Adult neurogenesis in the mammalian brain

Simon M.G. BRAUN, Sebastian JESSBERGER

PDF(398 KB)
PDF(398 KB)
Front. Biol. ›› 2013, Vol. 8 ›› Issue (3) : 295-304. DOI: 10.1007/s11515-013-1263-1
REVIEW
REVIEW

Adult neurogenesis in the mammalian brain

Author information +
History +

Abstract

New neurons are generated throughout life in distinct areas of the mammalian brain. This process, called adult neurogenesis, has challenged previously held concepts about adult brain plasticity and opened novel therapeutic avenues to treat certain neuro-psychiatric diseases. Here, we review the current knowledge regarding the fate and potency of neural stem cells (NSCs), as well as the mechanisms underlying neuronal differentiation and subsequent integration. Furthermore, we discuss the functional significance of adult neurogenesis in health and disease, and offer brief insight into the future directions of the adult neurogenesis field.

Keywords

adult neurogenesis / hippocampus / stem cell / memory / neuropsychiatric disease

Cite this article

Download citation ▾
Simon M.G. BRAUN, Sebastian JESSBERGER. Adult neurogenesis in the mammalian brain. Front Biol, 2013, 8(3): 295‒304 https://doi.org/10.1007/s11515-013-1263-1

References

[1]
Ables J L, Decarolis N A, Johnson M A, Rivera P D, Gao Z, Cooper D C, Radtke F, Hsieh J, Eisch A J (2010). Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci, 30(31): 10484-10492
CrossRef Pubmed Google scholar
[2]
Abramson S, Miller R G, Phillips R A (1977). The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J Exp Med, 145(6): 1567-1579
CrossRef Pubmed Google scholar
[3]
Aimone J B, Deng W, Gage F H (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron, 70(4): 589-596
CrossRef Pubmed Google scholar
[4]
Altman J (1962). Are new neurons formed in the brains of adult mammals? Science, 135(3509): 1127-1128
CrossRef Pubmed Google scholar
[5]
Amaral D G, Scharfman H E, Lavenex P (2007). The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res, 163: 3-22
CrossRef Pubmed Google scholar
[6]
Arruda-Carvalho M, Sakaguchi M, Akers K G, Josselyn S A, Frankland P W (2011). Posttraining ablation of adult-generated neurons degrades previously acquired memories. J Neurosci, 31(42): 15113-15127
CrossRef Pubmed Google scholar
[7]
Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med, 8(9): 963-970
CrossRef Pubmed Google scholar
[8]
Bonaguidi M A, Wheeler M A, Shapiro J S, Stadel R P, Sun G J, Ming G L, Song H (2011). In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell, 145(7): 1142-1155
CrossRef Pubmed Google scholar
[9]
Bracko O, Singer T, Aigner S, Knobloch M, Winner B, Ray J, Clemenson G D Jr, Suh H, Couillard-Despres S, Aigner L, Gage F H, Jessberger S (2012). Gene expression profiling of neural stem cells and their neuronal progeny reveals IGF2 as a regulator of adult hippocampal neurogenesis. J Neurosci, 32(10): 3376-3387
CrossRef Pubmed Google scholar
[10]
Brill M S, Ninkovic J, Winpenny E, Hodge R D, Ozen I, Yang R, Lepier A, Gascón S, Erdelyi F, Szabo G, Parras C, Guillemot F, Frotscher M, Berninger B, Hevner R F, Raineteau O, Götz M (2009). Adult generation of glutamatergic olfactory bulb interneurons. Nat Neurosci, 12(12): 1524-1533
CrossRef Pubmed Google scholar
[11]
Carleton A, Petreanu L T, Lansford R, Alvarez-Buylla A, Lledo P M (2003). Becoming a new neuron in the adult olfactory bulb. Nat Neurosci, 6(5): 507-518
Pubmed
[12]
Chen D Y, Stern S A, Garcia-Osta A, Saunier-Rebori B, Pollonini G, Bambah-Mukku D, Blitzer R D, Alberini C M (2011). A critical role for IGF-II in memory consolidation and enhancement. Nature, 469(7331): 491-497
CrossRef Pubmed Google scholar
[13]
Clelland C D, Choi M, Romberg C, Clemenson G D Jr, Fragniere A, Tyers P, Jessberger S, Saksida L M, Barker R A, Gage F H, Bussey T J (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325(5937): 210-213
CrossRef Pubmed Google scholar
[14]
del Rio J A, Soriano E (1989). Immunocytochemical detection of 5′-bromodeoxyuridine incorporation in the central nervous system of the mouse. Brain Res Dev Brain Res, 49(2): 311-317
CrossRef Pubmed Google scholar
[15]
Deng W, Aimone J B, Gage F H (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci, 11(5): 339-350
CrossRef Pubmed Google scholar
[16]
Deng W, Saxe M D, Gallina I S, Gage F H (2009). Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J Neurosci, 29(43): 13532-13542
CrossRef Pubmed Google scholar
[17]
Doetsch F, Caillé I, Lim D A, García-Verdugo J M, Alvarez-Buylla A (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell, 97(6): 703-716
CrossRef Pubmed Google scholar
[18]
Duan X, Chang J H, Ge S, Faulkner R L, Kim J Y, Kitabatake Y, Liu X B, Yang C H, Jordan J D, Ma D K, Liu C Y, Ganesan S, Cheng H J, Ming G L, Lu B, Song H (2007). Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell, 130(6): 1146-1158
CrossRef Pubmed Google scholar
[19]
Ehm O, Göritz C, Covic M, Schäffner I, Schwarz T J, Karaca E, Kempkes B, Kremmer E, Pfrieger F W, Espinosa L, Bigas A, Giachino C, Taylor V, Frisén J, Lie D C (2010). RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. J Neurosci, 30(41): 13794-13807
CrossRef Pubmed Google scholar
[20]
Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566-579
CrossRef Pubmed Google scholar
[21]
Erickson K I, Voss M W, Prakash R S, Basak C, Szabo A, Chaddock L, Kim J S, Heo S, Alves H, White S M, Wojcicki T R, Mailey E, Vieira V J, Martin S A, Pence B D, Woods J A, McAuley E, Kramer A F (2011). Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA, 108(7): 3017-3022
CrossRef Pubmed Google scholar
[22]
Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313-1317
CrossRef Pubmed Google scholar
[23]
Favaro R, Valotta M, Ferri A L M, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V, Ottolenghi S, Taylor V, Nicolis S K (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci, 12(10): 1248-1256
CrossRef Pubmed Google scholar
[24]
Fenno L, Yizhar O, Deisseroth K (2011). The development and application of optogenetics. Annu Rev Neurosci, 34(1): 389-412
CrossRef Pubmed Google scholar
[25]
Gage F H (2000). Mammalian neural stem cells. Science, 287(5457): 1433-1438
CrossRef Pubmed Google scholar
[26]
Gao Z, Ure K, Ables J L, Lagace D C, Nave K A, Goebbels S, Eisch A J, Hsieh J (2009). Neurod1 is essential for the survival and maturation of adult-born neurons. Nat Neurosci, 12(9): 1090-1092
CrossRef Pubmed Google scholar
[27]
Ge S, Yang C H, Hsu K S, Ming G L, Song H (2007). A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron, 54(4): 559-566
CrossRef Pubmed Google scholar
[28]
Gu Y, Arruda-Carvalho M, Wang J, Janoschka S R, Josselyn S A, Frankland P W, Ge S (2012). Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci, 15(12): 1700-1706
CrossRef Pubmed Google scholar
[29]
Hall P A, Watt F M (1989). Stem cells: the generation and maintenance of cellular diversity. Development, 106(4): 619-633
Pubmed
[30]
Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008). Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci, 11(10): 1153-1161
CrossRef Pubmed Google scholar
[31]
Jablonska B, Aguirre A, Raymond M, Szabo G, Kitabatake Y, Sailor K A, Ming G L, Song H, Gallo V (2010). Chordin-induced lineage plasticity of adult SVZ neuroblasts after demyelination. Nat Neurosci, 13(5): 541-550
CrossRef Pubmed Google scholar
[32]
Jang M H, Bonaguidi M A, Kitabatake Y, Sun J, Song J, Kang E, Jun H, Zhong C, Su Y, Guo J U, Wang M X, Sailor K A, Kim J Y, Gao Y, Christian K M, Ming G L, Song H (2013). Secreted frizzled-related protein 3 regulates activity-dependent adult hippocampal neurogenesis. Cell Stem Cell, 12(2): 215-223
CrossRef Pubmed Google scholar
[33]
Jessberger S, Aigner S, Clemenson G D Jr, Toni N, Lie D C, Karalay O, Overall R, Kempermann G, Gage F H (2008). Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus. PLoS Biol, 6(11): e272
CrossRef Pubmed Google scholar
[34]
Jessberger S, Nakashima K, Clemenson G D Jr, Mejia E, Mathews E, Ure K, Ogawa S, Sinton C M, Gage F H, Hsieh J (2007a). Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J Neurosci, 27(22): 5967-5975
CrossRef Pubmed Google scholar
[35]
Jessberger S, Zhao C, Toni N, Clemenson G D Jr, Li Y, Gage F H (2007b). Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. J Neurosci, 27(35): 9400-9407
CrossRef Pubmed Google scholar
[36]
Jin K, Zhu Y, Sun Y, Mao X O, Xie L, Greenberg D A (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA, 99(18): 11946-11950
CrossRef Pubmed Google scholar
[37]
Karalay O, Doberauer K, Vadodaria K C, Knobloch M, Berti L, Miquelajauregui A, Schwark M, Jagasia R, Taketo M M, Tarabykin V, Lie D C, Jessberger S (2011). Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proc Natl Acad Sci USA, 108(14): 5807-5812
CrossRef Pubmed Google scholar
[38]
Kempermann G, Kuhn H G, Gage F H (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature, 386(6624): 493-495
CrossRef Pubmed Google scholar
[39]
Knobloch M, Braun S M G, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226-230
CrossRef Pubmed Google scholar
[40]
Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer R P, Horvat V, Volk B, Kempermann G (2010). Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS ONE, 5(1): e8809
CrossRef Pubmed Google scholar
[41]
Kuhn H G, Dickinson-Anson H, Gage F H (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci, 16(6): 2027-2033
Pubmed
[42]
Lavado A, Lagutin O V, Chow L M L, Baker S J, Oliver G (2010). Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biol, 8(8): 8
CrossRef Pubmed Google scholar
[43]
Lazarini F, Lledo P M (2011). Is adult neurogenesis essential for olfaction? Trends Neurosci, 34(1): 20-30
CrossRef Pubmed Google scholar
[44]
Lazic S E, Grote H, Armstrong R J E, Blakemore C, Hannan A J, van Dellen A, Barker R A (2004). Decreased hippocampal cell proliferation in R6/1 Huntington’s mice. Neuroreport, 15(5): 811-813
CrossRef Pubmed Google scholar
[45]
Lie D C, Colamarino S A, Song H J, Désiré L, Mira H, Consiglio A, Lein E S, Jessberger S, Lansford H, Dearie A R, Gage F H (2005). Wnt signalling regulates adult hippocampal neurogenesis. Nature, 437(7063): 1370-1375
CrossRef Pubmed Google scholar
[46]
Lois C, Alvarez-Buylla A (1994). Long-distance neuronal migration in the adult mammalian brain. Science, 264(5162): 1145-1148
CrossRef Pubmed Google scholar
[47]
Lois C, García-Verdugo J M, Alvarez-Buylla A (1996). Chain migration of neuronal precursors. Science, 271(5251): 978-981
CrossRef Pubmed Google scholar
[48]
Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Götz M, Haas C A, Kempermann G, Taylor V, Giachino C (2010). Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell, 6(5): 445-456
CrossRef Pubmed Google scholar
[49]
Malberg J E, Eisch A J, Nestler E J, Duman R S (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci, 20(24): 9104-9110
Pubmed
[50]
Marín-Burgin A, Mongiat L A, Pardi M B, Schinder A F (2012). Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science, 335(6073): 1238-1242
CrossRef Pubmed Google scholar
[51]
Milner B, Squire L R, Kandel E R (1998). Cognitive neuroscience and the study of memory. Neuron, 20(3): 445-468
CrossRef Pubmed Google scholar
[52]
Mira H, Andreu Z, Suh H, Lie D C, Jessberger S, Consiglio A, San Emeterio J, Hortigüela R, Marqués-Torrejón M A, Nakashima K, Colak D, Götz M, Fariñas I, Gage F H (2010). Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell, 7(1): 78-89
CrossRef Pubmed Google scholar
[53]
Morrens J, Van Den Broeck W, Kempermann G (2012). Glial cells in adult neurogenesis. Glia, 60(2): 159-174
CrossRef Pubmed Google scholar
[54]
Morrison S J, Shah N M, Anderson D J (1997). Regulatory mechanisms in stem cell biology. Cell, 88(3): 287-298
CrossRef Pubmed Google scholar
[55]
Nakada D, Saunders T L, Morrison S J (2010). Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature, 468(7324): 653-658
CrossRef Pubmed Google scholar
[56]
Nissant A, Pallotto M (2011). Integration and maturation of newborn neurons in the adult olfactory bulb—from synapses to function. Eur J Neurosci, 33(6): 1069-1077
CrossRef Pubmed Google scholar
[57]
Palmer T D, Ray J, Gage F H (1995). FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol Cell Neurosci, 6(5): 474-486
CrossRef Pubmed Google scholar
[58]
Parent J M, Yu T W, Leibowitz R T, Geschwind D H, Sloviter R S, Lowenstein D H (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci, 17(10): 3727-3738
Pubmed
[59]
Potten C S, Loeffler M (1987). A comprehensive model of the crypts of the small intestine of the mouse provides insight into the mechanisms of cell migration and the proliferation hierarchy. J Theor Biol, 127(4): 381-391
CrossRef Pubmed Google scholar
[60]
Potten C S, Loeffler M (1990). Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development, 110(4): 1001-1020
Pubmed
[61]
Pun R Y K, Rolle I J, Lasarge C L, Hosford B E, Rosen J M, Uhl J D, Schmeltzer S N, Faulkner C, Bronson S L, Murphy B L, Richards D A, Holland K D, Danzer S C (2012). Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron, 75(6): 1022-1034
CrossRef Pubmed Google scholar
[62]
Ramón y Cajal S (1928) Degeneration and regeneration of the nervous system. Oxford University Press.
[63]
Reynolds B A, Weiss S (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255(5052): 1707-1710
CrossRef Pubmed Google scholar
[64]
Rochefort C, Gheusi G, Vincent J D, Lledo P M (2002). Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci, 22(7): 2679-2689
Pubmed
[65]
Rodríguez J J, Jones V C, Tabuchi M, Allan S M, Knight E M, LaFerla F M, Oddo S, Verkhratsky A (2008). Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS ONE, 3(8): e2935
CrossRef Pubmed Google scholar
[66]
Sahay A, Scobie K N, Hill A S, O’Carroll C M, Kheirbek M A, Burghardt N S, Fenton A A, Dranovsky A, Hen R (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 472(7344): 466-470
CrossRef Pubmed Google scholar
[67]
Sanai N, Nguyen T, Ihrie R A, Mirzadeh Z, Tsai H H, Wong M, Gupta N, Berger M S, Huang E, Garcia-Verdugo J M, Rowitch D H, Alvarez-Buylla A (2011). Corridors of migrating neurons in the human brain and their decline during infancy. Nature, 478(7369): 382-386
CrossRef Pubmed Google scholar
[68]
Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 301(5634): 805-809
CrossRef Pubmed Google scholar
[69]
Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S (2005). Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp Neurol, 192(2): 348-356
CrossRef Pubmed Google scholar
[70]
Schmidt-Hieber C, Jonas P, Bischofberger J (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature, 429(6988): 184-187
CrossRef Pubmed Google scholar
[71]
Seib D R M, Corsini N S, Ellwanger K, Plaas C, Mateos A, Pitzer C, Niehrs C, Celikel T, Martin-Villalba A (2013). Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell, 12(2): 204-214
CrossRef Pubmed Google scholar
[72]
Seri B, García-Verdugo J M, McEwen B S, Alvarez-Buylla A (2001). Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci, 21(18): 7153-7160
Pubmed
[73]
Snyder J S, Soumier A, Brewer M, Pickel J, Cameron H A (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 476(7361): 458-461
CrossRef Pubmed Google scholar
[74]
Song J, Zhong C, Bonaguidi M A, Sun G J, Hsu D, Gu Y, Meletis K, Huang Z J, Ge S, Enikolopov G, Deisseroth K, Luscher B, Christian K M, Ming G L, Song H (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 489(7414): 150-154
CrossRef Pubmed Google scholar
[75]
Squire L R (2009). The legacy of patient H.M. for neuroscience. Neuron, 61(1): 6-9
CrossRef Pubmed Google scholar
[76]
Suh H, Consiglio A, Ray J, Sawai T, D’Amour K A, Gage F H (2007). In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell, 1(5): 515-528
CrossRef Pubmed Google scholar
[77]
Tashiro A, Makino H, Gage F H (2007). Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J Neurosci, 27(12): 3252-3259
CrossRef Pubmed Google scholar
[78]
Tashiro A, Sandler V M, Toni N, Zhao C, Gage F H (2006). NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature, 442(7105): 929-933
CrossRef Pubmed Google scholar
[79]
Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901-907
CrossRef Pubmed Google scholar
[80]
Toni N, Teng E M, Bushong E A, Aimone J B, Zhao C, Consiglio A, van Praag H, Martone M E, Ellisman M H, Gage F H (2007). Synapse formation on neurons born in the adult hippocampus. Nat Neurosci, 10(6): 727-734
CrossRef Pubmed Google scholar
[81]
Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T (2005). GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron, 47(6): 803-815
CrossRef Pubmed Google scholar
[82]
Vadodaria K C, Brakebusch C, Suter U, Jessberger S (2013). Stage-specific functions of the small Rho GTPases Cdc42 and Rac1 for adult hippocampal neurogenesis. J Neurosci, 33(3): 1179-1189
CrossRef Pubmed Google scholar
[83]
van Praag H, Kempermann G, Gage F H (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci, 2(3): 266-270
CrossRef Pubmed Google scholar
[84]
van Praag H, Schinder A F, Christie B R, Toni N, Palmer T D, Gage F H (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875): 1030-1034
CrossRef Pubmed Google scholar
[85]
Wang L P, Kempermann G, Kettenmann H (2005). A subpopulation of precursor cells in the mouse dentate gyrus receives synaptic GABAergic input. Mol Cell Neurosci, 29(2): 181-189
CrossRef Pubmed Google scholar
[86]
Winner B, Lie D C, Rockenstein E, Aigner R, Aigner L, Masliah E, Kuhn H G, Winkler J (2004). Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol, 63(11): 1155-1166
Pubmed
[87]
Yamaguchi M, Saito H, Suzuki M, Mori K (2000). Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. Neuroreport, 11(9): 1991-1996
CrossRef Pubmed Google scholar
[88]
Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645-660
CrossRef Pubmed Google scholar
[89]
Zhao C, Teng E M, Summers R G Jr, Ming G L, Gage F H (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci, 26(1): 3-11
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(398 KB)

Accesses

Citations

Detail

Sections
Recommended

/