Molecular mechanisms of transcription and replication of the influenza A virus genome
Shijian ZHANG, Tetsuya TOYODA
Molecular mechanisms of transcription and replication of the influenza A virus genome
Influenza A virus is one of the major pathogens that pose a large threat to human health worldwide and has caused pandemics. Influenza A virus is the Orthomyxoviridae prototype, and has 8 segmented negative-sense single-stranded RNA (vRNA) as its genome. Influenza virus RNA polymerase (RdRp) consists of three subunits PB2, PB1 and PA, and catalyzes both transcription and replication. Recently, intensive biochemical and structural analysis of its RdRp has been performed. In this paper, we review the details from the biochemical analysis of the purified influenza virus RdRp and the classical ribonucleoprotein complex, as well as piece together their structures to form an overall picture.
influenza virus / RNA polymerase / ribonucleoprotein complex / transcription / replication
[1] |
Almond J W (1977). A single gene determines the host range of influenza virus. Nature, 270(5638): 617–618
CrossRef
Pubmed
Google scholar
|
[2] |
Area E, Martín-Benito J, Gastaminza P, Torreira E, Valpuesta J M, Carrascosa J L, Ortín J (2004). 3D structure of the influenza virus polymerase complex: localization of subunit domains. Proc Natl Acad Sci USA, 101(1): 308–313
CrossRef
Pubmed
Google scholar
|
[3] |
Argos P (1988). A sequence motif in many polymerases. Nucleic Acids Res, 16(21): 9909–9916
CrossRef
Pubmed
Google scholar
|
[4] |
Ball L A (2007 ). Virus replication strategies, 5th ed. Lippincott Williams & Wilkins
|
[5] |
Baudin F, Bach C, Cusack S, Ruigrok R W (1994). Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. EMBO J, 13(13): 3158–3165
Pubmed
|
[6] |
Beaton A R, Krug R M (1981). Selected host cell capped RNA fragments prime influenza viral RNA transcription in vivo. Nucleic Acids Res, 9(17): 4423–4436
CrossRef
Pubmed
Google scholar
|
[7] |
Beaton A R, Krug R M (1986). Transcription antitermination during influenza viral template RNA synthesis requires the nucleocapsid protein and the absence of a 5′ capped end. Proc Natl Acad Sci USA, 83(17): 6282–6286
CrossRef
Pubmed
Google scholar
|
[8] |
Beigel J, Bray M (2008). Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Res, 78(1): 91–102
CrossRef
Pubmed
Google scholar
|
[9] |
Biswas S K, Nayak D P (1994). Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. J Virol, 68(3): 1819–1826
Pubmed
|
[10] |
Blaas D, Patzelt E, Kuechler E (1982a). Cap-recognizing protein of influenza virus. Virology, 116(1): 339–348
CrossRef
Pubmed
Google scholar
|
[11] |
Blaas D, Patzelt E, Kuechler E (1982b). Identification of the cap binding protein of influenza virus. Nucleic Acids Res, 10(15): 4803–4812
CrossRef
Pubmed
Google scholar
|
[12] |
Bouloy M, Plotch S J, Krug R M (1978). Globin mRNAs are primers for the transcription of influenza viral RNA in vitro. Proc Natl Acad Sci USA, 75(10): 4886–4890
CrossRef
Pubmed
Google scholar
|
[13] |
Bouloy M, Plotch S J, Krug R M (1980). Both the 7-methyl and the 2′-O-methyl groups in the cap of mRNA strongly influence its ability to act as primer for influenza virus RNA transcription. Proc Natl Acad Sci USA, 77(7): 3952–3956
CrossRef
Pubmed
Google scholar
|
[14] |
Bullido R, Gómez-Puertas P, Albo C, Portela A (2000). Several protein regions contribute to determine the nuclear and cytoplasmic localization of the influenza A virus nucleoprotein. J Gen Virol, 81(Pt 1): 135–142
Pubmed
|
[15] |
Chan A Y, Vreede F T, Smith M, Engelhardt O G, Fodor E (2006). Influenza virus inhibits RNA polymerase II elongation. Virology, 351(1): 210–217
CrossRef
Pubmed
Google scholar
|
[16] |
Chen G W, Chang S C, Mok C K, Lo Y L, Kung Y N, Huang J H, Shih Y H, Wang J Y, Chiang C, Chen C J, Shih S R (2006). Genomic signatures of human versus avian influenza A viruses. Emerg Infect Dis, 12(9): 1353–1360
Pubmed
|
[17] |
Chung T D, Cianci C, Hagen M, Terry B, Matthews J T, Krystal M, Colonno R J (1994). Biochemical studies on capped RNA primers identify a class of oligonucleotide inhibitors of the influenza virus RNA polymerase. Proc Natl Acad Sci USA, 91(6): 2372–2376
CrossRef
Pubmed
Google scholar
|
[18] |
Coloma R, Valpuesta J M, Arranz R, Carrascosa J L, Ortín J, Martín-Benito J (2009). The structure of a biologically active influenza virus ribonucleoprotein complex. PLoS Pathog, 5(6): e1000491
CrossRef
Pubmed
Google scholar
|
[19] |
Crépin T, Dias A, Palencia A, Swale C, Cusack S, Ruigrok R W (2010). Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit. J Virol, 84(18): 9096–9104
CrossRef
Pubmed
Google scholar
|
[20] |
Cros J F, García-Sastre A, Palese P (2005). An unconventional NLS is critical for the nuclear import of the influenza A virus nucleoprotein and ribonucleoprotein. Traffic, 6(3): 205–213
CrossRef
Pubmed
Google scholar
|
[22] |
Deng T, Sharps J, Fodor E, Brownlee G G (2005). In vitro assembly of PB2 with a PB1-PA dimer supports a new model of assembly of influenza A virus polymerase subunits into a functional trimeric complex. J Virol, 79(13): 8669–8674
CrossRef
Pubmed
Google scholar
|
[21] |
Deng T, Engelhardt O G, Thomas B, Akoulitchev A V, Brownlee G G, Fodor E (2006a). Role of ran binding protein 5 in nuclear import and assembly of the influenza virus RNA polymerase complex. J Virol, 80(24): 11911–11919
CrossRef
Pubmed
Google scholar
|
[23] |
Deng T, Sharps J L, Brownlee G G (2006b). Role of the influenza virus heterotrimeric RNA polymerase complex in the initiation of replication. J Gen Virol, 87(Pt 11): 3373–3377
CrossRef
Pubmed
Google scholar
|
[24] |
Deng T, Vreede F T, Brownlee G G (2006c). Different de novo initiation strategies are used by influenza virus RNA polymerase on its cRNA and viral RNA promoters during viral RNA replication. J Virol, 80(5): 2337–2348
CrossRef
Pubmed
Google scholar
|
[25] |
Deyde V M, Xu X, Bright R A, Shaw M, Smith C B, Zhang Y, Shu Y, Gubareva L V, Cox N J, Klimov A I (2007). Surveillance of resistance to adamantanes among influenza A(H3N2) and A(H1N1) viruses isolated worldwide. J Infect Dis, 196(2): 249–257
CrossRef
Pubmed
Google scholar
|
[26] |
Dias A, Bouvier D, Crépin T, McCarthy A A, Hart D J, Baudin F, Cusack S, Ruigrok R W (2009). The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature, 458(7240): 914–918
CrossRef
Pubmed
Google scholar
|
[27] |
Duan S, Boltz D A, Seiler P, Li J, Bragstad K, Nielsen L P, Webby R J, Webster R G, Govorkova E A (2010). Oseltamivir-resistant pandemic H1N1/2009 influenza virus possesses lower transmissibility and fitness in ferrets. PLoS Pathog, 6(7): e1001022
CrossRef
Pubmed
Google scholar
|
[28] |
Duijsings D, Kormelink R, Goldbach R (2001). In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements. EMBO J, 20(10): 2545–2552
CrossRef
Pubmed
Google scholar
|
[29] |
Engelhardt O G, Smith M, Fodor E (2005). Association of the influenza A virus RNA-dependent RNA polymerase with cellular RNA polymerase II. J Virol, 79(9): 5812–5818
CrossRef
Pubmed
Google scholar
|
[30] |
Fechter P, Mingay L, Sharps J, Chambers A, Fodor E, Brownlee G G (2003). Two aromatic residues in the PB2 subunit of influenza A RNA polymerase are crucial for cap binding. J Biol Chem, 278(22): 20381–20388
CrossRef
Pubmed
Google scholar
|
[31] |
Flick R, Hobom G (1999). Interaction of influenza virus polymerase with viral RNA in the ‘corkscrew’ conformation. J Gen Virol, 80(Pt 10): 2565–2572
Pubmed
|
[32] |
Fodor E, Brownlee G (2002). Influenza virus replication. In: Potter C, ed. Influenza. Elsevier, Amsterdom, pp. 1–29
|
[33] |
Fodor E, Mikulasova A, Mingay L J, Poon L L, Brownlee G G (2000). Messenger RNAs that are not synthesized by RNA polymerase II can be 3′ end cleaved and polyadenylated. EMBO Rep, 1(6): 513–518
Pubmed
|
[34] |
Fodor E, Palese P, Brownlee G G, García-Sastre A (1998). Attenuation of influenza A virus mRNA levels by promoter mutations. J Virol, 72(8): 6283–6290
Pubmed
|
[35] |
Fodor E, Pritlove D C, Brownlee G G (1994). The influenza virus panhandle is involved in the initiation of transcription. J Virol, 68(6): 4092–4096
Pubmed
|
[36] |
Fodor E, Smith M (2004). The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J Virol, 78(17): 9144–9153
CrossRef
Pubmed
Google scholar
|
[37] |
Furuta Y, Takahashi K, Fukuda Y, Kuno M, Kamiyama T, Kozaki K, Nomura N, Egawa H, Minami S, Watanabe Y, Narita H, Shiraki K (2002). In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob Agents Chemother, 46(4): 977–981
CrossRef
Pubmed
Google scholar
|
[38] |
Furuta Y, Takahashi K, Kuno-Maekawa M, Sangawa H, Uehara S, Kozaki K, Nomura N, Egawa H, Shiraki K (2005). Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother, 49(3): 981–986
CrossRef
Pubmed
Google scholar
|
[39] |
Gabriel G, Dauber B, Wolff T, Planz O, Klenk H D, Stech J (2005). The viral polymerase mediates adaptation of an avian influenza virus to a mammalian host. Proc Natl Acad Sci USA, 102(51): 18590–18595
CrossRef
Pubmed
Google scholar
|
[40] |
Gabriel G, Herwig A, Klenk H D (2008). Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog, 4(2): e11
CrossRef
Pubmed
Google scholar
|
[41] |
Garcin D, Kolakofsky D (1992). Tacaribe arenavirus RNA synthesis in vitro is primer dependent and suggests an unusual model for the initiation of genome replication. J Virol, 66(3): 1370–1376
Pubmed
|
[42] |
Garcin D, Lezzi M, Dobbs M, Elliott R M, Schmaljohn C, Kang C Y, Kolakofsky D (1995). The 5′ ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis. J Virol, 69(9): 5754–5762
Pubmed
|
[43] |
González S, Zürcher T, Ortín J (1996). Identification of two separate domains in the influenza virus PB1 protein involved in the interaction with the PB2 and PA subunits: a model for the viral RNA polymerase structure. Nucleic Acids Res, 24(22): 4456–4463
CrossRef
Pubmed
Google scholar
|
[44] |
Guilligay D, Tarendeau F, Resa-Infante P, Coloma R, Crepin T, Sehr P, Lewis J, Ruigrok R W, Ortin J, Hart D J, Cusack S (2008). The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat Struct Mol Biol, 15(5): 500–506
CrossRef
Pubmed
Google scholar
|
[45] |
Gutiérrez R A, Naughtin M J, Horm S V, San S, Buchy P (2009). A(H5N1) virus evolution in South East Asia. Viruses, 1(3): 335–361
CrossRef
Google scholar
|
[46] |
Hagen M, Chung T D, Butcher J A, Krystal M (1994). Recombinant influenza virus polymerase: requirement of both 5′ and 3′ viral ends for endonuclease activity. J Virol, 68(3): 1509–1515
Pubmed
|
[47] |
Hankins R W, Nagata K, Bucher D J, Popple S, Ishihama A (1989). Monoclonal antibody analysis of influenza virus matrix protein epitopes involved in transcription inhibition. Virus Genes, 3(2): 111–126
CrossRef
Pubmed
Google scholar
|
[48] |
Hao L, Sakurai A, Watanabe T, Sorensen E, Nidom C A, Newton M A, Ahlquist P, Kawaoka Y (2008). Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature, 454(7206): 890–893
CrossRef
Pubmed
Google scholar
|
[49] |
Hatta M, Gao P, Halfmann P, Kawaoka Y (2001). Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science, 293(5536): 1840–1842
|
[50] |
Hauge S H, Dudman S, Borgen K, Lackenby A, Hungnes O (2009). Oseltamivir-resistant influenza viruses A (H1N1), Norway, 2007-08. Emerg Infect Dis, 15: 155–162
|
[51] |
Hayden F (2009). Developing new antiviral agents for influenza treatment: what does the future hold? Clin Infect Dis, 48(Suppl 1): S3–S13
CrossRef
Pubmed
Google scholar
|
[52] |
He X, Zhou J, Bartlam M, Zhang R, Ma J, Lou Z, Li X, Li J, Joachimiak A, Zeng Z, Ge R, Rao Z, Liu Y (2008). Crystal structure of the polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus. Nature, 454(7208): 1123–1126
CrossRef
Pubmed
Google scholar
|
[53] |
Herfst S, Chutinimitkul S, Ye J, de Wit E, Munster V J, Schrauwen E J, Bestebroer T M, Jonges M, Meijer A, Koopmans M, Rimmelzwaan G F, Osterhaus A D, Perez D R, Fouchier R A (2010). Introduction of virulence markers in PB2 of pandemic swine-origin influenza virus does not result in enhanced virulence or transmission. J Virol, 84(8): 3752–3758
CrossRef
Pubmed
Google scholar
|
[54] |
Honda A, Endo A, Mizumoto K, Ishihama A (2001). Differential roles of viral RNA and cRNA in functional modulation of the influenza virus RNA polymerase. J Biol Chem, 276(33): 31179–31185
CrossRef
Pubmed
Google scholar
|
[55] |
Honda A, Mizumoto K, Ishihama A (1999). Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase. Genes Cells, 4(8): 475–485
CrossRef
Pubmed
Google scholar
|
[56] |
Honda A, Mizumoto K, Ishihama A (2002). Minimum molecular architectures for transcription and replication of the influenza virus. Proc Natl Acad Sci USA, 99(20): 13166–13171
CrossRef
Pubmed
Google scholar
|
[57] |
Honda A, Mukaigawa J, Yokoiyama A, Kato A, Ueda S, Nagata K, Krystal M, Nayak D P, Ishihama A (1990). Purification and molecular structure of RNA polymerase from influenza virus A/PR8. J Biochem, 107(4): 624–628
Pubmed
|
[58] |
Honda A, Okamoto T, Ishihama A (2007). Host factor Ebp1: selective inhibitor of influenza virus transcriptase. Genes Cells, 12(2): 133–142
CrossRef
Pubmed
Google scholar
|
[59] |
Honda A, Uéda K, Nagata K, Ishihama A (1988). RNA polymerase of influenza virus: role of NP in RNA chain elongation. J Biochem, 104(6): 1021–1026
Pubmed
|
[60] |
Huarte M, Sanz-Ezquerro J J, Roncal F, Ortín J, Nieto A (2001). PA subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family of transcriptional activators. J Virol, 75(18): 8597–8604
CrossRef
Pubmed
Google scholar
|
[61] |
Huiet L, Feldstein P A, Tsai J H, Falk B W (1993). The maize stripe virus major noncapsid protein messenger RNA transcripts contain heterogeneous leader sequences at their 5′ termini. Virology, 197(2): 808–812
CrossRef
Pubmed
Google scholar
|
[62] |
Hurt A C, Ho H T, Barr I (2006). Resistance to anti-influenza drugs: adamantanes and neuraminidase inhibitors. Expert Rev Anti Infect Ther, 4(5): 795–805
CrossRef
Pubmed
Google scholar
|
[63] |
Ishihama A, Nagata K (1988). Viral RNA polymerases. CRC Crit Rev Biochem, 23(1): 27–76
CrossRef
Pubmed
Google scholar
|
[64] |
Jiang H, Zhang S, Wang Q, Wang J, Geng L, Toyoda T (2010). Influenza virus genome C4 promoter/origin attenuates its transcription and replication activity by the low polymerase recognition activity. Virology, 408(2): 190–196
CrossRef
Pubmed
Google scholar
|
[65] |
Jin H, Elliott R M (1993a). Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus. J Virol, 67(3): 1396–1404
Pubmed
|
[66] |
Jin H, Elliott R M (1993b). Non-viral sequences at the 5′ ends of Dugbe nairovirus S mRNAs. J Gen Virol, 74(Pt 10): 2293–2297
CrossRef
Pubmed
Google scholar
|
[67] |
Kao C C, Singh P, Ecker D J (2001). De novo initiation of viral RNA-dependent RNA synthesis. Virology, 287(2): 251–260
CrossRef
Pubmed
Google scholar
|
[68] |
Kao C C, Sun J H (1996). Initiation of minus-strand RNA synthesis by the brome mosaicvirus RNA-dependent RNA polymerase: use of oligoribonucleotide primers. J Virol, 70(10): 6826–6830
Pubmed
|
[69] |
Kao R Y, Yang D, Lau L S, Tsui W H, Hu L, Dai J, Chan M P, Chan C M, Wang P, Zheng B J, Sun J, Huang J D, Madar J, Chen G, Chen H, Guan Y, Yuen K Y (2010). Identification of influenza A nucleoprotein as an antiviral target. Nat Biotechnol, 28(6): 600–605
CrossRef
Pubmed
Google scholar
|
[70] |
Karlas A, Machuy N, Shin Y, Pleissner K P, Artarini A, Heuer D, Becker D, Khalil H, Ogilvie L A, Hess S, Mäurer A P, Müller E, Wolff T, Rudel T, Meyer T F (2010). Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature, 463(7282): 818–822
CrossRef
Pubmed
Google scholar
|
[71] |
Kashiwagi T, Leung B W, Deng T, Chen H, Brownlee G G (2009). The N-terminal region of the PA subunit of the RNA polymerase of influenza A/HongKong/156/97 (H5N1) influences promoter binding. PLoS One, 4(5): e5473
CrossRef
Pubmed
Google scholar
|
[72] |
Kawaguchi A, Nagata K (2007). De novo replication of the influenza virus RNA genome is regulated by DNA replicative helicase, MCM. EMBO J, 26(21): 4566–4575
CrossRef
Pubmed
Google scholar
|
[73] |
Kawakami K, Mizumoto K, Ishihama A (1983). RNA polymerase of influenza virus. IV. Catalytic properties of the capped RNA endonuclease associated with the RNA polymerase. Nucleic Acids Res, 11(11): 3637–3649
CrossRef
Pubmed
Google scholar
|
[74] |
Kiso M, Shinya K, Shimojima M, Takano R, Takahashi K, Katsura H, Kakugawa S, Le M T, Yamashita M, Furuta Y, Ozawa M, Kawaoka Y (2010). Characterization of oseltamivir-resistant 2009 H1N1 pandemic influenza A viruses. PLoS Pathog, 6(8): e1001079
CrossRef
Pubmed
Google scholar
|
[75] |
Kobayashi M, Toyoda T, Ishihama A (1996). Influenza virus PB1 protein is the minimal and essential subunit of RNA polymerase. Arch Virol, 141(3-4): 525–539
CrossRef
Pubmed
Google scholar
|
[76] |
König R, Stertz S, Zhou Y, Inoue A, Hoffmann H H, Bhattacharyya S, Alamares J G, Tscherne D M, Ortigoza M B, Liang Y, Gao Q, Andrews S E, Bandyopadhyay S, De Jesus P, Tu B P, Pache L, Shih C, Orth A, Bonamy G, Miraglia L, Ideker T, García-Sastre A, Young J A, Palese P, Shaw M L, Chanda S K (2010). Human host factors required for influenza virus replication. Nature, 463(7282): 813–817
CrossRef
Pubmed
Google scholar
|
[77] |
Kormelink R, van Poelwijk F, Peters D, Goldbach R (1992). Non-viral heterogeneous sequences at the 5′ ends of tomato spotted wilt virus mRNAs. J Gen Virol, 73(8): 2125–2128
CrossRef
Pubmed
Google scholar
|
[78] |
Kuzuhara T, Kise D, Yoshida H, Horita T, Murazaki Y, Nishimura A, Echigo N, Utsunomiya H, Tsuge H(2009a). Structural basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue. J Biol Chem, 284(22): 6855–6860
|
[79] |
Kuzuhara T, Kise D, Yoshida H, Horita T, Murazaki Y, Nishimura A, Echigo N, Utsunomiya H, Tsuge H (2009b). Structural basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue. J Biol Chem, 284(11): 6855–6860
CrossRef
Pubmed
Google scholar
|
[80] |
Lackenby A, Thompson C I, Democratis J (2008). The potential impact of neuraminidase inhibitor resistant influenza. Curr Opin Infect Dis, 21(6): 626–638
CrossRef
Pubmed
Google scholar
|
[81] |
Leahy M B, Dobbyn H C, Brownlee G G (2001a). Hairpin loop structure in the 3′ arm of the influenza A virus virion RNA promoter is required for endonuclease activity. J Virol, 75(15): 7042–7049
CrossRef
Pubmed
Google scholar
|
[82] |
Leahy M B, Pritlove D C, Poon L L, Brownlee G G (2001b). Mutagenic analysis of the 5′ arm of the influenza A virus virion RNA promoter defines the sequence requirements for endonuclease activity. J Virol, 75(1): 134–142
CrossRef
Pubmed
Google scholar
|
[83] |
Li M L, Rao P, Krug R M (2001). The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. EMBO J, 20(8): 2078–2086
CrossRef
Pubmed
Google scholar
|
[84] |
Li X, Palese P (1994). Characterization of the polyadenylation signal of influenza virus RNA. J Virol, 68(2): 1245–1249
Pubmed
|
[85] |
Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster R G, Matsuoka Y, Yu K (2005). Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol, 79(18): 12058–12064
CrossRef
Pubmed
Google scholar
|
[86] |
Luo G, Hamatake R K, Mathis D M, Racela J, Rigat K L, Lemm J, Colonno R J (2000). De novo initiation of RNA synthesis by the RNA-dependent RNA polymerase (NS5B) of hepatitis C virus. J Virol, 74(2): 851–863
CrossRef
Pubmed
Google scholar
|
[87] |
Luo G X, Luytjes W, Enami M, Palese P (1991). The polyadenylation signal of influenza virus RNA involves a stretch of uridines followed by the RNA duplex of the panhandle structure. J Virol, 65(6): 2861–2867
Pubmed
|
[88] |
Mark G E, Taylor J M, Broni B, Krug R M (1979). Nuclear accumulation of influenza viral RNA transcripts and the effects of cycloheximide, actinomycin D, and alpha-amanitin. J Virol, 29(2): 744–752
Pubmed
|
[89] |
Martin K, Helenius A (1991). Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell, 67(1): 117–130
CrossRef
Pubmed
Google scholar
|
[90] |
Massin P, van der Werf S, Naffakh N (2001). Residue 627 of PB2 is a determinant of cold sensitivity in RNA replication of avian influenza viruses. J Virol, 75(11): 5398–5404
CrossRef
Pubmed
Google scholar
|
[91] |
Mayer D, Molawi K, Martínez-Sobrido L, Ghanem A, Thomas S, Baginsky S, Grossmann J, García-Sastre A, Schwemmle M (2007). Identification of cellular interaction partners of the influenza virus ribonucleoprotein complex and polymerase complex using proteomic-based approaches. J Proteome Res, 6(2): 672–682
CrossRef
Pubmed
Google scholar
|
[92] |
Mehle A, Doudna J A (2008). An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase. Cell Host Microbe, 4(2): 111–122
CrossRef
Pubmed
Google scholar
|
[93] |
Momose F, Basler C F, O’Neill R E, Iwamatsu A, Palese P, Nagata K (2001). Cellular splicing factor RAF-2p48/NPI-5/BAT1/UAP56 interacts with the influenza virus nucleoprotein and enhances viral RNA synthesis. J Virol, 75(4): 1899–1908
CrossRef
Pubmed
Google scholar
|
[94] |
Momose F, Handa H, Nagata K (1996). Identification of host factors that regulate the influenza virus RNA polymerase activity. Biochimie, 78(11-12): 1103–1108
CrossRef
Pubmed
Google scholar
|
[95] |
Momose F, Naito T, Yano K, Sugimoto S, Morikawa Y, Nagata K (2002). Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis. J Biol Chem, 277(47): 45306–45314
CrossRef
Pubmed
Google scholar
|
[96] |
Monsalvo A C, Batalle J P, Lopez M F, Krause J C, Klemenc J, Hernandez J Z, Maskin B, Bugna J, Rubinstein C, Aguilar L, Dalurzo L, Libster R, Savy V, Baumeister E, Aguilar L, Cabral G, Font J, Solari L, Weller K P, Johnson J, Echavarria M, Edwards K M, Chappell J D, Crowe J E Jr, Williams J V, Melendi G A, Polack F P (2011). Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat Med, 17(2): 195–199
CrossRef
Pubmed
Google scholar
|
[97] |
Moscona A (2009). Global transmission of oseltamivir-resistant influenza. N Engl J Med, 360(10): 953–956
CrossRef
Pubmed
Google scholar
|
[98] |
Moss R B, Davey R T, Steigbigel R T, Fang F (2010). Targeting pandemic influenza: a primer on influenza antivirals and drug resistance. J Antimicrob Chemother, 65(6): 1086–1093
CrossRef
Pubmed
Google scholar
|
[99] |
Nagata K, Kawaguchi A, Naito T (2008). Host factors for replication and transcription of the influenza virus genome. Rev Med Virol, 18(4): 247–260
CrossRef
Pubmed
Google scholar
|
[100] |
Naito T, Kiyasu Y, Sugiyama K, Kimura A, Nakano R, Matsukage A, Nagata K (2007a). An influenza virus replicon system in yeast identified Tat-SF1 as a stimulatory host factor for viral RNA synthesis. Proc Natl Acad Sci USA, 104(46): 18235–18240
CrossRef
Pubmed
Google scholar
|
[101] |
Naito T, Momose F, Kawaguchi A, Nagata K (2007b). Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol, 81(3): 1339–1349
CrossRef
Pubmed
Google scholar
|
[102] |
Nakagawa Y, Oda K, Nakada S (1996). The PB1 subunit alone can catalyze cRNA synthesis, and the PA subunit in addition to the PB1 subunit is required for viral RNA synthesis in replication of the influenza virus genome. J Virol, 70(9): 6390–6394
Pubmed
|
[103] |
Neumann G, Castrucci M R, Kawaoka Y (1997). Nuclear import and export of influenza virus nucleoprotein. J Virol, 71(12): 9690–9700
Pubmed
|
[104] |
Neumann G, Hobom G (1995). Mutational analysis of influenza virus promoter elements in vivo. J Gen Virol, 76(7): 1709–1717
CrossRef
Pubmed
Google scholar
|
[105] |
Newcomb L L, Kuo R L, Ye Q, Jiang Y, Tao Y J, Krug R M (2009). Interaction of the influenza a virus nucleocapsid protein with the viral RNA polymerase potentiates unprimed viral RNA replication. J Virol, 83(1): 29–36
CrossRef
Pubmed
Google scholar
|
[106] |
O’Neill R E, Jaskunas R, Blobel G, Palese P, Moroianu J (1995). Nuclear import of influenza virus RNA can be mediated by viral nucleoprotein and transport factors required for protein import. J Biol Chem, 270(39): 22701–22704
CrossRef
Pubmed
Google scholar
|
[107] |
O’Neill R E, Palese P (1995). NPI-1, the human homolog of SRP-1, interacts with influenza virus nucleoprotein. Virology, 206(1): 116–125
CrossRef
Pubmed
Google scholar
|
[108] |
Obayashi E, Yoshida H, Kawai F, Shibayama N, Kawaguchi A, Nagata K, Tame J R, Park S Y (2008). The structural basis for an essential subunit interaction in influenza virus RNA polymerase. Nature, 454(7208): 1127–1131
CrossRef
Pubmed
Google scholar
|
[109] |
Oberg B (2006). Rational design of polymerase inhibitors as antiviral drugs. Antiviral Res, 71(2-3): 90–95
CrossRef
Pubmed
Google scholar
|
[110] |
Ohtsu Y, Honda Y, Sakata Y, Kato H, Toyoda T (2002). Fine mapping of the subunit binding sites of influenza virus RNA polymerase. Microbiol Immunol, 46(3): 167–175
Pubmed
|
[111] |
Ortega J, Martín-Benito J, Zürcher T, Valpuesta J M, Carrascosa J L, Ortín J (2000). Ultrastructural and functional analyses of recombinant influenza virus ribonucleoproteins suggest dimerization of nucleoprotein during virus amplification. J Virol, 74(1): 156–163
CrossRef
Pubmed
Google scholar
|
[112] |
Palese P, Shaw M L (2007). Orthomyxoviridae: the Viruses and Their Replication, 5th ed. Lippincott Williams & Wilkins
|
[113] |
Paul A V, Rieder E, Kim D W, van Boom J H, Wimmer E (2000). Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J Virol, 74(22): 10359–10370
CrossRef
Pubmed
Google scholar
|
[114] |
Pérez D R, Donis R O (1995). A 48-amino-acid region of influenza A virus PB1 protein is sufficient for complex formation with PA. J Virol, 69(11): 6932–6939
Pubmed
|
[115] |
Pérez-González A, Rodriguez A, Huarte M, Salanueva I J, Nieto A (2006). hCLE/CGI-99, a human protein that interacts with the influenza virus polymerase, is a mRNA transcription modulator. J Mol Biol, 362(5): 887–900
CrossRef
Pubmed
Google scholar
|
[116] |
Plotch S J, Bouloy M, Ulmanen I, Krug R M (1981). A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell, 23(3): 847–858
CrossRef
Pubmed
Google scholar
|
[117] |
Plotch S J, Krug R M (1977). Influenza virion transcriptase: synthesis in vitro of large, polyadenylic acid-containing complementary RNA. J Virol, 21(1): 24–34
Pubmed
|
[118] |
Plotch S J, Krug R M (1978). Segments of influenza virus complementary RNA synthesized in vitro. J Virol, 25(2): 579–586
Pubmed
|
[119] |
Plotkin J B, Dushoff J, Levin S A (2002). Hemagglutinin sequence clusters and the antigenic evolution of influenza A virus. Proc Natl Acad Sci USA, 99(9): 6263–6268
CrossRef
Pubmed
Google scholar
|
[120] |
Poole E L, Medcalf L, Elton D, Digard P (2007). Evidence that the C-terminal PB2-binding region of the influenza A virus PB1 protein is a discrete α-helical domain. FEBS Lett, 581(27): 5300–5306
CrossRef
Pubmed
Google scholar
|
[121] |
Poon L L, Fodor E, Brownlee G G (2000). Polyuridylated mRNA synthesized by a recombinant influenza virus is defective in nuclear export. J Virol, 74(1): 418–427
CrossRef
Pubmed
Google scholar
|
[122] |
Poon L L, Pritlove D C, Fodor E, Brownlee G G (1999). Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template. J Virol, 73(4): 3473–3476
Pubmed
|
[123] |
Poon L L, Pritlove D C, Sharps J, Brownlee G G (1998). The RNA polymerase of influenza virus, bound to the 5′ end of virion RNA, acts in cis to polyadenylate mRNA. J Virol, 72(10): 8214–8219
Pubmed
|
[124] |
Pritlove D C, Poon L L, Devenish L J, Leahy M B, Brownlee G G (1999). A hairpin loop at the 5′ end of influenza A virus virion RNA is required for synthesis of poly(A)+ mRNA in vitro. J Virol, 73(3): 2109–2114
Pubmed
|
[125] |
Pritlove D C, Poon L L, Fodor E, Sharps J, Brownlee G G (1998). Polyadenylation of influenza virus mRNA transcribed in vitro from model virion RNA templates: requirement for 5′ conserved sequences. J Virol, 72(2): 1280–1286
Pubmed
|
[126] |
Rao P, Yuan W, Krug R M (2003). Crucial role of CA cleavage sites in the cap-snatching mechanism for initiating viral mRNA synthesis. EMBO J, 22(5): 1188–1198
CrossRef
Pubmed
Google scholar
|
[127] |
Resa-Infante P, Jorba N, Zamarreño N, Fernández Y, Juárez S, Ortín J (2008). The host-dependent interaction of alpha-importins with influenza PB2 polymerase subunit is required for virus RNA replication. PLoS ONE, 3(12): e3904
CrossRef
Pubmed
Google scholar
|
[128] |
Robertson J S, Schubert M, Lazzarini R A (1981). Polyadenylation sites for influenza virus mRNA. J Virol, 38(1): 157–163
Pubmed
|
[129] |
Seong B L, Kobayashi M, Nagata K, Brownlee G G, Ishihama A (1992). Comparison of two reconstituted systems for in vitro transcription and replication of influenza virus. J Biochem, 111(4): 496–499
Pubmed
|
[130] |
Shapiro G I, Krug R M (1988). Influenza virus RNA replication in vitro: synthesis of viral template RNAs and virion RNAs in the absence of an added primer. J Virol, 62(7): 2285–2290
Pubmed
|
[131] |
Shaw M W, Lamb R A (1984). A specific sub-set of host-cell mRNAs prime influenza virus mRNA synthesis. Virus Res, 1(6): 455–467
CrossRef
Pubmed
Google scholar
|
[132] |
Su C Y, Cheng T J, Lin M I, Wang S Y, Huang W I, Lin-Chu S Y, Chen Y H, Wu C Y, Lai M M, Cheng W C, Wu Y T, Tsai M D, Cheng Y S, Wong C H (2010). High-throughput identification of compounds targeting influenza RNA-dependent RNA polymerase activity. Proc Natl Acad Sci USA, 107(45): 19151–19156
CrossRef
Pubmed
Google scholar
|
[133] |
Subbarao E K, London W, Murphy B R (1993). A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J Virol, 67(4): 1761–1764
Pubmed
|
[134] |
Sugiyama K, Obayashi E, Kawaguchi A, Suzuki Y, Tame J R, Nagata K, Park S Y (2009). Structural insight into the essential PB1-PB2 subunit contact of the influenza virus RNA polymerase. EMBO J, 28(12): 1803–1811
CrossRef
Pubmed
Google scholar
|
[135] |
Tarendeau F, Boudet J, Guilligay D, Mas P J, Bougault C M, Boulo S, Baudin F, Ruigrok R W, Daigle N, Ellenberg J, Cusack S, Simorre J P, Hart D J (2007). Structure and nuclear import function of the C-terminal domain of influenza virus polymerase PB2 subunit. Nat Struct Mol Biol, 14(3): 229–233
CrossRef
Pubmed
Google scholar
|
[136] |
Testa D, Banerjee A K (1979). Initiation of RNA synthesis in vitro by vesicular stomatitis virus. Role of ATP. J Biol Chem, 254(6): 2053–2058
Pubmed
|
[137] |
Torreira E, Schoehn G, Fernández Y, Jorba N, Ruigrok R W, Cusack S, Ortín J, Llorca O (2007). Three-dimensional model for the isolated recombinant influenza virus polymerase heterotrimer. Nucleic Acids Res, 35(11): 3774–3783
CrossRef
Pubmed
Google scholar
|
[138] |
Toyoda T, Adyshev D M, Kobayashi M, Iwata A, Ishihama A (1996a). Molecular assembly of the influenza virus RNA polymerase: determination of the subunit-subunit contact sites. J Gen Virol, 77(9): 2149–2157
CrossRef
Pubmed
Google scholar
|
[139] |
Toyoda T, Kobayashi M, Nakada S, Ishihama A (1996b). Molecular dissection of influenza virus RNA polymerase: PB1 subunit alone is able to catalyze RNA synthesis. Virus Genes, 12(2): 155–163
CrossRef
Pubmed
Google scholar
|
[140] |
Tsai C H, Lee P Y, Stollar V, Li M L (2006). Antiviral therapy targeting viral polymerase. Curr Pharm Des, 12(11): 1339–1355
CrossRef
Pubmed
Google scholar
|
[141] |
Ulmanen I, Broni B, Krug R M (1983). Influenza virus temperature-sensitive cap (m7GpppNm)-dependent endonuclease. J Virol, 45(1): 27–35
Pubmed
|
[142] |
Ulmanen I, Broni B A, Krug R M (1981). Role of two of the influenza virus core P proteins in recognizing cap 1 structures (m7GpppNm) on RNAs and in initiating viral RNA transcription. Proc Natl Acad Sci USA, 78(12): 7355–7359
CrossRef
Pubmed
Google scholar
|
[143] |
van Dijk A A, Makeyev E V, Bamford D H (2004). Initiation of viral RNA-dependent RNA polymerization. J Gen Virol, 85(5): 1077–1093
CrossRef
Pubmed
Google scholar
|
[144] |
Vreede F T, Brownlee G G (2007). Influenza virion-derived viral ribonucleoproteins synthesize both mRNA and cRNA in vitro. J Virol, 81(5): 2196–2204
CrossRef
Pubmed
Google scholar
|
[145] |
Vreede F T, Gifford H, Brownlee G G (2008). Role of initiating nucleoside triphosphate concentrations in the regulation of influenza virus replication and transcription. J Virol, 82(14): 6902–6910
CrossRef
Pubmed
Google scholar
|
[146] |
Vreede F T, Jung T E, Brownlee G G (2004). Model suggesting that replication of influenza virus is regulated by stabilization of replicative intermediates. J Virol, 78(17): 9568–9572
CrossRef
Pubmed
Google scholar
|
[147] |
Wang P, Palese P, O’Neill R E (1997). The NPI-1/NPI-3 (karyopherin alpha) binding site on the influenza a virus nucleoprotein NP is a nonconventional nuclear localization signal. J Virol, 71(3): 1850–1856
Pubmed
|
[148] |
Watanabe K, Handa H, Mizumoto K, Nagata K (1996). Mechanism for inhibition of influenza virus RNA polymerase activity by matrix protein. J Virol, 70(1): 241–247
Pubmed
|
[149] |
Weber F, Kochs G, Gruber S, Haller O (1998). A classical bipartite nuclear localization signal on Thogoto and influenza A virus nucleoproteins. Virology, 250(1): 9–18
CrossRef
Pubmed
Google scholar
|
[150] |
Webster R G, Sharp G B, Claas E C (1995). Interspecies transmission of influenza viruses. Am J Respir Crit Care Med, 152(4 Pt 2): S25–S30
Pubmed
|
[151] |
Wright P F, Neumann G, Kawaoka Y (2007). Orthomyxoviruses, 5th ed. Lippincott Williams & Wilkins.
|
[152] |
Yang Y, Rijnbrand R, Watowich S, Lemon S M (2004). Genetic evidence for an interaction between a picornaviral cis-acting RNA replication element and 3CD protein. J Biol Chem, 279(13): 12659–12667
CrossRef
Pubmed
Google scholar
|
[153] |
Ye Q, Krug R M, Tao Y J (2006). The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature, 444(7122): 1078–1082
CrossRef
Pubmed
Google scholar
|
[154] |
Ye Z P, Pal R, Fox J W, Wagner R R (1987). Functional and antigenic domains of the matrix (M1) protein of influenza A virus. J Virol, 61(2): 239–246
Pubmed
|
[155] |
Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, He X, Lv Z, Ge R, Li X, Deng T, Fodor E, Rao Z, Liu Y (2009). Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature, 458(7240): 909–913
CrossRef
Pubmed
Google scholar
|
[156] |
Zhang S, Wang J, Wang Q, Toyoda T (2010a). Internal initiation of influenza virus replication of viral RNA and complementary RNA in vitro. J Biol Chem, 285: 41194–41201
CrossRef
Pubmed
Google scholar
|
[157] |
Zhang S, Weng L, Geng L, Wang J, Zhou J, Deubel V, Buchy P, Toyoda T (2010b). Biochemical and kinetic analysis of the influenza virus RNA polymerase purified from insect cells. Biochem Biophys Res Commun, 391(1): 570–574
CrossRef
Pubmed
Google scholar
|
[158] |
Zhao C, Lou Z, Guo Y, Ma M, Chen Y, Liang S, Zhang L, Chen S, Li X, Liu Y, Bartlam M, Rao Z (2009). Nucleoside monophosphate complex structures of the endonuclease domain from the influenza virus polymerase PA subunit reveal the substrate binding site inside the catalytic center. J Virol, 83(18): 9024–9030
CrossRef
Pubmed
Google scholar
|
[159] |
Zheng H, Lee H A, Palese P, García-Sastre A (1999). Influenza A virus RNA polymerase has the ability to stutter at the polyadenylation site of a viral RNA template during RNA replication. J Virol, 73(6): 5240–5243
Pubmed
|
[160] |
Zvonarjev A Y, Ghendon Y Z (1980). Influence of membrane (M) protein on influenza A virus virion transcriptase activity in vitro and its susceptibility to rimantadine. J Virol, 33(2): 583–586
Pubmed
|
/
〈 | 〉 |