Oligodendrocytes in neurodegenerative diseases
Yingjun LIU, Jiawei ZHOU
Oligodendrocytes in neurodegenerative diseases
Oligodendrocyte is a highly specialized glial cell type in the vertebrate central nervous system, which guarantees the long-distance transmission of action potential by producing myelin sheath wrapping adjacent axons. Disrupted myelin and oligodendrocytes are hallmarks of some devastating neurological diseases, such as multiple sclerosis, although their contribution to neurodegeneration in a given disease is still controversial. However, accumulating evidence from clinical studies and genetic animal models implicates oligodendrocyte dysfunction as one of major events in the processes of initiation and progression of neurodegeneration. In this article, we will review recent progress in understanding non-traditional function of oligodendrocytes in neuronal support and protection independent of myelin sheath and its possible contribution to neurodegeneration. Oligodendrocytes play a pivotal role in neurodegenerative diseases among which special emphasis is given to multiple system atrophy and Alzheimer’s disease in this review.
Glia / oligodendrocyte / neurodegenerative disease / myelin sheath / multiple sclerosis / multiple system atrophy / Alzheimer’s disease / Parkinson’s disease
[1] |
Anderson T J, Schneider A, Barrie J A, Klugmann M, McCulloch M C, Kirkham D, Kyriakides E, Nave K A, Griffiths I R (1998). Late-onset neurodegeneration in mice with increased dosage of the proteolipid protein gene. J Comp Neurol, 394(4): 506-519
CrossRef
Pubmed
Google scholar
|
[2] |
Arima K, Uéda K, Sunohara N, Arakawa K, Hirai S, Nakamura M, Tonozuka-Uehara H, Kawai M (1998). NACP/alpha-synuclein immunoreactivity in fibrillary components of neuronal and oligodendroglial cytoplasmic inclusions in the pontine nuclei in multiple system atrophy. Acta Neuropathol, 96(5): 439-444
CrossRef
Pubmed
Google scholar
|
[3] |
Bartzokis G (2004). Age-related myelin breakdown: a developmental model of cognitive decline and Alzheimer’s disease. Neurobiol Aging, 25(1): 5-18, author reply 49-62
CrossRef
Pubmed
Google scholar
|
[4] |
Benrud-Larson L M, Sandroni P, Schrag A, Low P A (2005). Depressive symptoms and life satisfaction in patients with multiple system atrophy. Mov Disord, 20(8): 951-957
CrossRef
Pubmed
Google scholar
|
[5] |
Breteler M M, Claus J J, van Duijn C M, Launer L J, Hofman A (1992). Epidemiology of Alzheimer’s disease. Epidemiol Rev, 14: 59-82
Pubmed
|
[6] |
Buch T, Heppner F L, Tertilt C, Heinen T J, Kremer M, Wunderlich F T, Jung S, Waisman A (2005). A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat Methods, 2(6): 419-426
CrossRef
Pubmed
Google scholar
|
[7] |
Desai M K, Guercio B J, Narrow W C, Bowers W J (2011). An Alzheimer’s disease-relevant presenilin-1 mutation augments amyloid-beta-induced oligodendrocyte dysfunction. Glia, 59(4): 627-640
CrossRef
Pubmed
Google scholar
|
[8] |
Desai M K, Mastrangelo M A, Ryan D A, Sudol K L, Narrow W C, Bowers W J (2010). Early oligodendrocyte/myelin pathology in Alzheimer’s disease mice constitutes a novel therapeutic target. Am J Pathol, 177(3): 1422-1435
CrossRef
Pubmed
Google scholar
|
[9] |
Desai M K, Sudol K L, Janelsins M C, Mastrangelo M A, Frazer M E, Bowers W J (2009). Triple-transgenic Alzheimer’s disease mice exhibit region-specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology. Glia, 57(1): 54-65
CrossRef
Pubmed
Google scholar
|
[10] |
Dickson D W, Lin W, Liu W K, Yen S H (1999). Multiple system atrophy: a sporadic synucleinopathy. Brain Pathol, 9(4): 721-732
CrossRef
Pubmed
Google scholar
|
[11] |
Edgar J M, McLaughlin M, Barrie J A, McCulloch M C, Garbern J, Griffiths I R (2004). Age-related axonal and myelin changes in the rumpshaker mutation of the Plp gene. Acta Neuropathol, 107(4): 331-335
CrossRef
Pubmed
Google scholar
|
[12] |
Feigenbaum V, Gélot A, Casanova P, Daumas-Duport C, Aubourg P, Dubois-Dalcq M (2000). Apoptosis in the central nervous system of cerebral adrenoleukodystrophy patients. Neurobiol Dis, 7(6 6 Pt B): 600-612
CrossRef
Pubmed
Google scholar
|
[13] |
Fellner L, Jellinger K A, Wenning G K, Stefanova N (2011). Glial dysfunction in the pathogenesis of α-synucleinopathies: emerging concepts. Acta Neuropathol, 121(6): 675-693
CrossRef
Pubmed
Google scholar
|
[14] |
Fünfschilling U, Supplie L M, Mahad D, Boretius S, Saab A S, Edgar J, Brinkmann B G, Kassmann C M, Tzvetanova I D, Möbius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda M W, Moraes C T, Frahm J, Goebbels S, Nave K A (2012). Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature, 485(7399): 517-521
Pubmed
|
[15] |
Garcia-Ladona F J, Huss Y, Frey P, Ghandour M S (1997). Oligodendrocytes express different isoforms of beta-amyloid precursor protein in chemically defined cell culture conditions: in situ hybridization and immunocytochemical detection. J Neurosci Res, 50(1): 50-61
CrossRef
Pubmed
Google scholar
|
[16] |
Ghosh A, Manrique-Hoyos N, Voigt A, Schulz J B, Kreutzfeldt M, Merkler D, Simons M (2011). Targeted ablation of oligodendrocytes triggers axonal damage. PLoS ONE, 6(7): e22735
CrossRef
Pubmed
Google scholar
|
[17] |
Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C, Schwab M H, Schneider A, Zimmermann F, McCulloch M, Nadon N, Nave K A (1998). Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science, 280(5369): 1610-1613
CrossRef
Pubmed
Google scholar
|
[18] |
Harrington E P, Zhao C, Fancy S P, Kaing S, Franklin R J, Rowitch D H (2010). Oligodendrocyte PTEN is required for myelin and axonal integrity, not remyelination. Ann Neurol, 68(5): 703-716
CrossRef
Pubmed
Google scholar
|
[19] |
Heneka M T, Rodríguez J J, Verkhratsky A (2010). Neuroglia in neurodegeneration. Brain Res Brain Res Rev, 63(1-2): 189-211
CrossRef
Pubmed
Google scholar
|
[20] |
Higuchi M, Zhang B, Forman M S, Yoshiyama Y, Trojanowski J Q, Lee V M (2005). Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies. J Neurosci, 25(41): 9434-9443
CrossRef
Pubmed
Google scholar
|
[21] |
Jantaratnotai N, Ryu J K, Kim S U, McLarnon J G (2003). Amyloid beta peptide-induced corpus callosum damage and glial activation in vivo. Neuroreport, 14(11): 1429-1433
CrossRef
Pubmed
Google scholar
|
[22] |
Kahle P J (2008). alpha-Synucleinopathy models and human neuropathology: similarities and differences. Acta Neuropathol, 115(1): 87-95
CrossRef
Pubmed
Google scholar
|
[23] |
Kahle P J, Neumann M, Ozmen L, Muller V, Jacobsen H, Spooren W, Fuss B, Mallon B, Macklin W B, Fujiwara H, Hasegawa M, Iwatsubo T, Kretzschmar H A, Haass C (2002). Hyperphosphorylation and insolubility of alpha-synuclein in transgenic mouse oligodendrocytes. EMBO Rep, 3(6): 583-588
CrossRef
Pubmed
Google scholar
|
[24] |
Kassmann C M, Lappe-Siefke C, Baes M, Brügger B, Mildner A, Werner H B, Natt O, Michaelis T, Prinz M, Frahm J, Nave K A (2007). Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet, 39(8): 969-976
CrossRef
Pubmed
Google scholar
|
[25] |
Kato S, Nakamura H (1990). Cytoplasmic argyrophilic inclusions in neurons of pontine nuclei in patients with olivopontocerebellar atrophy: immunohistochemical and ultrastructural studies. Acta Neuropathol, 79(6): 584-594
CrossRef
Pubmed
Google scholar
|
[26] |
Kato S, Nakamura H, Hirano A, Ito H, Llena J F, Yen S H (1991). Argyrophilic ubiquitinated cytoplasmic inclusions of Leu-7-positive glial cells in olivopontocerebellar atrophy (multiple system atrophy). Acta Neuropathol, 82(6): 488-493
CrossRef
Pubmed
Google scholar
|
[27] |
Kohama S G, Rosene D L, Sherman L S (2011). Age-related changes in human and non-human primate white matter: from myelination disturbances to cognitive decline. Age, 34(5): 1093-1110
|
[28] |
Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA(2003). Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet, 33(3): 366-374
|
[29] |
Lasiene J, Matsui A, Sawa Y, Wong F, Horner P J (2009). Age-related myelin dynamics revealed by increased oligodendrogenesis and short internodes. Aging Cell, 8(2): 201-213
CrossRef
Pubmed
Google scholar
|
[30] |
Lee J T, Xu J, Lee J M, Ku G, Han X, Yang D I, Chen S, Hsu C Y (2004). Amyloid-beta peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J Cell Biol, 164(1): 123-131
CrossRef
Pubmed
Google scholar
|
[31] |
Lee Y, Morrison B M, Li Y, Lengacher S, Farah M H, Hoffman P N, Liu Y, Tsingalia A, Jin L, Zhang P W, Pellerin L, Magistretti P J, Rothstein J D (2012). Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 487(7408): 443-448
CrossRef
Pubmed
Google scholar
|
[32] |
Locatelli G, Wörtge S, Buch T, Ingold B, Frommer F, Sobottka B, Krüger M, Karram K, Bühlmann C, Bechmann I, Heppner F L, Waisman A, Becher B (2012). Primary oligodendrocyte death does not elicit anti-CNS immunity. Nat Neurosci, 15(4): 543-550
CrossRef
Pubmed
Google scholar
|
[33] |
Mena M A, García de Yébenes J (2008). Glial cells as players in parkinsonism: the “good,” the “bad,” and the “mysterious” glia. Neuroscientist, 14(6): 544-560
CrossRef
Pubmed
Google scholar
|
[34] |
Mitew S, Kirkcaldie M T, Halliday G M, Shepherd C E, Vickers J C, Dickson T C (2010). Focal demyelination in Alzheimer’s disease and transgenic mouse models. Acta Neuropathol, 119(5): 567-577
CrossRef
Pubmed
Google scholar
|
[35] |
Nave K A (2010a). Myelination and support of axonal integrity by glia. Nature, 468(7321): 244-252
CrossRef
Pubmed
Google scholar
|
[36] |
Nave K A (2010b). Myelination and the trophic support of long axons. Nat Rev Neurosci, 11(4): 275-283
CrossRef
Pubmed
Google scholar
|
[37] |
Nave K A, Trapp B D (2008). Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci, 31(1): 535-561
CrossRef
Pubmed
Google scholar
|
[38] |
Oluich L J, Stratton J A, Xing Y L, Ng S W, Cate H S, Sah P, Windels F, Kilpatrick T J, Merson T D (2012). Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination. J Neurosci, 32(24): 8317-8330
CrossRef
Pubmed
Google scholar
|
[39] |
Ozawa T, Paviour D, Quinn N P, Josephs K A, Sangha H, Kilford L, Healy D G, Wood N W, Lees A J, Holton J L, Revesz T (2004). The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: clinicopathological correlations. Brain, 127(Pt 12): 2657-2671
CrossRef
Pubmed
Google scholar
|
[40] |
Papp M I, Kahn J E, Lantos P L (1989). Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-Drager syndrome). J Neurol Sci, 94(1-3): 79-100
CrossRef
Pubmed
Google scholar
|
[41] |
Papp M I, Lantos P L (1992). Accumulation of tubular structures in oligodendroglial and neuronal cells as the basic alteration in multiple system atrophy. J Neurol Sci, 107(2): 172-182
CrossRef
Pubmed
Google scholar
|
[42] |
Pfeiffer R F (2007). Multiple system atrophy. Handb Clin Neurol, 84: 305-326
CrossRef
Pubmed
Google scholar
|
[43] |
Pohl H B, Porcheri C, Mueggler T, Bachmann L C, Martino G, Riethmacher D, Franklin R J, Rudin M, Suter U (2011). Genetically induced adult oligodendrocyte cell death is associated with poor myelin clearance, reduced remyelination, and axonal damage. J Neurosci, 31(3): 1069-1080
CrossRef
Pubmed
Google scholar
|
[44] |
Roher A E, Weiss N, Kokjohn T A, Kuo Y M, Kalback W, Anthony J, Watson D, Luehrs D C, Sue L, Walker D, Emmerling M, Goux W, Beach T (2002). Increased A beta peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer’s disease. Biochemistry, 41(37): 11080-11090
CrossRef
Pubmed
Google scholar
|
[45] |
Rowe W B, Blalock E M, Chen K C, Kadish I, Wang D, Barrett J E, Thibault O, Porter N M, Rose G M, Landfield P W (2007). Hippocampal expression analyses reveal selective association of immediate-early, neuroenergetic, and myelinogenic pathways with cognitive impairment in aged rats. J Neurosci, 27(12): 3098-3110
CrossRef
Pubmed
Google scholar
|
[46] |
Schiffmann R, van der Knaap M S (2004). The latest on leukodystrophies. Curr Opin Neurol, 17(2): 187-192
CrossRef
Pubmed
Google scholar
|
[47] |
Shin D, Shin J Y, McManus M T, Ptácek L J, Fu Y H (2009). Dicer ablation in oligodendrocytes provokes neuronal impairment in mice. Ann Neurol, 66(6): 843-857
CrossRef
Pubmed
Google scholar
|
[48] |
Shults C W, Rockenstein E, Crews L, Adame A, Mante M, Larrea G, Hashimoto M, Song D, Iwatsubo T, Tsuboi K, Masliah E (2005). Neurological and neurodegenerative alterations in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: implications for multiple system atrophy. J Neurosci, 25(46): 10689-10699
CrossRef
Pubmed
Google scholar
|
[49] |
Singh S, Swarnkar S, Goswami P, Nath C (2011). Astrocytes and microglia: responses to neuropathological conditions. Int J Neurosci, 121(11): 589-597
CrossRef
Pubmed
Google scholar
|
[50] |
Sloane J A, Hinman J D, Lubonia M, Hollander W, Abraham C R (2003). Age-dependent myelin degeneration and proteolysis of oligodendrocyte proteins is associated with the activation of calpain-1 in the rhesus monkey. J Neurochem, 84(1): 157-168
CrossRef
Pubmed
Google scholar
|
[51] |
Soma H, Yabe I, Takei A, Fujiki N, Yanagihara T, Sasaki H (2006). Heredity in multiple system atrophy. J Neurol Sci, 240(1-2): 107-110
CrossRef
Pubmed
Google scholar
|
[52] |
Spillantini M G, Crowther R A, Jakes R, Cairns N J, Lantos P L, Goedert M (1998). Filamentous alpha-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett, 251(3): 205-208
CrossRef
Pubmed
Google scholar
|
[53] |
Stefanova N, Bücke P, Duerr S, Wenning G K (2009). Multiple system atrophy: an update. Lancet Neurol, 8(12): 1172-1178
CrossRef
Pubmed
Google scholar
|
[54] |
Stefanova N, Reindl M, Neumann M, Kahle P J, Poewe W, Wenning G K (2007). Microglial activation mediates neurodegeneration related to oligodendroglial alpha-synucleinopathy: implications for multiple system atrophy. Mov Disord, 22(15): 2196-2203
CrossRef
Pubmed
Google scholar
|
[55] |
Stemberger S, Poewe W, Wenning G K, Stefanova N (2010). Targeted overexpression of human alpha-synuclein in oligodendroglia induces lesions linked to MSA-like progressive autonomic failure. Exp Neurol, 224(2): 459-464
CrossRef
Pubmed
Google scholar
|
[56] |
Tanaka J, Okuma Y, Tomobe K, Nomura Y (2005). The age-related degeneration of oligodendrocytes in the hippocampus of the senescence-accelerated mouse (SAM) P8: a quantitative immunohistochemical study. Biol Pharm Bull, 28(4): 615-618
CrossRef
Pubmed
Google scholar
|
[57] |
Trapp B D, Nave K A (2008). Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci, 31(1): 247-269
CrossRef
Pubmed
Google scholar
|
[58] |
Tu P H, Galvin J E, Baba M, Giasson B, Tomita T, Leight S, Nakajo S, Iwatsubo T, Trojanowski J Q, Lee V M (1998). Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol, 44(3): 415-422
CrossRef
Pubmed
Google scholar
|
[59] |
Ubhi K, Low P, Masliah E (2011). Multiple system atrophy: a clinical and neuropathological perspective. Trends Neurosci, 34(11): 581-590
CrossRef
Pubmed
Google scholar
|
[60] |
Ubhi K, Rockenstein E, Mante M, Inglis C, Adame A, Patrick C, Whitney K, Masliah E (2010). Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors. J Neurosci, 30(18): 6236-6246
CrossRef
Pubmed
Google scholar
|
[61] |
Valenza M, Cattaneo E (2011). Emerging roles for cholesterol in Huntington’s disease. Trends Neurosci, 34(9): 474-486
CrossRef
Pubmed
Google scholar
|
[62] |
Valenza M, Leoni V, Karasinska J M, Petricca L, Fan J, Carroll J, Pouladi M A, Fossale E, Nguyen H P, Riess O, MacDonald M, Wellington C, DiDonato S, Hayden M, Cattaneo E (2010). Cholesterol defect is marked across multiple rodent models of Huntington’s disease and is manifest in astrocytes. J Neurosci, 30(32): 10844-10850
CrossRef
Pubmed
Google scholar
|
[63] |
Wakabayashi K, Yoshimoto M, Tsuji S, Takahashi H (1998). Alpha-synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci Lett, 249(2-3): 180-182
CrossRef
Pubmed
Google scholar
|
[64] |
Wenning G K, Stefanova N, Jellinger K A, Poewe W, Schlossmacher M G (2008). Multiple system atrophy: a primary oligodendrogliopathy. Ann Neurol, 64(3): 239-246
CrossRef
Pubmed
Google scholar
|
[65] |
Yazawa I, Giasson B I, Sasaki R, Zhang B, Joyce S, Uryu K, Trojanowski J Q, Lee V M (2005). Mouse model of multiple system atrophy alpha-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron, 45(6): 847-859
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |