Estrogens, inflammation and obesity: an overview

Colette N. MILLER, Lynda M. BROWN, Srujana RAYALAM, Mary Anne DELLA-FERA, Clifton A. BAILE

PDF(261 KB)
PDF(261 KB)
Front. Biol. ›› 2012, Vol. 7 ›› Issue (1) : 40-47. DOI: 10.1007/s11515-011-1174-y
REVIEW
REVIEW

Estrogens, inflammation and obesity: an overview

Author information +
History +

Abstract

Emerging research has suggested that inflammatory stress may play a role in the development of obesity. Both the leptin and insulin receptor are sensitive to intracellular inflammatory signaling that can be stimulated through toll-like receptor 4 activation by saturated fat. Pharmacological intervention within this cascade often protects animals from becoming obese, thus highlighting inflammatory pathways as a possible site of study in the prevention of pathologic weight gain. It has been well established in animal models that females display a marked reduction in the susceptibility to weight gain on high-fat diets compared to males. In addition, it has been widely accepted that females are partially protected from inflammatory-related diseases. At the molecular level, this reduction in disease susceptibility has been suggested to be due to the anti-inflammatory properties of 17 β-estradiol. Through direct free radical scavenging, transcriptional regulation, and protein interactions, chronic exposure to estradiol can reduce systemic inflammatory stress. As the knowledge base continues to grow on the etiology of obesity, further research is needed on the precise molecular pathways that can be inhibited by estradiol. Understanding of such pathways may provide a basis for the future use of estrogen and its related compounds (daidzein, genistein, resveratrol) to prevent weight gain in peri- and post-menopausal females.

Keywords

inflammation / obesity / sex differences / estrogen / high fat diets / phytoestrogens

Cite this article

Download citation ▾
Colette N. MILLER, Lynda M. BROWN, Srujana RAYALAM, Mary Anne DELLA-FERA, Clifton A. BAILE. Estrogens, inflammation and obesity: an overview. Front Biol, 2012, 7(1): 40‒47 https://doi.org/10.1007/s11515-011-1174-y

References

[1]
Anand B K, Brobeck J R (1951). Hypothalamic control of food intake in rats and cats. Yale J Biol Med, 24(2): 123-140
Pubmed
[2]
Basterfield L, Lumley L K, Mathers J C (2009). Wheel running in female C57BL/6J mice: impact of oestrus and dietary fat and effects on sleep and body mass. Int J Obes (Lond), 33(2): 212-218
CrossRef Pubmed Google scholar
[3]
Berthoud H R, Morrison C (2008). The brain, appetite, and obesity. Annu Rev Psychol, 59(1): 55-92
CrossRef Pubmed Google scholar
[4]
Boghossian S, Lemmon K, Park M, York D A (2009). High-fat diets induce a rapid loss of the insulin anorectic response in the amygdala. Am J Physiol Regul Integr Comp Physiol, 297(5): R1302-R1311
CrossRef Pubmed Google scholar
[5]
Bryzgalova G, Lundholm L, Portwood N, Gustafsson J A, Khan A, Efendic S, Dahlman-Wright K (2008). Mechanisms of antidiabetogenic and body weight-lowering effects of estrogen in high-fat diet-fed mice. Am J Physiol Endocrinol Metab, 295(4): E904-E912
CrossRef Pubmed Google scholar
[6]
Chadwick C C, Chippari S, Matelan E, Borges-Marcucci L, Eckert A M, Keith J C Jr, Albert L M, Leathurby Y, Harris H A, Bhat R A, Ashwell M, Trybulski E, Winneker R C, Adelman S J, Steffan R J, Harnish D C (2005). Identification of pathway-selective estrogen receptor ligands that inhibit NF-kappaB transcriptional activity. Proc Natl Acad Sci USA, 102(7): 2543-2548
CrossRef Pubmed Google scholar
[7]
Charradi K, Sebai H, Elkahoui S, Ben Hassine F, Limam F, Aouani E (2011). Grape seed extract alleviates high-fat diet-induced obesity and heart dysfunction by preventing cardiac siderosis. Cardiovasc Toxicol, 11(1): 28-37
CrossRef Pubmed Google scholar
[8]
Clegg D J, Brown L M, Woods S C, Benoit S C (2006). Gonadal hormones determine sensitivity to central leptin and insulin. Diabetes, 55(4): 978-987
CrossRef Pubmed Google scholar
[9]
Clegg D J, Gotoh K, Kemp C, Wortman M D, Benoit S C, Brown L M, D’Alessio D, Tso P, Seeley R J, Woods S C (2011). Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav, 103(1): 10-16
CrossRef Pubmed Google scholar
[10]
Clegg D J, S C Woods (2004). The physiology of obesity. Clin Obstet Gynecol. 47(4): 967–979; discussion 980–961
[11]
Couse J F, Lindzey J, Grandien K, Gustafsson J A, Korach K S (1997). Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology, 138(11): 4613-4621
CrossRef Pubmed Google scholar
[12]
Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G (2011). Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology, 54(1): 133-144
CrossRef Pubmed Google scholar
[13]
Davis J E, Gabler N K, Walker-Daniels J, Spurlock M E (2008). Tlr-4 deficiency selectively protects against obesity induced by diets high in saturated fat. Obesity (Silver Spring), 16(6): 1248-1255
CrossRef Pubmed Google scholar
[14]
De Souza C T, Araujo E P, Bordin S, Ashimine R, Zollner R L, Boschero A C, Saad M J, Velloso L A (2005). Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology, 146(10): 4192-4199
CrossRef Pubmed Google scholar
[15]
Enriori P J, Evans A E, Sinnayah P, Cowley M A (2006). Leptin resistance and obesity. Obesity (Silver Spring), 14(Suppl 5): 254S-258S
CrossRef Pubmed Google scholar
[16]
Evans M J, Eckert A, Lai K, Adelman S J, Harnish D C (2001). Reciprocal antagonism between estrogen receptor and NF-kappaB activity in vivo. Circ Res, 89(9): 823-830
CrossRef Pubmed Google scholar
[17]
Fazeli M, Zarkesh-Esfahani S H, (2004). Effects of Estrogen on Leptin Signaling and Leptin-induced TNF-alpha Production. British Endocrine Societies, Brighton, UK, BioScientifica.
[18]
Ghisletti S, Meda C, Maggi A, Vegeto E (2005). 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol, 25(8): 2957-2968
CrossRef Pubmed Google scholar
[19]
Gong L, Yao F, Hockman K, Heng H H, Morton G J, Takeda K, Akira S, Low M J, Rubinstein M, MacKenzie R G (2008). Signal transducer and activator of transcription-3 is required in hypothalamic agouti-related protein/neuropeptide Y neurons for normal energy homeostasis. Endocrinology, 149(7): 3346-3354
CrossRef Pubmed Google scholar
[20]
Gonzales A M, Orlando R A (2008). Curcumin and resveratrol inhibit nuclear factor-kappaB-mediated cytokine expression in adipocytes. Nutr Metab (Lond), 5(1): 17
CrossRef Pubmed Google scholar
[21]
Hamilton K L, Lin L, Wang Y, Knowlton A A (2007). Effect of ovariectomy on cardiac gene expression: inflammation and changes in SOCS gene expression. Physiol Genomics, 32(2): 254-263
CrossRef Pubmed Google scholar
[22]
Harris H A, Albert L M, Leathurby Y, Malamas M S, Mewshaw R E, Miller C P, Kharode Y P, Marzolf J, Komm B S, Winneker R C, Frail D E, Henderson R A, Zhu Y, Keith J C Jr (2003). Evaluation of an estrogen receptor-beta agonist in animal models of human disease. Endocrinology, 144(10): 4241-4249
CrossRef Pubmed Google scholar
[23]
Haslam D W, James W P (2005). Obesity. Lancet, 366(9492): 1197-1209
CrossRef Pubmed Google scholar
[24]
Hetherington R, Ranson S (1940). Hypothalamic lesions and adiposity in the rat. Anat Rec, 78(2): 149-172
CrossRef Google scholar
[25]
Hewitt K N, Pratis K, Jones M E, Simpson E R (2003). Estrogen replacement reverses the hepatic steatosis phenotype in the male aromatase knockout mouse. Endocrinology, 145(4): 1842-1848
CrossRef Pubmed Google scholar
[26]
Hong J, Stubbins R E, Smith R R, Harvey A E, Núñez N P (2009). Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr J, 8(1): 11
CrossRef Pubmed Google scholar
[27]
Hotamisligil G S (2006). Inflammation and metabolic disorders. Nature, 444(7121): 860-867
CrossRef Pubmed Google scholar
[28]
Jayaprakasam B, Olson L K, Schutzki R E, Tai M H, Nair M G (2006). Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in Cornelian cherry (Cornus mas). J Agric Food Chem, 54(1): 243-248
CrossRef Pubmed Google scholar
[29]
Kahn B B, Flier J S (2000). Obesity and insulin resistance. J Clin Invest, 106(4): 473-481
CrossRef Pubmed Google scholar
[30]
Kalaitzidis D, Gilmore T D (2005). Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab, 16(2): 46-52
CrossRef Pubmed Google scholar
[31]
Kaneko M, Niinuma Y, Nomura Y (2003). Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull, 26(7): 931-935
CrossRef Pubmed Google scholar
[32]
Kennedy A, Martinez K, Chuang C C, LaPoint K, McIntosh M (2008). Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: mechanisms of action and implications. J Nutr, 139(1): 1-4
CrossRef Pubmed Google scholar
[33]
Kim S, Jin Y, Choi Y, Park T (2011). Resveratrol exerts anti-obesity effects via mechanisms involving down-regulation of adipogenic and inflammatory processes in mice. Biochem Pharmacol, 81(11): 1343-1351
CrossRef Pubmed Google scholar
[34]
Kleinridders A, Schenten D, Könner A C, Belgardt B F, Mauer J, Okamura T, Wunderlich F T, Medzhitov R, Brüning J C (2009). MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab, 10(4): 249-259
CrossRef Pubmed Google scholar
[35]
Kuiper G G, Lemmen J G, Carlsson B, Corton J C, Safe S H, van der Saag P T, van der Burg B, Gustafsson J A (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology, 139(10): 4252-4263
CrossRef Pubmed Google scholar
[36]
Lehrke M, Lazar M A (2004). Inflamed about obesity. Nat Med, 10(2): 126-127
CrossRef Pubmed Google scholar
[37]
Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra D E, Tsukumo D M, Anhe G, Amaral M E, Takahashi H K, Curi R, Oliveira H C, Carvalheira J B, Bordin S, Saad M J, Velloso L A (2009). Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci, 29(2): 359-370
CrossRef Pubmed Google scholar
[38]
Morgan K, Obici S, Rossetti L (2004). Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J Biol Chem, 279(30): 31139-31148
CrossRef Pubmed Google scholar
[39]
Oh-I S, Thaler J P, Ogimoto K, Wisse B E, Morton G J, Schwartz M W (2010). Central administration of interleukin-4 exacerbates hypothalamic inflammation and weight gain during high-fat feeding. Am J Physiol Endocrinol Metab, 299(1): E47-E53
CrossRef Pubmed Google scholar
[40]
Park H J, Della-Fera M A, Hausman D B, Rayalam S, Ambati S, Baile C A (2009). Genistein inhibits differentiation of primary human adipocytes. J Nutr Biochem, 20(2): 140-148
CrossRef Pubmed Google scholar
[41]
Park Y J, Jang Y M, Kwon Y H (2009). Isoflavones prevent endoplasmic reticulum stress-mediated neuronal degeneration by inhibiting tau hyperphosphorylation in SH-SY5Y cells. J Med Food, 12(3): 528-535
CrossRef Pubmed Google scholar
[42]
Poggi M, Engel D, (2011). “CD40L Deficiency Ameliorates Adipose Tissue Inflammation and Metabolic Manifestations of Obesity in Mice.” Arterioscler Thromb Vasc Biol
[43]
Posey K A, Clegg D J, Printz R L, Byun J, Morton G J, Vivekanandan-Giri A, Pennathur S, Baskin D G, Heinecke J W, Woods S C, Schwartz M W, Niswender K D (2009). Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab, 296(5): E1003-E1012
CrossRef Pubmed Google scholar
[44]
Priego T, Sánchez J, Picó C, Palou A (2009). Sex-associated differences in the leptin and ghrelin systems related with the induction of hyperphagia under high-fat diet exposure in rats. Horm Behav, 55(1): 33-40
CrossRef Pubmed Google scholar
[45]
Reaven G M (1995). Pathophysiology of insulin resistance in human disease. Physiol Rev, 75(3): 473-486
Pubmed
[46]
Rocha M, Bing C, Williams G, Puerta M (2004). Physiologic estradiol levels enhance hypothalamic expression of the long form of the leptin receptor in intact rats. J Nutr Biochem, 15(6): 328-334
CrossRef Pubmed Google scholar
[47]
Rui L, Yuan M, Frantz D, Shoelson S, White M F (2002). SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem, 277(44): 42394-42398
CrossRef Pubmed Google scholar
[48]
Schwartz M W, Sipols A J, Marks J L, Sanacora G, White J D, Scheurink A, Kahn S E, Baskin D G, Woods S C, Figlewicz D P, (1992). Inhibition of hypothalamic neuropeptide Y gene expression by insulin. Endocrinology, 130(6): 3608-3616
CrossRef Pubmed Google scholar
[49]
Shi H, Clegg D J (2009). Sex differences in the regulation of body weight. Physiol Behav, 97(2): 199-204
CrossRef Pubmed Google scholar
[50]
Stein B, Yang M X (1995). Repression of the interleukin-6 promoter by estrogen receptor is mediated by NF-kappa B and C/EBP beta. Mol Cell Biol, 15(9): 4971-4979
Pubmed
[51]
Stice J P, Knowlton A A (2008). Estrogen, NFkappaB, and the heat shock response. Mol Med, 14(7-8): 17-27
CrossRef Pubmed Google scholar
[52]
Straub R H (2007). The complex role of estrogens in inflammation. Endocr Rev, 28(5): 521-574
CrossRef Pubmed Google scholar
[53]
Suganami T, Nishida J, Ogawa Y (2005). A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol, 25(10): 2062-2068
CrossRef Pubmed Google scholar
[54]
Tsukumo D M, Carvalho-Filho M A, Carvalheira J B, Prada P O, Hirabara S M, Schenka A A, Araújo E P, Vassallo J, Curi R, Velloso L A, Saad M J (2007). Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes, 56(8): 1986-1998
CrossRef Pubmed Google scholar
[55]
Ueki K, Kondo T, Kahn C R (2004). Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol, 24(12): 5434-5446
CrossRef Pubmed Google scholar
[56]
Vegeto E, Belcredito S, Etteri S, Ghisletti S, Brusadelli A, Meda C, Krust A, Dupont S, Ciana P, Chambon P, Maggi A (2003). Estrogen receptor-mediates the brain antiinflammatory activity of estradiol. Proc Natl Acad Sci USA, 100(16): 9614-9619
CrossRef Pubmed Google scholar
[57]
Vegeto E, Belcredito S, Ghisletti S, Meda C, Etteri S, Maggi A (2006). The endogenous estrogen status regulates microglia reactivity in animal models of neuroinflammation. Endocrinology, 147(5): 2263-2272
CrossRef Pubmed Google scholar
[58]
Vegeto E, Bonincontro C, Pollio G, Sala A, Viappiani S, Nardi F, Brusadelli A, Viviani B, Ciana P, Maggi A (2001). Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia. J Neurosci, 21(6): 1809-1818
Pubmed
[59]
Vinchon M, Weill J, Delestret I, Dhellemmes P (2009). Craniopharyngioma and hypothalamic obesity in children. Childs Nerv Syst, 25(3): 347-352
CrossRef Pubmed Google scholar
[60]
Wang J, Obici S, Morgan K, Barzilai N, Feng Z, Rossetti L (2001). Overfeeding rapidly induces leptin and insulin resistance. Diabetes, 50(12): 2786-2791
CrossRef Pubmed Google scholar
[61]
Wang Y, Beydoun M A, Liang L, Caballero B, Kumanyika S K (2008). Will all Americans become overweight or obese? estimating the progression and cost of the US obesity epidemic. Obesity (Silver Spring), 16(10): 2323-2330
CrossRef Pubmed Google scholar
[62]
Wauman J, Tavernier J (2011). Leptin receptor signaling: pathways to leptin resistance. Front Biosci, 17: 2771-2793
[63]
Weisberg S P, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel R L, Ferrante A W Jr (2006). CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest, 116(1): 115-124
CrossRef Pubmed Google scholar
[64]
Wellen K E, Hotamisligil G S (2003). Obesity-induced inflammatory changes in adipose tissue. J Clin Invest, 112(12): 1785-1788
Pubmed
[65]
Wellen K E, Hotamisligil G S (2005). Inflammation, stress, and diabetes. J Clin Invest, 115(5): 1111-1119
Pubmed
[66]
Yang L, Hotamisligil G S (2008). Stressing the brain, fattening the body. Cell, 135(1): 20-22
CrossRef Pubmed Google scholar
[67]
York D, Hansen B (1998). Animal Models of Obesity. Handbook of Obesity. G. Bray, C. Bouchardand W.James. New York, Marcel Dekker, Inc.
[68]
Yu H P, Hsu J C, Hwang T L, Yen C H, Lau Y T (2008). Resveratrol attenuates hepatic injury after trauma-hemorrhage via estrogen receptor-related pathway. Shock, 30(3): 324-328
CrossRef Pubmed Google scholar
[69]
Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D (2008). Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell, 135(1): 61-73
CrossRef Pubmed Google scholar

Acknowledgments

This review was written under the financial support of USDA ARS NC06871 and the UNCG Office of Research and Economic Development New Faculty grant.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(261 KB)

Accesses

Citations

Detail

Sections
Recommended

/