Structure and function of the guanylate kinase-like domain of the MAGUK family scaffold proteins

Jinwei ZHU, Yuan SHANG, Jia CHEN, Mingjie ZHANG

PDF(1256 KB)
PDF(1256 KB)
Front. Biol. ›› 2012, Vol. 7 ›› Issue (5) : 379-396. DOI: 10.1007/s11515-012-1244-9
REVIEW

Structure and function of the guanylate kinase-like domain of the MAGUK family scaffold proteins

Author information +
History +

Abstract

Membrane associated guanylate kinases (MAGUKs) are a family of scaffold proteins that play essential roles in organ development, cell-cell communication, cell polarity establishment and maintenance, and cellular signal transduction. Every member of the MAGUK family contains a guanylate kinase-like (GK) domain, which has evolved from the enzyme catalyzing GMP to GDP conversion to become a protein–protein interaction module with no enzymatic activity. Mutations of MAGUKs are linked to a number of human diseases, including autism and hereditary deafness. In this review, we summarize the structural basis governing cellular function of various members of the MAGUKs. In particular, we focus on recent discoveries of MAGUK GKs as specific phospho-protein interaction modules, and discuss functional implications and connections to human diseases of such regulated MAGUK GK/target interactions.

Keywords

MAGUK / GK domain / phospho-protein interaction module / synapse / neuronal disease

Cite this article

Download citation ▾
Jinwei ZHU, Yuan SHANG, Jia CHEN, Mingjie ZHANG. Structure and function of the guanylate kinase-like domain of the MAGUK family scaffold proteins. Front Biol, 2012, 7(5): 379‒396 https://doi.org/10.1007/s11515-012-1244-9

References

[1]
Anderson J M (1996). Cell signalling: MAGUK magic. Curr Biol, 6(4): 382–384
CrossRef Pubmed Google scholar
[2]
Aoki C, Miko I, Oviedo H, Mikeladze-Dvali T, Alexandre L, Sweeney N, Bredt D S (2001). Electron microscopic immunocytochemical detection of PSD-95, PSD-93, SAP-102, and SAP-97 at postsynaptic, presynaptic, and nonsynaptic sites of adult and neonatal rat visual cortex. Synapse, 40(4): 239–257
CrossRef Pubmed Google scholar
[3]
Asaba N, Hanada T, Takeuchi A, Chishti A H (2003). Direct interaction with a kinesin-related motor mediates transport of mammalian discs large tumor suppressor homologue in epithelial cells. J Biol Chem, 278(10): 8395–8400
CrossRef Pubmed Google scholar
[4]
Bangash M A, Park J M, Melnikova T, Wang D, Jeon S K, Lee D, Syeda S, Kim J, Kouser M, Schwartz J, Cui Y, Zhao X, Speed H E, Kee S E, Tu J C, Hu J H, Petralia R S, Linden D J, Powell C M, Savonenko A, Xiao B, Worley P F (2011). Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism. Cell, 145(5): 758–772
CrossRef Pubmed Google scholar
[5]
Bellaïche Y, Radovic A, Woods D F, Hough C D, Parmentier M L, O’Kane C J, Bryant P J, Schweisguth F (2001). The Partner of Inscuteable/Discs-large complex is required to establish planar polarity during asymmetric cell division in Drosophila. Cell, 106(3): 355–366
CrossRef Pubmed Google scholar
[6]
Bienvenu O J, Wang Y, Shugart Y Y, Welch J M, Grados M A, Fyer A J, Rauch S L, McCracken J T, Rasmussen S A, Murphy D L, Cullen B, Valle D, Hoehn-Saric R, Greenberg B D, Pinto A, Knowles J A, Piacentini J, Pauls D L, Liang K Y, Willour V L, Riddle M, Samuels J F, Feng G, Nestadt G (2009). Sapap3 and pathological grooming in humans: Results from the OCD collaborative genetics study. Am J Med Genet B Neuropsychiatr Genet, 150B(5): 710–720
CrossRef Pubmed Google scholar
[7]
Blonska M, Lin X (2011). NF-κB signaling pathways regulated by CARMA family of scaffold proteins. Cell Res, 21(1): 55–70
CrossRef Pubmed Google scholar
[8]
Böckers T M, Mameza M G, Kreutz M R, Bockmann J, Weise C, Buck F, Richter D, Gundelfinger E D, Kreienkamp H J (2001). Synaptic scaffolding proteins in rat brain. Ankyrin repeats of the multidomain Shank protein family interact with the cytoskeletal protein alpha-fodrin. J Biol Chem, 276(43): 40104–40112
CrossRef Pubmed Google scholar
[9]
Borg J P, Straight S W, Kaech S M, de Taddéo-Borg M, Kroon D E, Karnak D, Turner R S, Kim S K, Margolis B (1998). Identification of an evolutionarily conserved heterotrimeric protein complex involved in protein targeting. J Biol Chem, 273(48): 31633–31636
CrossRef Pubmed Google scholar
[10]
Brenman J E, Topinka J R, Cooper E C, McGee A W, Rosen J, Milroy T, Ralston H J, Bredt D S (1998). Localization of postsynaptic density-93 to dendritic microtubules and interaction with microtubule-associated protein 1A. J Neurosci, 18(21): 8805–8813
Pubmed
[11]
Butz S, Okamoto M, Südhof T C (1998). A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell, 94(6): 773–782
CrossRef Pubmed Google scholar
[12]
Chen Y, Sheng R, Källberg M, Silkov A, Tun M P, Bhardwaj N, Kurilova S, Hall R A, Honig B, Lu H, Cho W (2012). Genome-wide functional annotation of dual-specificity protein- and lipid-binding modules that regulate protein interactions. Mol Cell, 46(2): 226–237
CrossRef Pubmed Google scholar
[13]
Chen Y H, Li M H, Zhang Y, He L L, Yamada Y, Fitzmaurice A, Shen Y, Zhang H, Tong L, Yang J (2004). Structural basis of the alpha1-beta subunit interaction of voltage-gated Ca2+ channels. Nature, 429(6992): 675–680
CrossRef Pubmed Google scholar
[14]
Cheng D, Hoogenraad C C, Rush J, Ramm E, Schlager M A, Duong D M, Xu P, Wijayawardana S R, Hanfelt J, Nakagawa T, Sheng M, Peng J (2006). Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteomics, 5(6): 1158–1170
CrossRef Pubmed Google scholar
[15]
Cohen A R, Woods D F, Marfatia S M, Walther Z, Chishti A H, Anderson J M (1998). Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J Cell Biol, 142(1): 129–138
CrossRef Pubmed Google scholar
[16]
Colledge M, Dean R A, Scott G K, Langeberg L K, Huganir R L, Scott J D (2000). Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron, 27(1): 107–119
CrossRef Pubmed Google scholar
[17]
de Mendoza A, Suga H, Ruiz-Trillo I (2010). Evolution of the MAGUK protein gene family in premetazoan lineages. BMC Evol Biol, 10(1): 93
CrossRef Pubmed Google scholar
[18]
Deguchi M, Hata Y, Takeuchi M, Ide N, Hirao K, Yao I, Irie M, Toyoda A, Takai Y (1998). BEGAIN (brain-enriched guanylate kinase-associated protein), a novel neuronal PSD-95/SAP90-binding protein. J Biol Chem, 273(41): 26269–26272
CrossRef Pubmed Google scholar
[19]
Doe C Q (2008). Neural stem cells: balancing self-renewal with differentiation. Development, 135(9): 1575–1587
CrossRef Pubmed Google scholar
[20]
Doerks T, Bork P, Kamberov E, Makarova O, Muecke S, Margolis B (2000). L27, a novel heterodimerization domain in receptor targeting proteins Lin-2 and Lin-7. Trends Biochem Sci, 25(7): 317–318
CrossRef Pubmed Google scholar
[21]
Durand C M, Betancur C, Boeckers T M, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg I C, Anckarsäter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni M C, de Mas P, Bieth E, Rogé B, Héron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet, 39(1): 25–27
CrossRef Pubmed Google scholar
[22]
Fanning A S, Jameson B J, Jesaitis L A, Anderson J M (1998). The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem, 273(45): 29745–29753
CrossRef Pubmed Google scholar
[23]
Fanning A S, Little B P, Rahner C, Utepbergenov D, Walther Z, Anderson J M (2007). The unique-5 and-6 motifs of ZO-1 regulate tight junction strand localization and scaffolding properties. Mol Biol Cell, 18(3): 721–731
CrossRef Pubmed Google scholar
[24]
Feng W, Long J F, Fan J S, Suetake T, Zhang M (2004). The tetrameric L27 domain complex as an organization platform for supramolecular assemblies. Nat Struct Mol Biol, 11(5): 475–480
CrossRef Pubmed Google scholar
[25]
Feng W, Long J F, Zhang M (2005). A unified assembly mode revealed by the structures of tetrameric L27 domain complexes formed by mLin-2/mLin-7 and Patj/Pals1 scaffold proteins. Proc Natl Acad Sci USA, 102(19): 6861–6866
CrossRef Pubmed Google scholar
[26]
Feng W, Zhang M (2009). Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nat Rev Neurosci, 10(2): 87–99
CrossRef Pubmed Google scholar
[27]
Feyder M, Karlsson R M, Mathur P, Lyman M, Bock R, Momenan R, Munasinghe J, Scattoni M L, Ihne J, Camp M, Graybeal C, Strathdee D, Begg A, Alvarez V A, Kirsch P, Rietschel M, Cichon S, Walter H, Meyer-Lindenberg A, Grant S G, Holmes A (2010). Association of mouse Dlg4 (PSD-95) gene deletion and human DLG4 gene variation with phenotypes relevant to autism spectrum disorders and Williams’ syndrome. Am J Psychiatry, 167(12): 1508–1517
CrossRef Pubmed Google scholar
[28]
Froyen G, Van Esch H, Bauters M, Hollanders K, Frints S G, Vermeesch J R, Devriendt K, Fryns J P, Marynen P (2007). Detection of genomic copy number changes in patients with idiopathic mental retardation by high-resolution X-array-CGH: important role for increased gene dosage of XLMR genes. Hum Mutat, 28(10): 1034–1042
CrossRef Pubmed Google scholar
[29]
Funke L, Dakoji S, Bredt D S (2005). Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Annu Rev Biochem, 74(1): 219–245
CrossRef Pubmed Google scholar
[30]
Garcia E P, Mehta S, Blair L A, Wells D G, Shang J, Fukushima T, Fallon J R, Garner C C, Marshall J (1998). SAP90 binds and clusters kainate receptors causing incomplete desensitization. Neuron, 21(4): 727–739
CrossRef Pubmed Google scholar
[31]
Geschwind D H (2009). Advances in autism. Annu Rev Med, 60(1): 367–380
CrossRef Pubmed Google scholar
[32]
Gillies T E, Cabernard C (2011). Cell division orientation in animals. Curr Biol, 21(15): R599–R609
CrossRef Pubmed Google scholar
[33]
González-Mariscal L, Betanzos A, Avila-Flores A (2000). MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol, 11(4): 315–324
CrossRef Pubmed Google scholar
[34]
Gosens I, van Wijk E, Kersten F F, Krieger E, van der Zwaag B, Märker T, Letteboer S J, Dusseljee S, Peters T, Spierenburg H A, Punte I M, Wolfrum U, Cremers F P, Kremer H, Roepman R (2007). MPP1 links the Usher protein network and the Crumbs protein complex in the retina. Hum Mol Genet, 16(16): 1993–2003
CrossRef Pubmed Google scholar
[35]
Hackett A, Tarpey P S, Licata A, Cox J, Whibley A, Boyle J, Rogers C, Grigg J, Partington M, Stevenson R E, Tolmie J, Yates J R, Turner G, Wilson M, Futreal A P, Corbett M, Shaw M, Gecz J, Raymond F L, Stratton M R, Schwartz C E, Abidi F E (2010). CASK mutations are frequent in males and cause X-linked nystagmus and variable XLMR phenotypes. Eur J Hum Genet, 18(5): 544–552
CrossRef Pubmed Google scholar
[36]
Hall S W, Kühn H (1986). Purification and properties of guanylate kinase from bovine retinas and rod outer segments. Eur J Biochem, 161(3): 551–556
CrossRef Pubmed Google scholar
[37]
Hanada T, Lin L, Tibaldi E V, Reinherz E L, Chishti A H (2000). GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes. J Biol Chem, 275(37): 28774–28784
CrossRef Pubmed Google scholar
[38]
Hao Y, Du Q, Chen X, Zheng Z, Balsbaugh J L, Maitra S, Shabanowitz J, Hunt D F, Macara I G (2010). Par3 controls epithelial spindle orientation by aPKC-mediated phosphorylation of apical Pins. Curr Biol, 20(20): 1809–1818
CrossRef Pubmed Google scholar
[39]
Hata Y, Butz S, Südhof T C (1996). CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci, 16(8): 2488–2494
Pubmed
[40]
Hayashi S, Mizuno S, Migita O, Okuyama T, Makita Y, Hata A, Imoto I, Inazawa J (2008). The CASK gene harbored in a deletion detected by array-CGH as a potential candidate for a gene causative of X-linked dominant mental retardation. Am J Med Genet A, 146A(16): 2145–2151
CrossRef Pubmed Google scholar
[41]
Hirao K, Hata Y, Ide N, Takeuchi M, Irie M, Yao I, Deguchi M, Toyoda A, Sudhof T C, Takai Y (1998). A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins. J Biol Chem, 273(33): 21105–21110
CrossRef Pubmed Google scholar
[42]
Hoskins R, Hajnal A F, Harp S A, Kim S K (1996). The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development, 122(1): 97–111
Pubmed
[43]
Hsueh Y P (2009). Calcium/calmodulin-dependent serine protein kinase and mental retardation. Ann Neurol, 66(4): 438–443
CrossRef Pubmed Google scholar
[44]
Hsueh Y P, Wang T F, Yang F C, Sheng M (2000). Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature, 404(6775): 298–302
CrossRef Pubmed Google scholar
[45]
Huang T N, Chang H P, Hsueh Y P (2010). CASK phosphorylation by PKA regulates the protein-protein interactions of CASK and expression of the NMDAR2b gene. J Neurochem, 112(6): 1562–1573
CrossRef Pubmed Google scholar
[46]
Huang T N, Hsueh Y P (2009). CASK point mutation regulates protein-protein interactions and NR2b promoter activity. Biochem Biophys Res Commun, 382(1): 219–222
CrossRef Pubmed Google scholar
[47]
Hung A Y, Sheng M (2002). PDZ domains: structural modules for protein complex assembly. J Biol Chem, 277(8): 5699–5702
CrossRef Pubmed Google scholar
[48]
Hutterer A, Berdnik D, Wirtz-Peitz F, Zigman M, Schleiffer A, Knoblich J A (2006). Mitotic activation of the kinase Aurora-A requires its binding partner Bora. Dev Cell, 11(2): 147–157
CrossRef Pubmed Google scholar
[49]
Johnston C A, Doe C Q, Prehoda K E (2012). Structure of an enzyme-derived phosphoprotein recognition domain. PLoS ONE, 7(4): e36014
CrossRef Pubmed Google scholar
[50]
Johnston C A, Hirono K, Prehoda K E, Doe C Q (2009). Identification of an Aurora-A/PinsLINKER/Dlg spindle orientation pathway using induced cell polarity in S2 cells. Cell, 138(6): 1150–1163
CrossRef Pubmed Google scholar
[51]
Johnston C A, Whitney D S, Volkman B F, Doe C Q, Prehoda K E (2011). Conversion of the enzyme guanylate kinase into a mitotic-spindle orienting protein by a single mutation that inhibits GMP-induced closing. Proc Natl Acad Sci USA, 108(44): E973–E978
CrossRef Pubmed Google scholar
[52]
Kim E, Naisbitt S, Hsueh Y P, Rao A, Rothschild A, Craig A M, Sheng M (1997). GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J Cell Biol, 136(3): 669–678
CrossRef Pubmed Google scholar
[53]
Kistner U, Garner C C, Linial M (1995). Nucleotide binding by the synapse associated protein SAP90. FEBS Lett, 359(2-3): 159–163
CrossRef Pubmed Google scholar
[54]
Knoblich J A (2008). Mechanisms of asymmetric stem cell division. Cell, 132(4): 583–597
CrossRef Pubmed Google scholar
[55]
Kuhlendahl S, Spangenberg O, Konrad M, Kim E, Garner C C (1998). Functional analysis of the guanylate kinase-like domain in the synapse-associated protein SAP97. Eur J Biochem, 252(2): 305–313
CrossRef Pubmed Google scholar
[56]
Li Y, Zhang Y L, Yan H G (1996). Kinetic and thermodynamic characterizations of yeast guanylate kinase. J Biol Chem, 271(45): 28038–28044
CrossRef Pubmed Google scholar
[57]
Lu B, Jan L, Jan Y N (2000). Control of cell divisions in the nervous system: symmetry and asymmetry. Annu Rev Neurosci, 23(1): 531–556
CrossRef Pubmed Google scholar
[58]
Lu X J, Chen X Q, Weng J, Zhang H Y, Pak D T, Luo J H, Du J Z (2009). Hippocampal spine-associated Rap-specific GTPase-activating protein induces enhancement of learning and memory in postnatally hypoxia-exposed mice. Neuroscience, 162(2): 404–414
CrossRef Pubmed Google scholar
[59]
Lye M F, Fanning A S, Su Y, Anderson J M, Lavie A (2010). Insights into regulated ligand binding sites from the structure of ZO-1 Src homology 3-guanylate kinase module. J Biol Chem, 285(18): 13907–13917
CrossRef Pubmed Google scholar
[60]
Masuko N, Makino K, Kuwahara H, Fukunaga K, Sudo T, Araki N, Yamamoto H, Yamada Y, Miyamoto E, Saya H (1999). Interaction of NE-dlg/SAP102, a neuronal and endocrine tissue-specific membrane-associated guanylate kinase protein, with calmodulin and PSD-95/SAP90. A possible regulatory role in molecular clustering at synaptic sites. J Biol Chem, 274(9): 5782–5790
CrossRef Pubmed Google scholar
[61]
Maximov A, Südhof T C, Bezprozvanny I (1999). Association of neuronal calcium channels with modular adaptor proteins. J Biol Chem, 274(35): 24453–24456
CrossRef Pubmed Google scholar
[62]
Mburu P, Kikkawa Y, Townsend S, Romero R, Yonekawa H, Brown S D (2006). Whirlin complexes with p55 at the stereocilia tip during hair cell development. Proc Natl Acad Sci USA, 103(29): 10973–10978
CrossRef Pubmed Google scholar
[63]
McGee A W, Bredt D S (1999). Identification of an intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. J Biol Chem, 274(25): 17431–17436
CrossRef Pubmed Google scholar
[64]
McGee A W, Dakoji S R, Olsen O, Bredt D S, Lim W A, Prehoda K E (2001). Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. Mol Cell, 8(6): 1291–1301
CrossRef Pubmed Google scholar
[65]
McGee A W, Nunziato D A, Maltez J M, Prehoda K E, Pitt G S, Bredt D S (2004). Calcium channel function regulated by the SH3-GK module in beta subunits. Neuron, 42(1): 89–99
CrossRef Pubmed Google scholar
[66]
Moessner R, Marshall C R, Sutcliffe J S, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P, Scherer S W (2007). Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet, 81(6): 1289–1297
CrossRef Pubmed Google scholar
[67]
Montgomery J M, Zamorano P L, Garner C C (2004). MAGUKs in synapse assembly and function: an emerging view. Cell Mol Life Sci, 61(7-8): 911–929
CrossRef Pubmed Google scholar
[68]
Moog U, Kutsche K, Kortüm F, Chilian B, Bierhals T, Apeshiotis N, Balg S, Chassaing N, Coubes C, Das S, Engels H, Van Esch H, Grasshoff U, Heise M, Isidor B, Jarvis J, Koehler U, Martin T, Oehl-Jaschkowitz B, Ortibus E, Pilz D T, Prabhakar P, Rappold G, Rau I, Rettenberger G, Schlüter G, Scott R H, Shoukier M, Wohlleber E, Zirn B, Dobyns W B, Uyanik G (2011). Phenotypic spectrum associated with CASK loss-of-function mutations. J Med Genet, 48(11): 741–751
CrossRef Pubmed Google scholar
[69]
Mortier E, Wuytens G, Leenaerts I, Hannes F, Heung M Y, Degeest G, David G, Zimmermann P (2005). Nuclear speckles and nucleoli targeting by PIP2-PDZ domain interactions. EMBO J, 24(14): 2556–2565
CrossRef Pubmed Google scholar
[70]
Naisbitt S, Kim E, Tu J C, Xiao B, Sala C, Valtschanoff J, Weinberg R J, Worley P F, Sheng M (1999). Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron, 23(3): 569–582
CrossRef Pubmed Google scholar
[71]
Naisbitt S, Valtschanoff J, Allison D W, Sala C, Kim E, Craig A M, Weinberg R J, Sheng M (2000). Interaction of the postsynaptic density-95/guanylate kinase domain-associated protein complex with a light chain of myosin-V and dynein. J Neurosci, 20(12): 4524–4534
Pubmed
[72]
Najm J, Horn D, Wimplinger I, Golden J A, Chizhikov V V, Sudi J, Christian S L, Ullmann R, Kuechler A, Haas C A, Flubacher A, Charnas L R, Uyanik G, Frank U, Klopocki E, Dobyns W B, Kutsche K (2008). Mutations of CASK cause an X-linked brain malformation phenotype with microcephaly and hypoplasia of the brainstem and cerebellum. Nat Genet, 40(9): 1065–1067
CrossRef Pubmed Google scholar
[73]
Nomme J, Fanning A S, Caffrey M, Lye M F, Anderson J M, Lavie A (2011). The Src homology 3 domain is required for junctional adhesion molecule binding to the third PDZ domain of the scaffolding protein ZO-1. J Biol Chem, 286(50): 43352–43360
CrossRef Pubmed Google scholar
[74]
Oliva C, Escobedo P, Astorga C, Molina C, Sierralta J (2012). Role of the MAGUK protein family in synapse formation and function. Dev Neurobiol, 72(1): 57–72
CrossRef Pubmed Google scholar
[75]
Olsen O, Bredt D S (2003). Functional analysis of the nucleotide binding domain of membrane-associated guanylate kinases. J Biol Chem, 278(9): 6873–6878
CrossRef Pubmed Google scholar
[76]
Olsen O, Funke L, Long J F, Fukata M, Kazuta T, Trinidad J C, Moore K A, Misawa H, Welling P A, Burlingame A L, Zhang M, Bredt D S (2007). Renal defects associated with improper polarization of the CRB and DLG polarity complexes in MALS-3 knockout mice. J Cell Biol, 179(1): 151–164
CrossRef Pubmed Google scholar
[77]
Olsen O, Moore K A, Fukata M, Kazuta T, Trinidad J C, Kauer F W, Streuli M, Misawa H, Burlingame A L, Nicoll R A, Bredt D S (2005). Neurotransmitter release regulated by a MALS-liprin-alpha presynaptic complex. J Cell Biol, 170(7): 1127–1134
CrossRef Pubmed Google scholar
[78]
Opatowsky Y, Chen C C, Campbell K P, Hirsch J A (2004). Structural analysis of the voltage-dependent calcium channel beta subunit functional core and its complex with the alpha 1 interaction domain. Neuron, 42(3): 387–399
CrossRef Pubmed Google scholar
[79]
Pak D T, Yang S, Rudolph-Correia S, Kim E, Sheng M (2001). Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron, 31(2): 289–303
CrossRef Pubmed Google scholar
[80]
Pan L, Chen J, Yu J, Yu H, Zhang M (2011). The structure of the PDZ3-SH3-GuK tandem of ZO-1 protein suggests a supramodular organization of the membrane-associated guanylate kinase (MAGUK) family scaffold protein core. J Biol Chem, 286(46): 40069–40074
CrossRef Pubmed Google scholar
[81]
Pan L, Zhang M (2012). Structures of usher syndrome 1 proteins and their complexes. Physiology (Bethesda), 27(1): 25–42
CrossRef Pubmed Google scholar
[82]
Pawson T (2004). Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell, 116(2): 191–203
CrossRef Pubmed Google scholar
[83]
Peça J, Feliciano C, Ting J T, Wang W, Wells M F, Venkatraman T N, Lascola C D, Fu Z, Feng G (2011). Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 472(7344): 437–442
CrossRef Pubmed Google scholar
[84]
Peca J, Feng G (2012). Cellular and synaptic network defects in autism. Curr Opin Neurobiol, 22: 1–7
Pubmed
[85]
Piluso G, D’Amico F, Saccone V, Bismuto E, Rotundo I L, Di Domenico M, Aurino S, Schwartz C E, Neri G, Nigro V (2009). A missense mutation in CASK causes FG syndrome in an Italian family. Am J Hum Genet, 84(2): 162–177
CrossRef Pubmed Google scholar
[86]
Quinn B J, Welch E J, Kim A C, Lokuta M A, Huttenlocher A, Khan A A, Kuchay S M, Chishti A H (2009). Erythrocyte scaffolding protein p55/MPP1 functions as an essential regulator of neutrophil polarity. Proc Natl Acad Sci U S A, 106(47): 19842–19847
Pubmed
[87]
Roh M H, Makarova O, Liu C J, Shin K, Lee S, Laurinec S, Goyal M, Wiggins R, Margolis B (2002). The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of Crumbs and Discs Lost. J Cell Biol, 157(1): 161–172
CrossRef Pubmed Google scholar
[88]
Samuels B A, Hsueh Y P, Shu T, Liang H, Tseng H C, Hong C J, Su S C, Volker J, Neve R L, Yue D T, Tsai L H (2007). Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron, 56(5): 823–837
CrossRef Pubmed Google scholar
[89]
Schmeisser M J, Ey E, Wegener S, Bockmann J, Stempel A V, Kuebler A, Janssen A-L, Udvardi P T, Shiban E, Spilker C, Balschun D, Skryabin B V, Dieck S t, Smalla K-H, Montag D, Leblond C S, Faure P, Torquet N, Le Sourd A-M, Toro R, Grabrucker A M, Shoichet S A, Schmitz D, Kreutz M R, Bourgeron T, Gundelfinger E D, Boeckers T M (2012). Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature, advance online publication
[90]
Shin H, Hsueh Y P, Yang F C, Kim E, Sheng M (2000). An intramolecular interaction between Src homology 3 domain and guanylate kinase-like domain required for channel clustering by postsynaptic density-95/SAP90. J Neurosci, 20(10): 3580–3587
Pubmed
[91]
Siegrist S E, Doe C Q (2005). Microtubule-induced Pins/Galphai cortical polarity in Drosophila neuroblasts. Cell, 123(7): 1323–1335
CrossRef Pubmed Google scholar
[92]
Siller K H, Doe C Q (2009). Spindle orientation during asymmetric cell division. Nat Cell Biol, 11(4): 365–374
CrossRef Pubmed Google scholar
[93]
Stehle T, Schulz G E (1990). Three-dimensional structure of the complex of guanylate kinase from yeast with its substrate GMP. J Mol Biol, 211(1): 249–254
CrossRef Pubmed Google scholar
[94]
Stehle T, Schulz G E (1992). Refined structure of the complex between guanylate kinase and its substrate GMP at 2.0 A resolution . J Mol Biol, 224(4): 1127–1141
CrossRef Pubmed Google scholar
[95]
Sun M, Liu L, Zeng X, Xu M, Liu L, Fang M, Xie W (2009). Genetic interaction between Neurexin and CAKI/CMG is important for synaptic function in Drosophila neuromuscular junction. Neurosci Res, 64(4): 362–371
CrossRef Pubmed Google scholar
[96]
Tabuchi K, Biederer T, Butz S, Sudhof T C (2002). CASK participates in alternative tripartite complexes in which Mint 1 competes for binding with caskin 1, a novel CASK-binding protein. J Neurosci, 22(11): 4264–4273
Pubmed
[97]
Takahashi S X, Miriyala J, Tay L H, Yue D T, Colecraft H M (2005). A CaVbeta SH3/guanylate kinase domain interaction regulates multiple properties of voltage-gated Ca2+ channels. J Gen Physiol, 126(4): 365–377
CrossRef Pubmed Google scholar
[98]
Tanentzapf G, Tepass U (2003). Interactions between the crumbs, lethal giant larvae and bazooka pathways in epithelial polarization. Nat Cell Biol, 5(1): 46–52
CrossRef Pubmed Google scholar
[99]
Tarpey P, Parnau J, Blow M, Woffendin H, Bignell G, Cox C, Cox J, Davies H, Edkins S, Holden S, Korny A, Mallya U, Moon J, O’Meara S, Parker A, Stephens P, Stevens C, Teague J, Donnelly A, Mangelsdorf M, Mulley J, Partington M, Turner G, Stevenson R, Schwartz C, Young I, Easton D, Bobrow M, Futreal P A, Stratton M R, Gecz J, Wooster R, Raymond F L (2004). Mutations in the DLG3 gene cause nonsyndromic X-linked mental retardation. Am J Hum Genet, 75(2): 318–324
CrossRef Pubmed Google scholar
[100]
Tarpey P S, Smith R, Pleasance E, Whibley A, Edkins S, Hardy C, O’Meara S, Latimer C, Dicks E, Menzies A, Stephens P, Blow M, Greenman C, Xue Y, Tyler-Smith C, Thompson D, Gray K, Andrews J, Barthorpe S, Buck G, Cole J, Dunmore R, Jones D, Maddison M, Mironenko T, Turner R, Turrell K, Varian J, West S, Widaa S, Wray P, Teague J, Butler A, Jenkinson A, Jia M, Richardson D, Shepherd R, Wooster R, Tejada M I, Martinez F, Carvill G, Goliath R, de Brouwer A P, van Bokhoven H, Van Esch H, Chelly J, Raynaud M, Ropers H H, Abidi F E, Srivastava A K, Cox J, Luo Y, Mallya U, Moon J, Parnau J, Mohammed S, Tolmie J L, Shoubridge C, Corbett M, Gardner A, Haan E, Rujirabanjerd S, Shaw M, Vandeleur L, Fullston T, Easton D F, Boyle J, Partington M, Hackett A, Field M, Skinner C, Stevenson R E, Bobrow M, Turner G, Schwartz C E, Gecz J, Raymond F L, Futreal P A, Stratton M R (2009). A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat Genet, 41(5): 535–543
CrossRef Pubmed Google scholar
[101]
Tavares G A, Panepucci E H, Brunger A T (2001). Structural characterization of the intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. Mol Cell, 8(6): 1313–1325
CrossRef Pubmed Google scholar
[102]
te Velthuis A J, Admiraal J F, Bagowski C P (2007). Molecular evolution of the MAGUK family in metazoan genomes. BMC Evol Biol, 7(1): 129
CrossRef Pubmed Google scholar
[103]
Valdar W S (2002). Scoring residue conservation. Proteins, 48(2): 227–241
CrossRef Pubmed Google scholar
[104]
Van Petegem F, Clark K A, Chatelain F C, Minor D L Jr (2004). Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature, 429(6992): 671–675
CrossRef Pubmed Google scholar
[105]
Wang C K, Pan L, Chen J, Zhang M (2010). Extensions of PDZ domains as important structural and functional elements. Protein Cell, 1(8): 737–751
CrossRef Pubmed Google scholar
[106]
Wang G S, Hong C J, Yen T Y, Huang H Y, Ou Y, Huang T N, Jung W G, Kuo T Y, Sheng M, Wang T F, Hsueh Y P (2004). Transcriptional modification by a CASK-interacting nucleosome assembly protein. Neuron, 42(1): 113–128
CrossRef Pubmed Google scholar
[107]
Wei Z, Zheng S, Spangler S A, Yu C, Hoogenraad C C, Zhang M (2011). Liprin-mediated large signaling complex organization revealed by the liprin-α/CASK and liprin-α/liprin-β complex structures. Mol Cell, 43(4): 586–598
CrossRef Pubmed Google scholar
[108]
Welch J M, Lu J, Rodriguiz R M, Trotta N C, Peca J, Ding J D, Feliciano C, Chen M, Adams J P, Luo J, Dudek S M, Weinberg R J, Calakos N, Wetsel W C, Feng G (2007). Cortico-striatal synaptic defects and OCD-like behaviours in Sapap3-mutant mice. Nature, 448(7156): 894–900
CrossRef Pubmed Google scholar
[109]
Woods D F, Bryant P J (1991). The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell, 66(3): 451–464
CrossRef Pubmed Google scholar
[110]
Woods D F, Bryant P J (1993). ZO-1, DlgA and PSD-95/SAP90: homologous proteins in tight, septate and synaptic cell junctions. Mech Dev, 44(2-3): 85–89
CrossRef Pubmed Google scholar
[111]
Woods D F, Hough C, Peel D, Callaini G, Bryant P J (1996). Dlg protein is required for junction structure, cell polarity, and proliferation control in Drosophila epithelia. J Cell Biol, 134(6): 1469–1482
CrossRef Pubmed Google scholar
[112]
Wu H, Feng W, Chen J, Chan L N, Huang S, Zhang M (2007). PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol Cell, 28(5): 886–898
CrossRef Pubmed Google scholar
[113]
Yaffe M B, Elia A E (2001). Phosphoserine/threonine-binding domains. Curr Opin Cell Biol, 13(2): 131–138
CrossRef Pubmed Google scholar
[114]
Yu H, Chen J K, Feng S, Dalgarno D C, Brauer A W, Schreiber S L (1994). Structural basis for the binding of proline-rich peptides to SH3 domains. Cell, 76(5): 933–945
CrossRef Pubmed Google scholar
[115]
Zhang J, Yang X, Wang Z, Zhou H, Xie X, Shen Y, Long J (2012). Structure of an l27 domain heterotrimer from cell polarity complex patj/pals1/mals2 reveals mutually independent l27 domain assembly mode. J Biol Chem, 287(14): 11132–11140
CrossRef Pubmed Google scholar
[116]
Zhang M, Wang W (2003). Organization of signaling complexes by PDZ-domain scaffold proteins. Acc Chem Res, 36(7): 530–538
CrossRef Pubmed Google scholar
[117]
Zhang Y, Luan Z, Liu A, Hu G (2001). The scaffolding protein CASK mediates the interaction between rabphilin3a and beta-neurexins. FEBS Lett, 497(2-3): 99–102
CrossRef Pubmed Google scholar
[118]
Zheng C Y, Seabold G K, Horak M, Petralia R S (2011). MAGUKs, synaptic development, and synaptic plasticity. Neuroscientist, 17(5): 493–512
CrossRef Pubmed Google scholar
[119]
Zheng Z, Zhu H, Wan Q, Liu J, Xiao Z, Siderovski D P, Du Q (2010). LGN regulates mitotic spindle orientation during epithelial morphogenesis. J Cell Biol, 189(2): 275–288
CrossRef Pubmed Google scholar
[120]
Zhu J, Shang Y, Xia C, Wang W, Wen W, Zhang M (2011a). Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules. EMBO J, 30(24): 4986–4997
CrossRef Pubmed Google scholar
[121]
Zhu J, Wen W, Zheng Z, Shang Y, Wei Z, Xiao Z, Pan Z, Du Q, Wang W, Zhang M (2011b). LGN/mInsc and LGN/NuMA complex structures suggest distinct functions in asymmetric cell division for the Par3/mInsc/LGN and Gαi/LGN/NuMA pathways. Mol Cell, 43(3): 418–431
CrossRef Pubmed Google scholar
[122]
Züchner S, Wendland J R, Ashley-Koch A E, Collins A L, Tran-Viet K N, Quinn K, Timpano K C, Cuccaro M L, Pericak-Vance M A, Steffens D C, Krishnan K R, Feng G, Murphy D L (2009). Multiple rare SAPAP3 missense variants in trichotillomania and OCD. Mol Psychiatry, 14(1): 6–9
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by grants (663808, 664009, 660709, 663610, 663811, HKUST6/CRF/10, SEG_HKUST06, and AoE/M-04/04) from the Research Grants Council of Hong Kong to MZ.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(1256 KB)

Accesses

Citations

Detail

Sections
Recommended

/