
[88]
Sato M (1961). Response of Pacinian corpuscles to sinusoidal vibration. J Physiol, 159: 391–409
Pubmed
[89]
Saxod R (1996). Ontogeny of the cutaneous sensory organs. Microsc Res Tech, 34(4): 313–333
CrossRef Pubmed Google scholar
[90]
Scheibel M E, Scheibel A B (1968). Terminal axonal patterns in cat spinal cord. II. The dorsal horn. Brain Res, 9(1): 32–58
CrossRef Pubmed Google scholar
[91]
Scheibert J, Leurent S, Prevost A, Debrégeas G (2009). The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science, 323(5920): 1503–1506
CrossRef Pubmed Google scholar
[92]
Scott A, Hasegawa H, Sakural K, Yaron A, Cobb J, Wang F (2011). Transcription factor short stature homeobox 2 is required for proper development of tropomyosin-related kinase B-expressing mechanosensory neurons. J Neurosci, 31(18): 6741–6749
[93]
Sedý J, Tseng S, Walro J M, Grim M, Kucera J (2006). ETS transcription factor ER81 is required for the Pacinian corpuscle development. Dev Dyn, 235(4): 1081–1089
CrossRef Pubmed Google scholar
[94]
Semba K, Masarachia P, Malamed S, Jacquin M, Harris S, Egger M D (1984). Ultrastructure of pacinian corpuscle primary afferent terminals in the cat spinal cord. Brain Res, 302(1): 135–150
CrossRef Pubmed Google scholar
[95]
Semba K, Masarachia P, Malamed S, Jacquin M, Harris S, Yang G, Egger M D (1985). An electron microscopic study of terminals of rapidly adapting mechanoreceptive afferent fibers in the cat spinal cord. J Comp Neurol, 232(2): 229–240
CrossRef Pubmed Google scholar
[96]
Senok S S, Baumann K I (1997). Functional evidence for calcium-induced calcium release in isolated rat vibrissal Merkel cell mechanoreceptors. J Physiol, 500(Pt 1): 29–37
Pubmed
[97]
Senok S S, Baumann K I, Halata Z (1996). Selective phototoxic destruction of quinacrine-loaded Merkel cells is neither selective nor complete. Exp Brain Res, 110(3): 325–334
CrossRef Pubmed Google scholar
[98]
Senzaki K, Ozaki S, Yoshikawa M, Ito Y, Shiga T (2010). Runx3 is required for the specification of TrkC-expressing mechanoreceptive trigeminal ganglion neurons. Mol Cell Neurosci, 43(3): 296–307
CrossRef Pubmed Google scholar
[99]
Shortland P, Woolf C J (1993). Morphology and somatotopy of the central arborizations of rapidly adapting glabrous skin afferents in the rat lumbar spinal cord. J Comp Neurol, 329(4): 491–511
CrossRef Pubmed Google scholar
[100]
Skaper S D (2012). The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol, 846: 1–12
CrossRef Pubmed Google scholar
[101]
Suzuki M, Ebara S, Koike T, Tonomura S, Kumamoto K (2012). How many hair follicles are innervated by one afferent axon? A confocal microscopic analysis of palisade endings in the auricular skin of thy1-YFP transgenic mouse. Proc Jpn Acad, Ser B, Phys Biol Sci, 88(10): 583–595
CrossRef Pubmed Google scholar
[102]
Szeder V, Grim M, Halata Z, Sieber-Blum M (2003). Neural crest origin of mammalian Merkel cells. Dev Biol, 253(2): 258–263
CrossRef Pubmed Google scholar
[103]
Tachibana T, Nawa T (2002). Recent progress in studies on Merkel cell biology. Anat Sci Int, 77(1): 26–33
CrossRef Pubmed Google scholar
[104]
Takahashi-Iwanaga H (2000). Three-dimensional microanatomy of longitudinal lanceolate endings in rat vibrissae. J Comp Neurol, 426(2): 259–269
CrossRef Pubmed Google scholar
[105]
Talbot W H, Darian-Smith I, Kornhuber H H, Mountcastle V B (1968). The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol, 31(2): 301–334
Pubmed
[106]
Tapper D N (1965). Stimulus-response relationships in the cutaneous slowly-adapting mechanoreceptor in hairy skin of the cat. Exp Neurol, 13(4): 364–385
CrossRef Pubmed Google scholar
[107]
Wellnitz S A, Lesniak D R, Gerling G J, Lumpkin E A (2010). The regularity of sustained firing reveals two populations of slowly adapting touch receptors in mouse hairy skin. J Neurophysiol, 103(6): 3378–3388
CrossRef Pubmed Google scholar
[108]
Wende H, Lechner S G, Cheret C, Bourane S, Kolanczyk M E, Pattyn A, Reuter K, Munier F L, Carroll P, Lewin G R, Birchmeier C (2012). The transcription factor c-Maf controls touch receptor development and function. Science, 335(6074): 1373–1376
CrossRef Pubmed Google scholar
[109]
Willis W D, Coggeshall R E (2004). Sensory Mechanisms of the Spinal Cord. New York, Kluwer Academic/Plenum Publishers
[110]
Winkelmann R K, Breathnach A S (1973). The Merkel cell. J Invest Dermatol, 60(1): 2–15
CrossRef Pubmed Google scholar
[111]
Woo S H, Baba Y, Franco A M, Lumpkin E A, Owens D M (2012). Excitatory glutamate is essential for development and maintenance of the piloneural mechanoreceptor. Development, 139(4): 740–748
CrossRef Pubmed Google scholar
[112]
Woodbury C J, Ritter A M, Koerber H R (2001). Central anatomy of individual rapidly adapting low-threshold mechanoreceptors innervating the “hairy” skin of newborn mice: early maturation of hair follicle afferents. J Comp Neurol, 436(3): 304–323
CrossRef Pubmed Google scholar
[113]
Yamashita Y, Akaike N, Wakamori M, Ikeda I, Ogawa H (1992). Voltage-dependent currents in isolated single Merkel cells of rats. J Physiol, 450: 143–162
Pubmed
[114]
Yoshikawa M, Murakami Y, Senzaki K, Masuda T, Ozaki S, Ito Y, Shiga T (2013). Coexpression of Runx1 and Runx3 in mechanoreceptive dorsal root ganglion neurons. Dev Neurobiol, 73(6): 469–479
CrossRef Pubmed Google scholar
[115]
Zelená J (1978). The development of Pacinian corpuscles. J Neurocytol, 7(1): 71–91
CrossRef Pubmed Google scholar
[116]
Zelena J (1994). Nerves and Mechanoreceptors. London, Chapman & Hall
[117]
Zelená J, Halata Z, Szeder V, Grim M (1997). Crural Herbst corpuscles in chicken and quail: numbers and structure. Anat Embryol (Berl), 196(4): 323–333
CrossRef Pubmed Google scholar
[118]
Zelená J, Jirmanová I, Nitatori T, Ide C (1990). Effacement and regeneration of tactile lamellar corpuscles of rat after postnatal nerve crush. Neuroscience, 39(2): 513–522
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(310 KB)

Accesses

Citations

Detail

Sections
Recommended

/