The trafficking and behavior of cellulose synthase and a glimpse of potential cellulose synthesis regulators
Logan BASHLINE, Juan DU, Ying GU
The trafficking and behavior of cellulose synthase and a glimpse of potential cellulose synthesis regulators
Cellulose biosynthesis is a topic of intensive research not only due to the significance of cellulose in the integrity of plant cell walls, but also due to the potential of using cellulose, a natural carbon source, in the production of biofuels. Characterization of the composition, regulation, and trafficking of cellulose synthase complexes (CSCs) is critical to an understanding of cellulose biosynthesis as well as the characterization of additional proteins that contribute to the production of cellulose either through direct interactions with CSCs or through indirect mechanisms. In this review, a highlight of a few proteins that appear to affect cellulose biosynthesis, which includes: KORRIGAN (KOR), Cellulose Synthase-Interactive Protein 1 (CSI1), and the poplar microtubule-associated protein, PttMAP20, will accompany a description of cellulose synthase (CESA) behavior and a discussion of CESA trafficking compartments that might act in the regulation of cellulose biosynthesis.
cellulose synthesis / cellulose synthase complex (CSC) / dynamics / trafficking
[1] |
Arioli T, Peng L, Betzner A S, Burn J, Wittke W, Herth W, Camilleri C, Höfte H, Plazinski J, Birch R, Cork A, Glover J, Redmond J, Williamson R E (1998). Molecular analysis of cellulose biosynthesis in Arabidopsis. Science, 279(5351): 717-720
CrossRef
Pubmed
Google scholar
|
[2] |
Benes C H, Wu N, Elia A E H, Dharia T, Cantley L C, Soltoff S P (2005). The C2 domain of PKCδ is a phosphotyrosine binding domain. Cell, 121(2): 271-280
CrossRef
Pubmed
Google scholar
|
[3] |
Bowling A J, Brown R M Jr (2008). The cytoplasmic domain of the cellulose-synthesizing complex in vascular plants. Protoplasma, 233(1-2): 115-127
CrossRef
Pubmed
Google scholar
|
[4] |
Carroll A, Specht C D (2011). Understanding plant cellulose synthases through a comprehensive investigation of the cellulose synthase family sequences. Front Plant Genet Genomics,
CrossRef
Google scholar
|
[5] |
Collings D A, Gebbie L K, Howles P A, Hurley U A, Birch R J, Cork A H, Hocart C H, Arioli T, Williamson R E (2008). Arabidopsis dynamin-like protein DRP1A: a null mutant with widespread defects in endocytosis, cellulose synthesis, cytokinesis, and cell expansion. J Exp Bot, 59(2): 361-376
CrossRef
Pubmed
Google scholar
|
[6] |
Crowell E F, Bischoff V, Desprez T, Rolland A, Stierhof Y D, Schumacher K, Gonneau M, Höfte H, Vernhettes S (2009). Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell, 21(4): 1141-1154
CrossRef
Pubmed
Google scholar
|
[7] |
Crowell E F, Gonneau M, Stierhof Y D, Höfte H, Vernhettes S (2010). Regulated trafficking of cellulose synthases. Curr Opin Plant Biol, 13(6): 700-705
CrossRef
Pubmed
Google scholar
|
[8] |
Davletov B A, Südhof T C (1993). A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J Biol Chem, 268(35): 26386-26390
Pubmed
|
[9] |
DeBolt S, Gutierrez R, Ehrhardt D W, Somerville C (2007). Nonmotile cellulose synthase subunits repeatedly accumulate within localized regions at the plasma membrane in Arabidopsis hypocotyl cells following 2,6-dichlorobenzonitrile treatment. Plant Physiol, 145(2): 334-338
CrossRef
Pubmed
Google scholar
|
[10] |
Delmer D P (1999). Cellulose biosynthesis: Exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol, 50(1): 245-276
CrossRef
Pubmed
Google scholar
|
[11] |
Desprez T, Juraniec M, Crowell E F, Jouy H, Pochylova Z, Parcy F, Höfte H, Gonneau M, Vernhettes S (2007). Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA, 104(39): 15572-15577
CrossRef
Pubmed
Google scholar
|
[12] |
Dettmer J, Hong-Hermesdorf A, Stierhof Y D, Schumacher K (2006). Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell, 18(3): 715-730
CrossRef
Pubmed
Google scholar
|
[13] |
Doblin M S, Kurek I, Jacob-Wilk D, Delmer D P (2002). Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol, 43(12): 1407-1420
CrossRef
Pubmed
Google scholar
|
[14] |
Gardiner J C, Taylor N G, Turner S R (2003). Control of cellulose synthase complex localization in developing xylem. Plant Cell, 15(8): 1740-1748
CrossRef
Pubmed
Google scholar
|
[15] |
Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A, Sampathkumar A, Baskin T I, Persson S, Somerville C R (2010). Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc Natl Acad Sci USA, 107(29): 12866-12871
CrossRef
Pubmed
Google scholar
|
[16] |
Gu Y, Somerville C (2010). Cellulose synthase interacting protein: a new factor in cellulose synthesis. Plant Signal Behav, 5(12): 1571-1574
CrossRef
Pubmed
Google scholar
|
[17] |
Gutierrez R, Lindeboom J J, Paredez A R, Emons A M C, Ehrhardt D W (2009). Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol, 11(7): 797-806
CrossRef
Pubmed
Google scholar
|
[18] |
Haigler C H, Brown R M Jr (1986). Transport of rosettes from the Golgi-apparatus to the plasma-membrane in isolated mesophyll-cells of Zinnia elegans during differentiation to tracheary elements in suspension-culture. Protoplasma, 134(2-3): 111-120
CrossRef
Google scholar
|
[19] |
Kimura S, Laosinchai W, Itoh T, Cui X, Linder C R, Brown R M Jr (1999). Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell, 11(11): 2075-2086
CrossRef
Pubmed
Google scholar
|
[20] |
Konopka C A, Bednarek S Y (2008). Comparison of the dynamics and functional redundancy of the Arabidopsis dynamin-related isoforms DRP1A and DRP1C during plant development. Plant Physiol, 147(4): 1590-1602
CrossRef
Pubmed
Google scholar
|
[21] |
Lane D R, Wiedemeier A, Peng L, Höfte H, Vernhettes S, Desprez T, Hocart C H, Birch R J, Baskin T I, Burn J E, Arioli T, Betzner A S, Williamson R E (2001). Temperature-sensitive alleles of RSW2 link the KORRIGAN endo-1,4-β-glucanase to cellulose synthesis and cytokinesis in Arabidopsis. Plant Physiol, 126(1): 278-288
CrossRef
Pubmed
Google scholar
|
[22] |
Mølhøj M, Pagant S, Höfte H (2002). Towards understanding the role of membrane-bound endo-β-1,4-glucanases in cellulose biosynthesis. Plant Cell Physiol, 43(12): 1399-1406
CrossRef
Pubmed
Google scholar
|
[23] |
Mueller S C, Brown R M Jr (1980). Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J Cell Biol, 84(2): 315-326
CrossRef
Pubmed
Google scholar
|
[24] |
Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Höfte H (1998). A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J, 17(19): 5563-5576
CrossRef
Pubmed
Google scholar
|
[25] |
Pagant S, Bichet A, Sugimoto K, Lerouxel O, Desprez T, McCann M, Lerouge P, Vernhettes S, Höfte H (2002). KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis. Plant Cell, 14(9): 2001-2013
CrossRef
Pubmed
Google scholar
|
[26] |
Paredez A R, Somerville C R, Ehrhardt D W (2006). Visualization of cellulose synthase demonstrates functional association with microtubules. Science, 312(5779): 1491-1495
CrossRef
Pubmed
Google scholar
|
[27] |
Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville C R (2007). Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci USA, 104(39): 15566-15571
CrossRef
Pubmed
Google scholar
|
[28] |
Rajangam A S, Kumar M, Aspeborg H, Guerriero G, Arvestad L, Pansri P, Brown C J L, Hober S, Blomqvist K, Divne C, Ezcurra I, Mellerowicz E, Sundberg B, Bulone V, Teeri T T (2008). MAP20, a microtubule-associated protein in the secondary cell walls of hybrid aspen, is a target of the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile. Plant Physiol, 148(3): 1283-1294
CrossRef
Pubmed
Google scholar
|
[29] |
Sato S, Kato T, Kakegawa K, Ishii T, Liu Y G, Awano T, Takabe K, Nishiyama Y, Kuga S, Sato S, Nakamura Y, Tabata S, Shibata D (2001). Role of the putative membrane-bound endo-1,4-β-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana. Plant Cell Physiol, 42(3): 251-263
CrossRef
Pubmed
Google scholar
|
[30] |
Scheible W R, Eshed R, Richmond T, Delmer D, Somerville C (2001). Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in ArabidopsisIxr1 mutants. Proc Natl Acad Sci USA, 98(18): 10079-10084
CrossRef
Pubmed
Google scholar
|
[31] |
Schindelman G, Morikami A, Jung J, Baskin T I, Carpita N C, Derbyshire P, McCann M C, Benfey P N (2001). COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis. Genes Dev, 15(9): 1115-1127
CrossRef
Pubmed
Google scholar
|
[32] |
Somerville C (2006). Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol, 22(1): 53-78
CrossRef
Pubmed
Google scholar
|
[33] |
Szyjanowicz P M, McKinnon I, Taylor N G, Gardiner J, Jarvis M C, Turner S R (2004). The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana. Plant J, 37(5): 730-740
CrossRef
Pubmed
Google scholar
|
[34] |
Taylor N G, Howells R M, Huttly A K, Vickers K, Turner S R (2003). Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA, 100(3): 1450-1455
CrossRef
Pubmed
Google scholar
|
[35] |
Taylor N G, Laurie S, Turner S R (2000). Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell, 12(12): 2529-2540
Pubmed
|
[36] |
Taylor N G, Scheible W R, Cutler S, Somerville C R, Turner S R (1999). The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell, 11(5): 769-780
Pubmed
|
[37] |
Tewari R, Bailes E, Bunting K A, Coates J C (2010). Armadillo-repeat protein functions: questions for little creatures. Trends Cell Biol, 20(8): 470-481
CrossRef
Pubmed
Google scholar
|
[38] |
Timmers J, Vernhettes S, Desprez T, Vincken J P, Visser R G F, Trindade L M (2009). Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall. FEBS Lett, 583(6): 978-982
CrossRef
Pubmed
Google scholar
|
[39] |
Wang J, Elliott J E, Williamson R E (2008). Features of the primary wall CESA complex in wild type and cellulose-deficient mutants of Arabidopsis thaliana. J Exp Bot, 59(10): 2627-2637
CrossRef
Pubmed
Google scholar
|
[40] |
Wightman R, Marshall R, Turner S R (2009). A cellulose synthase-containing compartment moves rapidly beneath sites of secondary wall synthesis. Plant Cell Physiol, 50(3): 584-594
CrossRef
Pubmed
Google scholar
|
[41] |
Wightman R, Turner S (2010). Trafficking of the cellulose synthase complex in developing xylem vessels. Biochem Soc Trans, 38(3): 755-760
CrossRef
Pubmed
Google scholar
|
[42] |
Wightman R, Turner S R (2008). The roles of the cytoskeleton during cellulose deposition at the secondary cell wall. Plant J, 54(5): 794-805
CrossRef
Pubmed
Google scholar
|
[43] |
Xiong G, Li R, Qian Q, Song X, Liu X, Yu Y, Zeng D, Wan J, Li J, Zhou Y (2010). The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis. Plant J, 64(1): 56-70
Pubmed
|
[44] |
Zhong R, Burk D H, Morrison W H 3rd, Ye Z H (2004). FRAGILE FIBER3, an Arabidopsis gene encoding a type II inositol polyphosphate 5-phosphatase, is required for secondary wall synthesis and actin organization in fiber cells. Plant Cell, 16(12): 3242-3259
CrossRef
Pubmed
Google scholar
|
[45] |
Zhong R, Kays S J, Schroeder B P, Ye Z H (2002). Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene. Plant Cell, 14(1): 165-179
CrossRef
Pubmed
Google scholar
|
[46] |
Zuo J R, Niu Q W, Nishizawa N, Wu Y, Kost B, Chua N H (2000). KORRIGAN, an Arabidopsis endo-1,4-beta-glucanase, localizes to the cell plate by polarized targeting and is essential for cytokinesis. Plant Cell, 12(7): 1137-1152
Pubmed
|
/
〈 | 〉 |