Growth factor receptor trafficking as a potential therapeutic target in pediatric cancer
Peter E. ZAGE, Andrew J. BEAN
Growth factor receptor trafficking as a potential therapeutic target in pediatric cancer
Growth factor receptors (GFRs) are often aberrantly expressed in tumor cells, and altered GFR expression and activity contribute to the pathogenesis of many types of cancer. A variety of mechanisms have been identified that result in enhanced GFR expression and activity in cancer cells. Defects in the pathways responsible for GFR internalization and intracellular trafficking are likely to be involved in altered GFR expression in a variety of cancers. The roles of GFR trafficking pathways in the regulation of GFR expression, in the pathogenesis of tumors, and in the response of tumors to treatment have not been fully delineated, but the likely contributions of GFR signaling to the development and progression of various malignancies suggest that therapies that modify GFR trafficking may be effective as anticancer treatments.
The intracellular trafficking of GFRs is regulated by a number of protein complexes and by protein ubiquitination. Many of the proteins required for this trafficking are products of tumor suppressor genes, and the expression and function of the protein machinery utilized for intracellular trafficking is frequently altered in tumor cells, consistent with the likely role of GFR trafficking in tumorigenesis. Many of the proteins involved in GFR trafficking have been identified as potential targets for anticancer treatment, and novel treatments directed against these targets are currently in preclinical development and in clinical trials. Ubiquitin ligases are critical for GFR trafficking and represent potentially important targets for the development of novel therapies.
The genes for the ubiquitin ligases c-Cbl and UBE4B are located in chromosome regions commonly altered in a variety of tumors and therefore are likely to be important for tumorigenesis. c-Cbl ubiquitinates a number of GFRs and directs them for degradation. Mutations in c-Cbl have been identified in cases of myeloid leukemia and myelodysplasia, providing a link between GFR ubiquitination and trafficking and leukemogenesis. We have shown that UBE4B plays a crucial role in GFR trafficking and degradation in tumor cells, suggesting a previously uncharacterized link between UBE4B and tumorigenesis. With the critical need for new and effective therapies for pediatric malignancies, the recently identified roles for the GFR trafficking pathway in the pathogenesis of various forms of cancer confirm the importance of the further development of novel therapies targeting this pathway in children with cancer.
growth factor receptor / tyrosine kinase / trafficking / UBE4B / neuroblastoma
[1] |
AbellaJ V, ParachoniakC A, SangwanV, ParkM (2010). Dorsal ruffle microdomains potentiate Met receptor tyrosine kinase signaling and down-regulation.J Biol Chem, 285(32): 24956–24967
CrossRef
Pubmed
Google scholar
|
[2] |
AbellaJ V, ParkM (2009). Breakdown of endocytosis in the oncogenic activation of receptor tyrosine kinases.Am J Physiol Endocrinol Metab, 296(5): E973–E984
CrossRef
Pubmed
Google scholar
|
[3] |
AndoK, OhiraM, OzakiT, NakagawaA, AkazawaK, SuenagaY, NakamuraY, KodaT, KamijoT, MurakamiY, NakagawaraA (2008). Expression of TSLC1, a candidate tumor suppressor gene mapped to chromosome 11q23, is downregulated in unfavorable neuroblastoma without promoter hypermethylation.Int J Cancer, 123(9): 2087–2094
CrossRef
Pubmed
Google scholar
|
[4] |
AravindL, KooninE V (2000). The U box is a modified RING finger—a common domain in ubiquitination.Curr Biol, 10(4): R132–R134
CrossRef
Pubmed
Google scholar
|
[5] |
AttiyehEF, LondonW B, MosséY P, WangQ, WinterC, KhaziD, McGradyP W, SeegerR C, LookA T, ShimadaH, BrodeurG M, CohnS L, MatthayK K, MarisJ M, Children’s Oncology Group (2005). Chromosome 1p and 11q deletions and outcome in neuroblastoma.N Engl J Med, 353(21): 2243–2253
CrossRef
Pubmed
Google scholar
|
[6] |
BabstM, KatzmannD J, Estepa-SabalE J, MeerlooT, EmrS D (2002a). Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting.Dev Cell, 3(2): 271–282
CrossRef
Pubmed
Google scholar
|
[7] |
BabstM, KatzmannD J, SnyderW B, WendlandB, EmrS D (2002b). Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body.Dev Cell, 3(2): 283–289
CrossRef
Pubmed
Google scholar
|
[8] |
BabstM, OdorizziG, EstepaE J, EmrS D (2000). Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking.Traffic, 1(3): 248–258
CrossRef
Pubmed
Google scholar
|
[9] |
BabstM, WendlandB, EstepaE J, EmrS D (1998). The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function.EMBO J, 17(11): 2982–2993
CrossRef
Pubmed
Google scholar
|
[10] |
BacheK G, BrechA, MehlumA, StenmarkH (2003). Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes.J Cell Biol, 162(3): 435–442
CrossRef
Pubmed
Google scholar
|
[11] |
BeanA J, DavangerS, ChouM F, GerhardtB, TsujimotoS, ChangY (2000). Hrs-2 regulates receptor-mediated endocytosis via interactions with Eps15.J Biol Chem, 275(20): 15271–15278
CrossRef
Pubmed
Google scholar
|
[12] |
BeanA J, SeifertR, ChenY A, SacksR, SchellerR H (1997). Hrs-2 is an ATPase implicated in calcium-regulated secretion.Nature, 385(6619): 826–829
CrossRef
Pubmed
Google scholar
|
[13] |
BennettE J, HarperJ W (2008). DNA damage: ubiquitin marks the spot.Nat Struct Mol Biol, 15(1): 20–22
CrossRef
Pubmed
Google scholar
|
[14] |
BernassolaF, KarinM, CiechanoverA, MelinoG (2008). The HECT family of E3 ubiquitin ligases: multiple players in cancer development.Cancer Cell, 14(1): 10–21
CrossRef
Pubmed
Google scholar
|
[15] |
BilodeauP S, UrbanowskiJ L, WinistorferS C, PiperR C (2002). The Vps27p Hse1p complex binds ubiquitin and mediates endosomal protein sorting.Nat Cell Biol, 4(7): 534–539
Pubmed
|
[16] |
BlomT, RoselliA, HäyryV, TynninenO, WartiovaaraK, KorjaM, NordforsK, HaapasaloH, NupponenN N (2010). Amplification and overexpression of KIT, PDGFRA, and VEGFR2 in medulloblastomas and primitive neuroectodermal tumors.J Neurooncol, 97(2): 217–224
CrossRef
Pubmed
Google scholar
|
[17] |
BodeyB, KaiserH E, SiegelS E (2005). Epidermal growth factor receptor (EGFR) expression in childhood brain tumors.In Vivo, 19(5): 931–941
Pubmed
|
[18] |
BondG L, HuW, LevineA J (2005). MDM2 is a central node in the p53 pathway: 12 years and counting.Curr Cancer Drug Targets, 5(1): 3–8
CrossRef
Pubmed
Google scholar
|
[19] |
BraoudakiM, KarpusasM, KatsibardiK, PapathanassiouCh, KaramolegouK, Tzortzatou-StathopoulouF (2009). Frequency of FLT3 mutations in childhood acute lymphoblastic leukemia.Med Oncol, 26(4): 460–462
CrossRef
Pubmed
Google scholar
|
[20] |
BredelM, PollackI F, HamiltonR L, JamesC D (1999). Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood.Clin Cancer Res, 5(7): 1786–1792
Pubmed
|
[21] |
BurkeP, SchoolerK, WileyH S (2001). Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking.Mol Biol Cell, 12(6): 1897–1910
Pubmed
|
[22] |
CaligiuriM A, BriesewitzR, YuJ, WangL, WeiM, ArnoczkyK J, MarburgerT B, WenJ, PerrottiD, BloomfieldC D, WhitmanS P (2007). Novel c-CBL and CBL-b ubiquitin ligase mutations in human acute myeloid leukemia.Blood, 110(3): 1022–1024
CrossRef
Pubmed
Google scholar
|
[23] |
CarénH, EjeskärK, FranssonS, HessonL, LatifF, SjöbergR M, KronaC, MartinssonT (2005). A cluster of genes located in 1p36 are down-regulated in neuroblastomas with poor prognosis, but not due to CpG island methylation.Mol Cancer, 4(1): 10
CrossRef
Pubmed
Google scholar
|
[24] |
CarénH, HolmstrandA, SjöbergR M, MartinssonT (2006). The two human homologues of yeast UFD2 ubiquitination factor, UBE4A and UBE4B, are located in common neuroblastoma deletion regions and are subject to mutations in tumours.Eur J Cancer, 42(3): 381–387
CrossRef
Pubmed
Google scholar
|
[25] |
CaronH, van SluisP, de KrakerJ, BökkerinkJ, EgelerM, LaureysG, SlaterR, WesterveldA, VoûteP A, VersteegR (1996). Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma.N Engl J Med, 334(4): 225–230
CrossRef
Pubmed
Google scholar
|
[26] |
CarterR E, SorkinA (1998). Endocytosis of functional epidermal growth factor receptor-green fluorescent protein chimera.J Biol Chem, 273(52): 35000–35007
CrossRef
Pubmed
Google scholar
|
[27] |
ChenC, MatesicL E (2007). The Nedd4-like family of E3 ubiquitin ligases and cancer.Cancer Metastasis Rev, 26(3-4): 587–604
CrossRef
Pubmed
Google scholar
|
[28] |
ChinL S, RaynorM C, WeiX, ChenH Q, LiL (2001). Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor.J Biol Chem, 276(10): 7069–7078
CrossRef
Pubmed
Google scholar
|
[29] |
CiardielloF, De VitaF, OrdituraM, TortoraG (2004). The role of EGFR inhibitors in nonsmall cell lung cancer.Curr Opin Oncol, 16(2): 130–135
CrossRef
Pubmed
Google scholar
|
[30] |
CiechanoverA, OrianA, SchwartzA L (2000). The ubiquitin-mediated proteolytic pathway: mode of action and clinical implications.J Cell Biochem Suppl, 77(S34): 40–51
CrossRef
Pubmed
Google scholar
|
[31] |
Diomedi-CamasseiF, McDowellH P, De IorisM A, UcciniS, AltavistaP, RaschellàG, VitaliR, MannarinoO, De SioL, CozziD A, DonfrancescoA, InserraA, CalleaF, DominiciC (2008). Clinical significance of CXC chemokine receptor-4 and c-Met in childhood rhabdomyosarcoma.Clin Cancer Res, 14(13): 4119–4127
CrossRef
Pubmed
Google scholar
|
[32] |
DuplanS M, ThéorêtY, KenigsbergR L (2002). Antitumor activity of fibroblast growth factors (FGFs) for medulloblastoma may correlate with FGF receptor expression and tumor variant.Clin Cancer Res, 8(1): 246–257
Pubmed
|
[33] |
El-RayesB F, LoRussoP M (2004). Targeting the epidermal growth factor receptor.Br J Cancer, 91(3): 418–424
CrossRef
Pubmed
Google scholar
|
[34] |
Entz-WerléN, MarcellinL, GaubM P, GuerinE, SchneiderA, Berard-MarecP, KalifaC, BrugiereL, PacquementH, SchmittC, TaboneM D, Jeanne-PasquierC, TerrierP, DijoudF, OudetP, LutzP, Babin-BoilletotA (2005). Prognostic significance of allelic imbalance at the c-kit gene locus and c-kit overexpression by immunohistochemistry in pediatric osteosarcomas.J Clin Oncol, 23(10): 2248–2255
CrossRef
Pubmed
Google scholar
|
[35] |
EwanL C, JoplingH M, JiaH, MittarS, BagherzadehA, HowellG J, WalkerJ H, ZacharyI C, PonnambalamS (2006). Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells.Traffic, 7(9): 1270–1282
CrossRef
Pubmed
Google scholar
|
[36] |
FakhariM, PullirschD, PayaK, AbrahamD, HofbauerR, AharinejadS (2002). Upregulation of vascular endothelial growth factor receptors is associated with advanced neuroblastoma.J Pediatr Surg, 37(4): 582–587
CrossRef
Pubmed
Google scholar
|
[37] |
FutterC E, PearseA, HewlettL J, HopkinsC R (1996). Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes.J Cell Biol, 132(6): 1011–1023
CrossRef
Pubmed
Google scholar
|
[38] |
GeethaT, JiangJ, WootenM W (2005). Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling.Mol Cell, 20(2): 301–312
CrossRef
Pubmed
Google scholar
|
[39] |
GoldsteinM, MellerI, Orr-UrtregerA (2007). FGFR1 over-expression in primary rhabdomyosarcoma tumors is associated with hypomethylation of a 5′ CpG island and abnormal expression of the AKT1, NOG, and BMP4 genes.Genes Chromosomes Cancer, 46(11): 1028–1038
CrossRef
Pubmed
Google scholar
|
[40] |
GoumnerovaL C (1996). Growth factor receptors and medulloblastoma.J Neurooncol, 29(1): 85–89
CrossRef
Pubmed
Google scholar
|
[41] |
GrandF H, Hidalgo-CurtisC E, ErnstT, ZoiK, ZoiC, McGuireC, KreilS, JonesA, ScoreJ, MetzgerothG, OscierD, HallA, BrandtsC, ServeH, ReiterA, ChaseA J, CrossN C (2009). Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms.Blood, 113(24): 6182–6192
CrossRef
Pubmed
Google scholar
|
[42] |
GruenbergJ (2001). The endocytic pathway: a mosaic of domains.Nat Rev Mol Cell Biol, 2(10): 721–730
CrossRef
Pubmed
Google scholar
|
[43] |
GuardavaccaroD, PaganoM (2004). Oncogenic aberrations of cullin-dependent ubiquitin ligases.Oncogene, 23(11): 2037–2049
CrossRef
Pubmed
Google scholar
|
[44] |
HaglundK, SigismundS, PoloS, SzymkiewiczI, Di FioreP P, DikicI (2003). Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation.Nat Cell Biol, 5(5): 461–466
CrossRef
Pubmed
Google scholar
|
[45] |
HanahanD, WeinbergR A (2011). Hallmarks of cancer: the next generation.Cell, 144(5): 646–674
CrossRef
Pubmed
Google scholar
|
[46] |
HatakeyamaS, MatsumotoM, YadaM, NakayamaK I (2004). Interaction of U-box-type ubiquitin-protein ligases (E3s) with molecular chaperones.Genes Cells, 9(6): 533–548
CrossRef
Pubmed
Google scholar
|
[47] |
HatakeyamaS, YadaM, MatsumotoM, IshidaN, NakayamaK I (2001). U box proteins as a new family of ubiquitin-protein ligases.J Biol Chem, 276(35): 33111–33120
CrossRef
Pubmed
Google scholar
|
[48] |
HauptY, MayaR, KazazA, OrenM (1997). Mdm2 promotes the rapid degradation of p53.Nature, 387(6630): 296–299
CrossRef
Pubmed
Google scholar
|
[49] |
HechtM, PapoutsiM, TranH D, WiltingJ, SchweigererL (2004). Hepatocyte growth factor/c-Met signaling promotes the progression of experimental human neuroblastomas.Cancer Res, 64(17): 6109–6118
CrossRef
Pubmed
Google scholar
|
[50] |
HickeL, DunnR (2003). Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins.Annu Rev Cell Dev Biol, 19(1): 141–172
CrossRef
Pubmed
Google scholar
|
[51] |
HierroA, SunJ, RusnakA S, KimJ, PragG, EmrS D, HurleyJ H (2004). Structure of the ESCRT-II endosomal trafficking complex.Nature, 431(7005): 221–225
CrossRef
Pubmed
Google scholar
|
[52] |
HishikiT, NimuraY, IsogaiE, KondoK, IchimiyaS, NakamuraY, OzakiT, SakiyamaS, HiroseM, SekiN, TakahashiH, OhnumaN, TanabeM, NakagawaraA (1998). Glial cell line-derived neurotrophic factor/neurturin-induced differentiation and its enhancement by retinoic acid in primary human neuroblastomas expressing c-Ret, GFR alpha-1, and GFR alpha-2.Cancer Res, 58(10): 2158–2165
Pubmed
|
[53] |
HoellerD, HeckerC M, DikicI (2006). Ubiquitin and ubiquitin-like proteins in cancer pathogenesis.Nat Rev Cancer, 6(10): 776–788
CrossRef
Pubmed
Google scholar
|
[54] |
HosodaM, OzakiT, MiyazakiK, HayashiS, FuruyaK, WatanabeK, NakagawaT, HanamotoT, TodoS, NakagawaraA (2005). UFD2a mediates the proteasomal turnover of p73 without promoting p73 ubiquitination.Oncogene, 24(48): 7156–7169
CrossRef
Pubmed
Google scholar
|
[55] |
HuangS H, ZhaoL, SunZ P, LiX Z, GengZ, ZhangK D, ChaoM V, ChenZ Y (2009). Essential role of Hrs in endocytic recycling of full-length TrkB receptor but not its isoform TrkB.T1.J Biol Chem, 284(22): 15126–15136
CrossRef
Pubmed
Google scholar
|
[56] |
HyunT S, RaoD S, Saint-DicD, MichaelL E, KumarP D, BradleyS V, MizukamiI F, Oravecz-WilsonK I, RossT S (2004). HIP1 and HIP1r stabilize receptor tyrosine kinases and bind 3-phosphoinositides via epsin N-terminal homology domains.J Biol Chem, 279(14): 14294–14306
CrossRef
Pubmed
Google scholar
|
[57] |
IkedaF, DikicI (2008). Atypical ubiquitin chains: new molecular signals. ‘Protein Modifications: Beyond the Usual Suspects’ review series.EMBO Rep, 9(6): 536–542
CrossRef
Pubmed
Google scholar
|
[58] |
Izycka-SwieszewskaE, WozniakA, DrozynskaE, KotJ, GrajkowskaW, KlepackaT, PerekD, KoltanS, BienE, LimonJ (2011). Expression and significance of HER family receptors in neuroblastic tumors.Clin Exp Metastasis, 28(3): 271–282
CrossRef
Pubmed
Google scholar
|
[59] |
JanetT, LüdeckeG, OttenU, UnsickerK (1995). Heterogeneity of human neuroblastoma cell lines in their proliferative responses to basic FGF, NGF, and EGF: correlation with expression of growth factors and growth factor receptors.J Neurosci Res, 40(6): 707–715
CrossRef
Pubmed
Google scholar
|
[60] |
JohnsonE S, MaP C, OtaI M, VarshavskyA (1995). A proteolytic pathway that recognizes ubiquitin as a degradation signal.J Biol Chem, 270(29): 17442–17456
CrossRef
Pubmed
Google scholar
|
[61] |
KalesS C, RyanP E, NauM M, LipkowitzS (2010). Cbl and human myeloid neoplasms: the Cbl oncogene comes of age.Cancer Res, 70(12): 4789–4794
CrossRef
Pubmed
Google scholar
|
[62] |
KanekoC, HatakeyamaS, MatsumotoM, YadaM, NakayamaK, NakayamaK I (2003). Characterization of the mouse gene for the U-box-type ubiquitin ligase UFD2a.Biochem Biophys Res Commun, 300(2): 297–304
CrossRef
Pubmed
Google scholar
|
[63] |
Kaneko-OshikawaC, NakagawaT, YamadaM, YoshikawaH, MatsumotoM, YadaM, HatakeyamaS, NakayamaK, NakayamaK I (2005). Mammalian E4 is required for cardiac development and maintenance of the nervous system.Mol Cell Biol, 25(24): 10953–10964
CrossRef
Pubmed
Google scholar
|
[64] |
KatzmannD J, BabstM, EmrS D (2001). Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I.Cell, 106(2): 145–155
CrossRef
Pubmed
Google scholar
|
[65] |
KoeglM, HoppeT, SchlenkerS, UlrichH D, MayerT U, JentschS (1999). A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly.Cell, 96(5): 635–644
CrossRef
Pubmed
Google scholar
|
[66] |
KronaC, EjeskärK, AbelF, KognerP, BjelkeJ, BjörkE, SjöbergR M, MartinssonT (2003). Screening for gene mutations in a 500 kb neuroblastoma tumor suppressor candidate region in chromosome 1p; mutation and stage-specific expression in UBE4B/UFD2.Oncogene, 22(15): 2343–2351
CrossRef
Pubmed
Google scholar
|
[67] |
LamorteL, ParkM (2001). The receptor tyrosine kinases: role in cancer progression.Surg Oncol Clin N Am, 10(2): 271–288, viii
Pubmed
|
[68] |
LangerI, VertongenP, PerretJ, FontaineJ, AtassiG, RobberechtP (2000). Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in human neuroblastomas.Med Pediatr Oncol, 34(6): 386–393
CrossRef
Pubmed
Google scholar
|
[69] |
LemmonS K, TraubL M (2000). Sorting in the endosomal system in yeast and animal cells.Curr Opin Cell Biol, 12(4): 457–466
CrossRef
Pubmed
Google scholar
|
[70] |
LevkowitzG, WatermanH, ZamirE, KamZ, OvedS, LangdonW Y, BeguinotL, GeigerB, YardenY (1998). c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor.Genes Dev, 12(23): 3663–3674
CrossRef
Pubmed
Google scholar
|
[71] |
LiY, LalB, KwonS, FanX, SaldanhaU, ReznikT E, KuchnerE B, EberhartC, LaterraJ, AbounaderR (2005). The scatter factor/hepatocyte growth factor: c-met pathway in human embryonal central nervous system tumor malignancy.Cancer Res, 65(20): 9355–9362
CrossRef
Pubmed
Google scholar
|
[72] |
LohM L, SakaiD S, FlothoC, KangM, FliegaufM, ArchambeaultS, MullighanC G, ChenL, BergstraesserE, Bueso-RamosC E, EmanuelP D, HasleH, IssaJ P, van den Heuvel-EibrinkM M, LocatelliF, StaryJ, TreboM, WlodarskiM, ZeccaM, ShannonK M, NiemeyerC M (2009). Mutations in CBL occur frequently in juvenile myelomonocytic leukemia.Blood, 114(9): 1859–1863
CrossRef
Pubmed
Google scholar
|
[73] |
LuY, LiX, LiangK, LuworR, SiddikZ H, MillsG B, MendelsohnJ, FanZ (2007). Epidermal growth factor receptor (EGFR) ubiquitination as a mechanism of acquired resistance escaping treatment by the anti-EGFR monoclonal antibody cetuximab.Cancer Res, 67(17): 8240–8247
CrossRef
Pubmed
Google scholar
|
[74] |
LuhtalaN, OdorizziG (2004). Bro1 coordinates deubiquitination in the multivesicular body pathway by recruiting Doa4 to endosomes.J Cell Biol, 166(5): 717–729
CrossRef
Pubmed
Google scholar
|
[75] |
MarisJ M, GuoC, BlakeD, WhiteP S, HogartyM D, ThompsonP M, RajalingamV, GerbingR, StramD O, MatthayK K, SeegerR C, BrodeurG M (2001). Comprehensive analysis of chromosome 1p deletions in neuroblastoma.Med Pediatr Oncol, 36(1): 32–36
CrossRef
Pubmed
Google scholar
|
[76] |
MarmorM D, YardenY (2004). Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases.Oncogene, 23(11): 2057–2070
CrossRef
Pubmed
Google scholar
|
[77] |
MassonK, HeissE, BandH, RönnstrandL (2006). Direct binding of Cbl to Tyr568 and Tyr936 of the stem cell factor receptor/c-Kit is required for ligand-induced ubiquitination, internalization and degradation.Biochem J, 399(1): 59–67
CrossRef
Pubmed
Google scholar
|
[78] |
MatsuiT, SanoK, TsukamotoT, ItoM, TakaishiT, NakataH, NakamuraH, ChiharaK (1993). Human neuroblastoma cells express alpha and beta platelet-derived growth factor receptors coupling with neurotrophic and chemotactic signaling.J Clin Invest, 92(3): 1153–1160
CrossRef
Pubmed
Google scholar
|
[79] |
MatsumotoM, YadaM, HatakeyamaS, IshimotoH, TanimuraT, TsujiS, KakizukaA, KitagawaM, NakayamaK I (2004). Molecular clearance of ataxin-3 is regulated by a mammalian E4.EMBO J, 23(3): 659–669
CrossRef
Pubmed
Google scholar
|
[80] |
MeisterB, GrünebachF, BautzF, BruggerW, FinkF M, KanzL, MöhleR (1999). Expression of vascular endothelial growth factor (VEGF) and its receptors in human neuroblastoma.Eur J Cancer, 35(3): 445–449
CrossRef
Pubmed
Google scholar
|
[81] |
MeshinchiS, WoodsW G, StirewaltD L, SweetserD A, BuckleyJ D, TjoaT K, BernsteinI D, RadichJ P (2001). Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia.Blood, 97(1): 89–94
CrossRef
Pubmed
Google scholar
|
[82] |
MeyersM B, ShenW P, SpenglerB A, CiccaroneV, O’BrienJ P, DonnerD B, FurthM E, BiedlerJ L (1988). Increased epidermal growth factor receptor in multidrug-resistant human neuroblastoma cells.J Cell Biochem, 38(2): 87–97
CrossRef
Pubmed
Google scholar
|
[83] |
MichaelisM, BlissJ, ArnoldS C, HinschN, RothweilerF, DeubzerH E, WittO, LangerK, DoerrH W, WelsW S, CinatlJ Jr (2008). Cisplatin-resistant neuroblastoma cells express enhanced levels of epidermal growth factor receptor (EGFR) and are sensitive to treatment with EGFR-specific toxins.Clin Cancer Res, 14(20): 6531–6537
CrossRef
Pubmed
Google scholar
|
[84] |
MirandaM, SorkinA (2007). Regulation of receptors and transporters by ubiquitination: new insights into surprisingly similar mechanisms.Mol Interv, 7(3): 157–167
CrossRef
Pubmed
Google scholar
|
[85] |
MoriS, HeldinC H, Claesson-WelshL (1993). Ligand-induced ubiquitination of the platelet-derived growth factor beta-receptor plays a negative regulatory role in its mitogenic signaling.J Biol Chem, 268(1): 577–583
Pubmed
|
[86] |
MosessonY, ShtiegmanK, KatzM, ZwangY, VerebG, SzollosiJ, YardenY (2003). Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation.J Biol Chem, 278(24): 21323–21326
CrossRef
Pubmed
Google scholar
|
[87] |
NakayamaK I, NakayamaK (2006). Ubiquitin ligases: cell-cycle control and cancer.Nat Rev Cancer, 6(5): 369–381
CrossRef
Pubmed
Google scholar
|
[88] |
NowickiM, Ostalska-NowickaD, KaczmarekM, MiskowiakB, WittM (2007). The significance of VEGF-C/VEGFR-2 interaction in the neovascularization and prognosis of nephroblastoma (Wilms’ tumour).Histopathology, 50(3): 358–364
CrossRef
Pubmed
Google scholar
|
[89] |
OgawaS, ShihL Y, SuzukiT, OtsuM, NakauchiH, KoefflerH P, SanadaM (2010). Deregulated intracellular signaling by mutated c-CBL in myeloid neoplasms.Clin Cancer Res, 16(15): 3825–3831
CrossRef
Pubmed
Google scholar
|
[90] |
OhiraM, KageyamaH, MiharaM, FurutaS, MachidaT, ShishikuraT, TakayasuH, IslamA, NakamuraY, TakahashiM, TomiokaN, SakiyamaS, KanekoY, ToyodaA, HattoriM, SakakiY, OhkiM, HoriiA, SoedaE, InazawaJ, SekiN, KumaH, NozawaI, NakagawaraA (2000). Identification and characterization of a 500-kb homozygously deleted region at 1p36.2-p36.3 in a neuroblastoma cell line.Oncogene, 19(37): 4302–4307
CrossRef
Pubmed
Google scholar
|
[91] |
OkumuraF, HatakeyamaS, MatsumotoM, KamuraT, NakayamaK I (2004). Functional regulation of FEZ1 by the U-box-type ubiquitin ligase E4B contributes to neuritogenesis.J Biol Chem, 279(51): 53533–53543
CrossRef
Pubmed
Google scholar
|
[92] |
ÖstmanA, BöhmerF D (2001). Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatases.Trends Cell Biol, 11(6): 258–266
CrossRef
Pubmed
Google scholar
|
[93] |
ÖstmanA, HeldinC H (2007). PDGF receptors as targets in tumor treatment.Adv Cancer Res, 97: 247–274
CrossRef
Pubmed
Google scholar
|
[94] |
PassmoreL A, BarfordD (2004). Getting into position: the catalytic mechanisms of protein ubiquitylation.Biochem J, 379(3): 513–525
CrossRef
Pubmed
Google scholar
|
[95] |
PatereliA, AlexiouGA, StefanakiK, MoschoviM, Doussis-AnagnostopoulouI, ProdromouN, KarentzuoO (2010). Expression of Epidermal Growth Factor Receptor and Her-2 in Pediatric Embryonal Brain Tumors.
|
[96] |
PawsonT (2007). Dynamic control of signaling by modular adaptor proteins.Curr Opin Cell Biol, 19(2): 112–116
CrossRef
Pubmed
Google scholar
|
[97] |
PeceS, SerresiM, SantoliniE, CapraM, HullemanE, GalimbertiV, ZurridaS, MaisonneuveP, VialeG, Di FioreP P (2004). Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis.J Cell Biol, 167(2): 215–221
CrossRef
Pubmed
Google scholar
|
[98] |
PeschardP, ParkM (2003). Escape from Cbl-mediated downregulation: a recurrent theme for oncogenic deregulation of receptor tyrosine kinases.Cancer Cell, 3(6): 519–523
CrossRef
Pubmed
Google scholar
|
[99] |
PornillosO, HigginsonD S, StrayK M, FisherR D, GarrusJ E, PayneM, HeG P, WangH E, MorhamS G, SundquistW I (2003). HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein.J Cell Biol, 162(3): 425–434
CrossRef
Pubmed
Google scholar
|
[100] |
PuputtiM, TynninenO, PerniläP, SalmiM, JalkanenS, PaetauA, SihtoH, JoensuuH (2010). Expression of KIT receptor tyrosine kinase in endothelial cells of juvenile brain tumors.Brain Pathol, 20(4): 763–770
CrossRef
Pubmed
Google scholar
|
[101] |
RaoD S, BradleyS V, KumarP D, HyunT S, Saint-DicD, Oravecz-WilsonK, KleerC G, RossT S (2003). Altered receptor trafficking in Huntingtin Interacting Protein 1-transformed cells.Cancer Cell, 3(5): 471–482
CrossRef
Pubmed
Google scholar
|
[102] |
RaoD S, HyunT S, KumarP D, MizukamiI F, RubinM A, LucasP C, SandaM G, RossT S (2002). Huntingtin-interacting protein 1 is overexpressed in prostate and colon cancer and is critical for cellular survival.J Clin Invest, 110(3): 351–360
Pubmed
|
[103] |
RodahlL M, HaglundK, Sem-JacobsenC, WendlerF, VincentJ P, LindmoK, RustenT E, StenmarkH (2009). Disruption of Vps4 and JNK function in Drosophila causes tumour growth.PLoS ONE, 4(2): e4354
CrossRef
Pubmed
Google scholar
|
[104] |
SalciniA E, ConfalonieriS, DoriaM, SantoliniE, TassiE, MinenkovaO, CesareniG, PelicciP G, Di FioreP P (1997). Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module.Genes Dev, 11(17): 2239–2249
CrossRef
Pubmed
Google scholar
|
[105] |
SantoliniE, PuriC, SalciniA E, GaglianiM C, PelicciP G, TacchettiC, Di FioreP P (2000). Numb is an endocytic protein.J Cell Biol, 151(6): 1345–1352
CrossRef
Pubmed
Google scholar
|
[106] |
SchlessingerJ (2000). Cell signaling by receptor tyrosine kinases.Cell, 103(2): 211–225
CrossRef
Pubmed
Google scholar
|
[107] |
ShimadaA, HiratoJ, KuroiwaM, KikuchiA, HanadaR, WakaiK, HayashiY (2008). Expression of KIT and PDGFR is associated with a good prognosis in neuroblastoma.Pediatr Blood Cancer, 50(2): 213–217
CrossRef
Pubmed
Google scholar
|
[108] |
SirisaengtaksinN, SunW, YanQ, ZageP E, BeanA J.The Ubiquitin Ligase, UBE4B, Promotes Multivesicular Body Sorting of EGF Receptors. (Manuscript submitted)
|
[109] |
SlagsvoldT, AaslandR, HiranoS, BacheK G, RaiborgC, TrambaioloD, WakatsukiS, StenmarkH (2005). Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain.J Biol Chem, 280(20): 19600–19606
CrossRef
Pubmed
Google scholar
|
[110] |
SlongoM L, MolenaB, BrunatiA M, FrassonM, GardimanM, CarliM, PerilongoG, RosolenA, OnistoM (2007). Functional VEGF and VEGF receptors are expressed in human medulloblastomas.Neuro-oncol, 9(4): 384–392
CrossRef
Pubmed
Google scholar
|
[111] |
SunW, YanQ, VidaT A, BeanA J (2003). Hrs regulates early endosome fusion by inhibiting formation of an endosomal SNARE complex.J Cell Biol, 162(1): 125–137
CrossRef
Pubmed
Google scholar
|
[112] |
SundquistW I, SchubertH L, KellyB N, HillG C, HoltonJ M, HillC P (2004). Ubiquitin recognition by the human TSG101 protein.Mol Cell, 13(6): 783–789
CrossRef
Pubmed
Google scholar
|
[113] |
TakahashiM (1995). Oncogenic activation of the ret protooncogene in thyroid cancer.Crit Rev Oncog, 6(1): 35–46
Pubmed
|
[114] |
TaylorJ G 6th, CheukA T, TsangP S, ChungJ Y, SongY K, DesaiK, YuY, ChenQ R, ShahK, YoungbloodV, FangJ, KimS Y, YeungC, HelmanL J, MendozaA, NgoV, StaudtL M, WeiJ S, KhannaC, CatchpooleD, QualmanS J, HewittS M, MerlinoG, ChanockS J, KhanJ (2009). Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models.J Clin Invest, 119(11): 3395–3407
Pubmed
|
[115] |
ThieleC J, LiZ, McKeeA E (2009). On Trk—the TrkB signal transduction pathway is an increasingly important target in cancer biology.Clin Cancer Res, 15(19): 5962–5967
CrossRef
Pubmed
Google scholar
|
[116] |
ThienC B F, LangdonW Y (2001). Cbl: many adaptations to regulate protein tyrosine kinases.Nat Rev Mol Cell Biol, 2(4): 294–307
CrossRef
Pubmed
Google scholar
|
[117] |
ThompsonB J, MathieuJ, SungH H, LoeserE, RørthP, CohenS M (2005). Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila.Dev Cell, 9(5): 711–720
CrossRef
Pubmed
Google scholar
|
[118] |
ThorarinsdottirH K, SantiM, McCarterR, RushingE J, CornelisonR, JalesA, MacDonaldT J (2008). Protein expression of platelet-derived growth factor receptor correlates with malignant histology and PTEN with survival in childhood gliomas.Clin Cancer Res, 14(11): 3386–3394
CrossRef
Pubmed
Google scholar
|
[119] |
ThrowerJ S, HoffmanL, RechsteinerM, PickartC M (2000). Recognition of the polyubiquitin proteolytic signal.EMBO J, 19(1): 94–102
CrossRef
Pubmed
Google scholar
|
[120] |
TsudaM, DavisI J, ArganiP, ShuklaN, McGillG G, NagaiM, SaitoT, LaéM, FisherD E, LadanyiM (2007). TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition.Cancer Res, 67(3): 919–929
CrossRef
Pubmed
Google scholar
|
[121] |
VaccariT, BilderD (2005). The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking.Dev Cell, 9(5): 687–698
CrossRef
Pubmed
Google scholar
|
[122] |
VaseiM, ModjtahediH, Ale-BooyehO, MosallaeiA, KajbafzadehA M, ShahriariM, GhaderiA A, SoleymanpourH, KosariF, MochH, SauterG (2009). Amplification and expression of EGFR and ERBB2 in Wilms tumor.Cancer Genet Cytogenet, 194(2): 88–95
CrossRef
Pubmed
Google scholar
|
[123] |
VoorheesP M, OrlowskiR Z (2006). The proteasome and proteasome inhibitors in cancer therapy.Annu Rev Pharmacol Toxicol, 46(1): 189–213
CrossRef
Pubmed
Google scholar
|
[124] |
VousdenK H, PrivesC (2005). P53 and prognosis: new insights and further complexity.Cell, 120(1): 7–10
CrossRef
Pubmed
Google scholar
|
[125] |
WangQ, SongC, LiC C (2004). Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions.J Struct Biol, 146(1-2): 44–57
CrossRef
Pubmed
Google scholar
|
[126] |
WangX, TrotmanL C, KoppieT, AlimontiA, ChenZ, GaoZ, WangJ, Erdjument-BromageH, TempstP, Cordon-CardoC, PandolfiP P, JiangX (2007). NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN.Cell, 128(1): 129–139
CrossRef
Pubmed
Google scholar
|
[127] |
WatermanH, LevkowitzG, AlroyI, YardenY (1999). The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor.J Biol Chem, 274(32): 22151–22154
CrossRef
Pubmed
Google scholar
|
[128] |
WellsA, WelshJ B, LazarC S, WileyH S, GillG N, RosenfeldM G (1990). Ligand-induced transformation by a noninternalizing epidermal growth factor receptor.Science, 247(4945): 962–964
CrossRef
Pubmed
Google scholar
|
[129] |
WileyH S, BurkeP M (2001). Regulation of receptor tyrosine kinase signaling by endocytic trafficking.Traffic, 2(1): 12–18
CrossRef
Pubmed
Google scholar
|
[130] |
WileyH S, HerbstJ J, WalshB J, LauffenburgerD A, RosenfeldM G, GillG N (1991). The role of tyrosine kinase activity in endocytosis, compartmentation, and down-regulation of the epidermal growth factor receptor.J Biol Chem, 266(17): 11083–11094
Pubmed
|
[131] |
WilliamsR L, UrbéS (2007). The emerging shape of the ESCRT machinery.Nat Rev Mol Cell Biol, 8(5): 355–368
CrossRef
Pubmed
Google scholar
|
[132] |
WoelkT, SigismundS, PenengoL, PoloS (2007). The ubiquitination code: a signalling problem.Cell Div, 2(1): 11
CrossRef
Pubmed
Google scholar
|
[133] |
WuH, PomeroyS L, FerreiraM, TeiderN, MarianiJ, NakayamaK I, HatakeyamaS, TronV A, SaltibusL F, SpyracopoulosL, LengR P (2011). UBE4B promotes Hdm2-mediated degradation of the tumor suppressor p53.Nat Med, 17(3): 347–355
CrossRef
Pubmed
Google scholar
|
[134] |
YanQ, SunW, KujalaP, LotfiY, VidaT A, BeanA J (2005). CART: an Hrs/actinin-4/BERP/myosin V protein complex required for efficient receptor recycling.Mol Biol Cell, 16(5): 2470–2482
CrossRef
Pubmed
Google scholar
|
[135] |
YokouchiM, KondoT, HoughtonA, BartkiewiczM, HorneW C, ZhangH, YoshimuraA, BaronR (1999). Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7.J Biol Chem, 274(44): 31707–31712
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |