
The neural circuit basis of Rett syndrome
Darren GOFFIN, Zhaolan (Joe) ZHOU
Front. Biol. ›› 2012, Vol. 7 ›› Issue (5) : 428-435.
The neural circuit basis of Rett syndrome
Rett syndrome is an Autism Spectrum Disorder caused by mutations in the gene encoding methyl-CpG binding protein (MeCP2). Following a period of normal development, patients lose learned communication and motor skills, and develop a number of symptoms including motor disturbances, cognitive impairments and often seizures. In this review, we discuss the role of MeCP2 in regulating synaptic function and how synaptic dysfunctions lead to neuronal network impairments and alterations in sensory information processing. We propose that Rett syndrome is a disorder of neural circuits as a result of non-linear accumulated dysfunction of synapses at the level of individual cell populations across multiple neurotransmitter systems and brain regions.
Rett syndrome / MeCP2 / neural circuit / ERP / synapse
[1] |
Amir R E, Van den Veyver I B, Wan M, Tran C Q, Francke U, Zoghbi H Y (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 23(2): 185––188
CrossRef
Pubmed
Google scholar
|
[2] |
Armstrong D D (2005). Neuropathology of Rett syndrome. J Child Neurol, 20(9): 747–753
CrossRef
Pubmed
Google scholar
|
[3] |
Asaka Y, Jugloff D G M, Zhang L, Eubanks J H, Fitzsimonds R M (2006). Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol Dis, 21(1): 217–227
CrossRef
Pubmed
Google scholar
|
[4] |
Bader G G, Witt-Engerström I, Hagberg B (1989). Neurophysiological findings in the Rett syndrome, II: Visual and auditory brainstem, middle and late evoked responses. Brain Dev, 11(2): 110–114
CrossRef
Pubmed
Google scholar
|
[5] |
Belichenko N P, Belichenko P V, Mobley W C (2009a). Evidence for both neuronal cell autonomous and nonautonomous effects of methyl-CpG-binding protein 2 in the cerebral cortex of female mice with Mecp2 mutation. Neurobiol Dis, 34(1): 71–77
CrossRef
Pubmed
Google scholar
|
[6] |
Belichenko P V, Wright E E, Belichenko N P, Masliah E, Li H H, Mobley W C, Francke U (2009b). Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks. J Comp Neurol, 514(3): 240–258
CrossRef
Pubmed
Google scholar
|
[7] |
Calfa G, Hablitz J J, Pozzo-Miller L (2011). Network hyperexcitability in hippocampal slices from Mecp2 mutant mice revealed by voltage-sensitive dye imaging. J Neurophysiol, 105(4): 1768–1784
CrossRef
Pubmed
Google scholar
|
[8] |
Chahrour M, Jung S Y, Shaw C, Zhou X, Wong S T C, Qin J, Zoghbi H Y (2008). MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 320(5880): 1224–1229
CrossRef
Pubmed
Google scholar
|
[9] |
Chahrour M, Zoghbi H Y (2007). The story of Rett syndrome: from clinic to neurobiology. Neuron, 56(3): 422–437
CrossRef
Pubmed
Google scholar
|
[10] |
Chao H T, Chen H, Samaco R C, Xue M, Chahrour M, Yoo J, Neul J L, Gong S, Lu H C, Heintz N, Ekker M, Rubenstein J L, Noebels J L, Rosenmund C, Zoghbi H Y (2010). Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature, 468(7321): 263–269
CrossRef
Pubmed
Google scholar
|
[11] |
Chao H T, Zoghbi H Y, Rosenmund C (2007). MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron, 56(1): 58–65
CrossRef
Pubmed
Google scholar
|
[12] |
Chen R Z, Akbarian S, Tudor M, Jaenisch R (2001). Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet, 27(3): 327–331
CrossRef
Pubmed
Google scholar
|
[13] |
Chen W G, Chang Q, Lin Y, Meissner A, West A E, Griffith E C, Jaenisch R, Greenberg M E (2003). Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science, 302(5646): 885–889
CrossRef
Pubmed
Google scholar
|
[14] |
Cheval H, Guy J, Merusi C, De Sousa D, Selfridge J, Bird A(2012). Postnatal inactivation reveals enhanced requirement for MeCP2 at distinct age windows. Hum Mol Genet, 21(17): 3806–3814
CrossRef
Google scholar
|
[15] |
Cohen S, Gabel H W, Hemberg M, Hutchinson A N, Sadacca L A, Ebert D H, Harmin D A, Greenberg R S, Verdine V K, Zhou Z, Wetsel W C, West A E, Greenberg M E (2011). Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron, 72(1): 72–85
CrossRef
Pubmed
Google scholar
|
[16] |
Collins A L, Levenson J M, Vilaythong A P, Richman R, Armstrong D L, Noebels J L, David Sweatt J, Zoghbi H Y (2004). Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet, 13(21): 2679–2689
CrossRef
Pubmed
Google scholar
|
[17] |
Cull-Candy S, Brickley S, Farrant M (2001). NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol, 11(3): 327–335
CrossRef
Pubmed
Google scholar
|
[18] |
D’Cruz J A, Wu C, Zahid T, El-Hayek Y, Zhang L, Eubanks J H (2010). Alterations of cortical and hippocampal EEG activity in MeCP2-deficient mice. Neurobiol Dis, 38(1): 8–16
CrossRef
Pubmed
Google scholar
|
[19] |
Dani V S, Chang Q, Maffei A, Turrigiano G G, Jaenisch R, Nelson S B (2005). Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci USA, 102(35): 12560–12565
CrossRef
Pubmed
Google scholar
|
[20] |
Dani V S, Nelson S B (2009). Intact long-term potentiation but reduced connectivity between neocortical layer 5 pyramidal neurons in a mouse model of Rett syndrome. J Neurosci, 29(36): 11263–11270
CrossRef
Pubmed
Google scholar
|
[21] |
Derecki N C, Cronk J C, Lu Z, Xu E, Abbott S B G, Guyenet P G, Kipnis J (2012). Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 484(7392): 105–109
CrossRef
Pubmed
Google scholar
|
[22] |
Fyffe S L, Neul J L, Samaco R C, Chao H T, Ben-Shachar S, Moretti P, McGill B E, Goulding E H, Sullivan E, Tecott L H, Zoghbi H Y (2008). Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron, 59(6): 947–958
CrossRef
Pubmed
Google scholar
|
[23] |
Gandal M J, Edgar J C, Klook K, Siegel S J (2011). Gamma synchrony: Towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology, 62(3): 1504–1518
|
[24] |
Gantz S C, Ford C P, Neve K A, Williams J T (2011). Loss of Mecp2 in substantia nigra dopamine neurons compromises the nigrostriatal pathway. J Neurosci, 31(35): 12629–12637
CrossRef
Pubmed
Google scholar
|
[25] |
Gemelli T, Berton O, Nelson E D, Perrotti L I, Jaenisch R, Monteggia L M (2006). Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry, 59(5): 468–476
CrossRef
Pubmed
Google scholar
|
[26] |
Goffin D, Allen M, Zhang L, Amorim M, Wang I T J, Reyes A R S, Mercado-Berton A, Ong C, Cohen S, Hu L, Blendy J A, Carlson G C, Siegel S J, Greenberg M E, Zhou Z (2012). Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses. Nat Neurosci, 15(2): 274–283
CrossRef
Pubmed
Google scholar
|
[27] |
Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007). Reversal of neurological defects in a mouse model of Rett syndrome. Science, 315(5815): 1143–1147
CrossRef
Pubmed
Google scholar
|
[28] |
Guy J, Hendrich B, Holmes M, Martin J E, Bird A (2001). A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet, 27(3): 322–326
CrossRef
Pubmed
Google scholar
|
[29] |
Jian L, Nagarajan L, de Klerk N, Ravine D, Bower C, Anderson A, Williamson S, Christodoulou J, Leonard H (2006). Predictors of seizure onset in Rett syndrome. J Pediatr, 149(4): 542–547
CrossRef
Pubmed
Google scholar
|
[30] |
Jones P L, Veenstra G J, Wade P A, Vermaak D, Kass S U, Landsberger N, Strouboulis J, Wolffe A P (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet, 19(2): 187–191
CrossRef
Pubmed
Google scholar
|
[31] |
Kishi N, Macklis J D (2004). MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci, 27(3): 306–321
CrossRef
Pubmed
Google scholar
|
[32] |
Lewis J D, Meehan R R, Henzel W J, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992). Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell, 69(6): 905–914
CrossRef
Pubmed
Google scholar
|
[33] |
Lioy D T, Garg S K, Monaghan C E, Raber J, Foust K D, Kaspar B K, Hirrlinger P G, Kirchhoff F, Bissonnette J M, Ballas N, Mandel G (2011). A role for glia in the progression of Rett’s syndrome. Nature, 475(7357): 497–500
CrossRef
Pubmed
Google scholar
|
[34] |
Lonetti G, Angelucci A, Morando L, Boggio E M, Giustetto M, Pizzorusso T (2010). Early environmental enrichment moderates the behavioral and synaptic phenotype of MeCP2 null mice. Biol Psychiatry, 67(7): 657–665
CrossRef
Pubmed
Google scholar
|
[35] |
Marchetto M C N, Carromeu C, Acab A, Yu D, Yeo G W, Mu Y, Chen G, Gage F H, Muotri A R (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143(4): 527–539
CrossRef
Pubmed
Google scholar
|
[36] |
McGraw C M, Samaco R C, Zoghbi H Y (2011). Adult neural function requires MeCP2. Science, 333(6039): 186
CrossRef
Pubmed
Google scholar
|
[37] |
Medrihan L, Tantalaki E, Aramuni G, Sargsyan V, Dudanova I, Missler M, Zhang W (2008). Early defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome. J Neurophysiol, 99(1): 112–121
CrossRef
Pubmed
Google scholar
|
[38] |
Moretti P, Levenson J M, Battaglia F, Atkinson R, Teague R, Antalffy B, Armstrong D, Arancio O, Sweatt J D, Zoghbi H Y (2006). Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci, 26(1): 319–327
CrossRef
Pubmed
Google scholar
|
[39] |
Na E S, Nelson E D, Adachi M, Autry A E, Mahgoub M A, Kavalali E T, Monteggia L M (2012). A mouse model for MeCP2 duplication syndrome: MeCP2 overexpression impairs learning and memory and synaptic transmission. J Neurosci, 32(9): 3109–3117
CrossRef
Pubmed
Google scholar
|
[40] |
Nan X, Campoy F J, Bird A (1997). MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell, 88(4): 471–481
CrossRef
Pubmed
Google scholar
|
[41] |
Nan X, Ng H H, Johnson C A, Laherty C D, Turner B M, Eisenman R N, Bird A (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393(6683): 386–389
CrossRef
Pubmed
Google scholar
|
[42] |
Neul J L, Kaufmann W E, Glaze D G, Christodoulou J, Clarke A J, Bahi-Buisson N, Leonard H, Bailey M E S, Schanen N C, Zappella M, Renieri A, Huppke P, Percy A K, and the RettSearch Consortium (2010). Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol, 68(6): 944–950
CrossRef
Pubmed
Google scholar
|
[43] |
Noutel J, Hong Y K, Leu B, Kang E, Chen C (2011). Experience-dependent retinogeniculate synapse remodeling is abnormal in MeCP2-deficient mice. Neuron, 70(1): 35–42
CrossRef
Pubmed
Google scholar
|
[44] |
Qiu Z, Sylwestrak E L, Lieberman D N, Zhang Y, Liu X Y, Ghosh A (2012). The Rett syndrome protein MeCP2 regulates synaptic scaling. J Neurosci, 32(3): 989–994
CrossRef
Pubmed
Google scholar
|
[45] |
Samaco R C, Mandel-Brehm C, Chao H T, Ward C S, Fyffe-Maricich S L, Ren J, Hyland K, Thaller C, Maricich S M, Humphreys P, Greer J J, Percy A, Glaze D G, Zoghbi H Y, Neul J L (2009). Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities. Proc Natl Acad Sci USA, 106(51): 21966–21971
CrossRef
Pubmed
Google scholar
|
[46] |
Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, Armstrong D, Paylor R, Zoghbi H (2002). Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 35(2): 243–254
CrossRef
Pubmed
Google scholar
|
[47] |
Skene P J, Illingworth R S, Webb S, Kerr A R W, James K D, Turner D J, Andrews R, Bird A P (2010). Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell, 37(4): 457–468
CrossRef
Pubmed
Google scholar
|
[48] |
Stauder J E A, Smeets E E J, van Mil S G M, Curfs L G M (2006). The development of visual- and auditory processing in Rett syndrome: an ERP study. Brain Dev, 28(8): 487–494
CrossRef
Pubmed
Google scholar
|
[49] |
Szulwach K E, Li X, Smrt R D, Li Y, Luo Y, Lin L, Santistevan N J, Li W, Zhao X, Jin P (2010). Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol, 189(1): 127–141
CrossRef
Pubmed
Google scholar
|
[50] |
Taneja P, Ogier M, Brooks-Harris G, Schmid D A, Katz D M, Nelson S B (2009). Pathophysiology of locus ceruleus neurons in a mouse model of Rett syndrome. J Neurosci, 29(39): 12187–12195
CrossRef
Pubmed
Google scholar
|
[51] |
Tropea D, Giacometti E, Wilson N R, Beard C, McCurry C, Fu D D, Flannery R, Jaenisch R, Sur M (2009). Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci USA, 106(6): 2029–2034
CrossRef
Pubmed
Google scholar
|
[52] |
Uhlhaas P J, Singer W (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci, 11(2): 100–113
CrossRef
Pubmed
Google scholar
|
[53] |
van Zundert B, Yoshii A, Constantine-Paton M (2004). Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci, 27(7): 428–437
CrossRef
Pubmed
Google scholar
|
[54] |
Ward C S, Arvide E M, Huang T W, Yoo J, Noebels J L, Neul J L (2011). MeCP2 is critical within HoxB1-derived tissues of mice for normal lifespan. J Neurosci, 31(28): 10359–10370
CrossRef
Pubmed
Google scholar
|
[55] |
Weng S M, McLeod F, Bailey M E S, Cobb S R (2011). Synaptic plasticity deficits in an experimental model of Rett syndrome: long-term potentiation saturation and its pharmacological reversal. Neuroscience, 180: 314–321
|
[56] |
Wood L, Gray N W, Zhou Z, Greenberg M E, Shepherd G M G (2009). Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in an RNA interference model of methyl-CpG-binding protein 2 deficiency. J Neurosci, 29(40): 12440–12448
CrossRef
Pubmed
Google scholar
|
[57] |
Wood L, Shepherd G M G (2010). Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in a mutant mouse model of Rett syndrome. Neurobiol Dis, 38(2): 281–287
CrossRef
Pubmed
Google scholar
|
[58] |
Wu H, Tao J, Chen P J, Shahab A, Ge W, Hart R P, Ruan X, Ruan Y, Sun Y E (2010). Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc Natl Acad Sci USA, 107(42): 18161–18166
CrossRef
Pubmed
Google scholar
|
[59] |
Young J I, Hong E P, Castle J C, Crespo-Barreto J, Bowman A B, Rose M F, Kang D, Richman R, Johnson J M, Berget S, Zoghbi H Y (2005). Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2. Proc Natl Acad Sci USA, 102(49): 17551–17558
CrossRef
Pubmed
Google scholar
|
[60] |
Zhang Z W, Zak J D, Liu H (2010). MeCP2 is required for normal development of GABAergic circuits in the thalamus. J Neurophysiol, 103(5): 2470–2481
CrossRef
Pubmed
Google scholar
|
[61] |
Zhou Z, Hong E J, Cohen S, Zhao W N, Ho H Y H, Schmidt L, Chen W G, Lin Y, Savner E, Griffith E C, Hu L, Steen J A, Weitz C J, Greenberg M E (2006). Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron, 52(2): 255–269
CrossRef
Pubmed
Google scholar
|
[62] |
Zoghbi H Y (2003). Postnatal neurodevelopmental disorders: meeting at the synapse?Science, 302(5646): 826–830
CrossRef
Pubmed
Google scholar
|
/
〈 |
|
〉 |