Membrane-bound O-acyltransferases (MBOAT)

Catherine C. Y. CHANG, Jie SUN, Ta-Yuan CHANG

PDF(234 KB)
PDF(234 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (3) : 177-182. DOI: 10.1007/s11515-011-1149-z
MINI-REVIEW
MINI-REVIEW

Membrane-bound O-acyltransferases (MBOAT)

Author information +
History +

Abstract

The MBOAT enzyme family, identified in 2000, comprises 11 genes in the human genome that participate in a variety of biological processes. MBOAT enzymes contain multiple transmembrane domains and share two active site residues, histidine and asparagine. Several MBOAT members are drug targets for major human diseases, including atherosclerosis, obesity, Alzheimer disease, and viral infections. Here we review the historical aspects of MBOAT enzymes, classify them biochemically into 3 subgroups, and describe the essential features of each member.

Keywords

cholesterol metabolism / neutral lipid biosynthesis / protein acylation / membrane phospholipid remodeling / atherosclerosis / diabetes / obesity / cancer / nutrient sensing

Cite this article

Download citation ▾
Catherine C. Y. CHANG, Jie SUN, Ta-Yuan CHANG. Membrane-bound O-acyltransferases (MBOAT). Front Biol, 2011, 6(3): 177‒182 https://doi.org/10.1007/s11515-011-1149-z

References

[1]
Abe Y, Kita Y, Niikura T (2008). Mammalian Gup1, a homolog of Saccharomyces cerevisiae glycerol uptake/transporter 1, acts as a negative regulator for N-terminal palmitoylation of Sonic hedgehog. FEBS J, 275(2): 318–331
CrossRef Pubmed Google scholar
[2]
Anderson R A, Joyce C, Davis M, Reagan J W, Clark M, Shelness G S, Rudel L L (1998). Identification of a form of acyl-CoA:cholesterol acyltransferase specific to liver and intestine in nonhuman primates. J Biol Chem, 273(41): 26747–26754
CrossRef Pubmed Google scholar
[3]
Ariyama H, Kono N, Matsuda S, Inoue T, Arai H (2010). Decrease in membrane phospholipid unsaturation induces unfolded protein response. J Biol Chem, 285(29): 22027–22035
CrossRef Pubmed Google scholar
[4]
Bell T A 3rd, Brown J M, Graham M J, Lemonidis K M, Crooke R M, Rudel L L (2006). Liver-specific inhibition of acyl-coenzyme a:cholesterol acyltransferase 2 with antisense oligonucleotides limits atherosclerosis development in apolipoprotein B100-only low-density lipoprotein receptor-/- mice. Arterioscler Thromb Vasc Biol, 26(8): 1814–1820
CrossRef Pubmed Google scholar
[5]
Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A (2007). SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem, 282(42): 30845–30855
CrossRef Pubmed Google scholar
[6]
Birch A M, Buckett L K, Turnbull A V (2010). DGAT1 inhibitors as anti-obesity and anti-diabetic agents. Curr Opin Drug Discov Devel, 13(4): 489–496
Pubmed
[7]
Bosson R, Jaquenoud M, Conzelmann A (2006). GUP1 of Saccharomyces cerevisiae encodes an O-acyltransferase involved in remodeling of the GPI anchor. Mol Biol Cell, 17(6): 2636–2645
CrossRef Pubmed Google scholar
[8]
Bryleva E Y, Rogers M A, Chang C C, Buen F, Harris B T, Rousselet E, Seidah N G, Oddo S, LaFerla F M, Spencer T A, Hickey W F, Chang T Y (2010). ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD. Proc Natl Acad Sci USA, 107(7): 3081–3086
CrossRef Pubmed Google scholar
[9]
Buglino J A, Resh M D (2008). Hhat is a palmitoylacyltransferase with specificity for N-palmitoylation of Sonic Hedgehog. J Biol Chem, 283(32): 22076–22088
CrossRef Pubmed Google scholar
[10]
Buglino J A, Resh M D (2010). Identification of conserved regions and residues within Hedgehog acyltransferase critical for palmitoylation of Sonic Hedgehog. PLoS ONE, 5(6): e11195
CrossRef Pubmed Google scholar
[11]
Buhman K K, Accad M, Novak S, Choi R S, Wong J S, Hamilton R L, Turley S, Farese R V Jr (2000). Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat Med, 6(12): 1341–1347
CrossRef Pubmed Google scholar
[12]
Cao J, Liu Y, Lockwood J, Burn P, Shi Y (2004). A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse. J Biol Chem, 279(30): 31727–31734
CrossRef Pubmed Google scholar
[13]
Cases S, Novak S, Zheng Y W, Myers H M, Lear S R, Sande E, Welch C B, Lusis A J, Spencer T A, Krause B R, Erickson S K, Farese R V Jr (1998a). ACAT-2, a second mammalian acyl-CoA:cholesterol acyltransferase. Its cloning, expression, and characterization. J Biol Chem, 273(41): 26755–26764
CrossRef Pubmed Google scholar
[14]
Cases S, Smith S J, Zheng Y W, Myers H M, Lear S R, Sande E, Novak S, Collins C, Welch C B, Lusis A J, Erickson S K, Farese R V Jr (1998b). Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA, 95(22): 13018–13023
CrossRef Pubmed Google scholar
[15]
Chamoun Z, Mann R K, Nellen D, Von Kessler D P, Bellotto M, Beachy P A, Basler K (2001). Skinny hedgehog, an acyltransferase required for palmitoylation and activity of the hedgehog signal. Science, 293: 2080–2084
[16]
Chang C C, Huh H Y, Cadigan K M, Chang T Y (1993). Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J Biol Chem, 268(28): 20747–20755
Pubmed
[17]
Chang C C, Miyazaki A, Dong R, Kheirollah A, Yu C, Geng Y, Higgs H N, Chang T Y (2010). Purification of recombinant acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1) from H293 cells and binding studies between the enzyme and substrates using difference intrinsic fluorescence spectroscopy. Biochemistry, 49(46): 9957–9963
CrossRef Pubmed Google scholar
[18]
Chang C C Y, Lee C Y, Chang E T, Cruz J C, Levesque M C, Chang T Y (1998). Recombinant acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) purified to essential homogeneity utilizes cholesterol in mixed micelles or in vesicles in a highly cooperative manner. J Biol Chem, 273(52): 35132–35141
CrossRef Pubmed Google scholar
[19]
Chang T Y, Li B L, Chang C C, Urano Y (2009). Acyl-coenzyme A:cholesterol acyltransferases. Am J Physiol Endocrinol Metab, 297(1): E1–E9
CrossRef Pubmed Google scholar
[20]
Cheng D, Meegalla R L, He B, Cromley D A, Billheimer J T, Young P R (2001). Human acyl-CoA:diacylglycerol acyltransferase is a tetrameric protein. Biochem J, 359(Pt 3): 707–714
CrossRef Pubmed Google scholar
[21]
Demeure O, Lecerf F, Duby C, Desert C, Ducheix S, Guillou H, Lagarrigue S (2011). Regulation of LPCAT3 by LXR. Gene, 470(1-2): 7–11
CrossRef Pubmed Google scholar
[22]
Ferreira C, Silva S, Faria-Oliveira F, Pinho E, Henriques M, Lucas C (2010). Candida albicans virulence and drug-resistance requires the O-acyltransferase Gup1p. BMC Microbiol, 10(1): 238
CrossRef Pubmed Google scholar
[23]
Fujita M, Umemura M, Yoko-o T, Jigami Y (2006). PER1 is required for GPI-phospholipase A2 activity and involved in lipid remodeling of GPI-anchored proteins. Mol Biol Cell, 17(12): 5253–5264
CrossRef Pubmed Google scholar
[24]
Gijón M A, Riekhof W R, Zarini S, Murphy R C, Voelker D R (2008). Lysophospholipid acyltransferases and arachidonate recycling in human neutrophils. J Biol Chem, 283(44): 30235–30245
CrossRef Pubmed Google scholar
[25]
Goodman D S, Deykin D, Shiratori T (1964). The formation of cholesterol esters with rat liver enzymes. J Biol Chem, 239: 1335–1345
Pubmed
[26]
Guo Z Y, Chang C C, Chang T Y (2007). Functionality of the seventh and eighth transmembrane domains of acyl-coenzyme A:cholesterol acyltransferase 1. Biochemistry, 46(35): 10063–10071
CrossRef Pubmed Google scholar
[27]
Gutierrez J A, Solenberg P J, Perkins D R, Willency J A, Knierman M D, Jin Z, Witcher D R, Luo S, Onyia J E, Hale J E (2008). Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci USA, 105(17): 6320–6325
CrossRef Pubmed Google scholar
[28]
Harris C A, Hass J T, Streeper R S, Stone S J, Kumari M, Yang K, Han X, Brownell N, Gross R W, Zechner R, Farese R V Jr (2011). DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J Lipid Res,
CrossRef Google scholar
[29]
Hartmann T (2006). Role of amyloid precursor protein, amyloid-beta and gamma-secretase in cholesterol maintenance. Neurodegener Dis, 3(4-5): 305–311
CrossRef Pubmed Google scholar
[30]
Herker E, Harris C, Hernandez C, Carpentier A, Kaehlcke K, Rosenberg A R, Farese R V Jr, Ott M (2010). Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat Med, 16(11): 1295–1298
CrossRef Pubmed Google scholar
[31]
Hishikawa D, Shindou H, Kobayashi S, Nakanishi H, Taguchi R, Shimizu T (2008). Discovery of a lysophospholipid acyltransferase family essential for membrane asymmetry and diversity. Proc Natl Acad Sci USA, 105(8): 2830–2835
CrossRef Pubmed Google scholar
[32]
Hofmann K (2000). A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem Sci, 25(3): 111–112
CrossRef Pubmed Google scholar
[33]
Jain S, Stanford N, Bhagwat N, Seiler B, Costanzo M, Boone C, Oelkers P (2007). Identification of a novel lysophospholipid acyltransferase in Saccharomyces cerevisiae. J Biol Chem, 282(42): 30562–30569
CrossRef Pubmed Google scholar
[34]
Kadowaki T, Wilder E, Klingensmith J, Zachary K, Perrimon N (1996). The segment polarity gene porcupine encodes a putative multitransmembrane protein involved in Wingless processing. Genes Dev, 10(24): 3116–3128
CrossRef Pubmed Google scholar
[35]
Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 402(6762): 656–660
CrossRef Pubmed Google scholar
[36]
Lee B, Fast A M, Zhu J, Cheng J X, Buhman K K (2010). Intestine-specific expression of acyl CoA:diacylglycerol acyltransferase 1 reverses resistance to diet-induced hepatic steatosis and obesity in Dgat1-/- mice. J Lipid Res, 51(7): 1770–1780
CrossRef Pubmed Google scholar
[37]
Lee H C, Inoue T, Imae R, Kono N, Shirae S, Matsuda S, Gengyo-Ando K, Mitani S, Arai H (2008). Caenorhabditis elegans mboa-7, a member of the MBOAT family, is required for selective incorporation of polyunsaturated fatty acids into phosphatidylinositol. Mol Biol Cell, 19(3): 1174–1184
CrossRef Pubmed Google scholar
[38]
Lee J J, von Kessler D P, Parks S, Beachy P A (1992). Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell, 71(1): 33–50
CrossRef Pubmed Google scholar
[39]
Lewin T M, Wang P, Coleman R A (1999). Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry, 38(18): 5764–5771
CrossRef Pubmed Google scholar
[40]
Lim CT, Kola B, Korbonits M (2011). The ghrelin/GOAT/GHS-R system and energy metabolism. Rev Endocr Metab Disord,
CrossRef Google scholar
[41]
Logan C Y, Nusse R (2004). The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 20(1): 781–810
CrossRef Pubmed Google scholar
[42]
McFie P J, Stone S L, Banman S L, Stone S J (2010). Topological orientation of acyl-CoA:diacylglycerol acyltransferase-1 (DGAT1) and identification of a putative active site histidine and the role of the n terminus in dimer/tetramer formation. J Biol Chem, 285(48): 37377–37387
CrossRef Pubmed Google scholar
[43]
Mohler J, Vani K (1992). Molecular organization and embryonic expression of the hedgehog gene involved in cell-cell communication in segmental patterning of Drosophila. Development, 115(4): 957–971
Pubmed
[44]
Mukherjee S, Kunitake G, Alfinslater R B (1958). The esterification of cholesterol with palmitic acid by rat liver homogenates. J Biol Chem, 230(1): 91–96
Pubmed
[45]
Nüsslein-Volhard C, Wieschaus E (1980). Mutations affecting segment number and polarity in Drosophila. Nature, 287(5785): 795–801
CrossRef Pubmed Google scholar
[46]
Oelkers P, Behari A, Cromley D, Billheimer J T, Sturley S L (1998). Characterization of two human genes encoding acyl coenzyme A:cholesterol acyltransferase-related enzymes. J Biol Chem, 273(41): 26765–26771
CrossRef Pubmed Google scholar
[47]
Porter JA, Young KE, Beachy PA (1996) Cholesterol modification of hedgehog signaling proteins in animal development. Science,274: 255–259
[48]
Repa J J, Buhman K K, Farese R V J Jr, Dietschy J M, Turley S D (2004). ACAT2 deficiency limits cholesterol absorption in the cholesterol-fed mouse: impact on hepatic cholesterol homeostasis. Hepatology, 40(5): 1088–1097
CrossRef Pubmed Google scholar
[49]
Riekhof W R, Wu J, Jones J L, Voelker D R (2007). Identification and characterization of the major lysophosphatidylethanolamine acyltransferase in Saccharomyces cerevisiae. J Biol Chem, 282(39): 28344–28352
CrossRef Pubmed Google scholar
[50]
Shindou H, Eto M, Morimoto R, Shimizu T (2009). Identification of membrane O-acyltransferase family motifs. Biochem Biophys Res Commun, 383(3): 320–325
CrossRef Pubmed Google scholar
[51]
Shindou H, Shimizu T (2009). Acyl-CoA:lysophospholipid acyltransferases. J Biol Chem, 284(1): 1–5
CrossRef Pubmed Google scholar
[52]
Smotrys J E, Linder M E (2004). Palmitoylation of intracellular signaling proteins: regulation and function. Annu Rev Biochem, 73(1): 559–587
CrossRef Pubmed Google scholar
[53]
Tabata T, Eaton S, Kornberg T B (1992). The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev, 6(12b 12B): 2635–2645
CrossRef Pubmed Google scholar
[54]
Takada R, Satomi Y, Kurata T, Ueno N, Norioka S, Kondoh H, Takao T, Takada S (2006). Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell, 11(6): 791–801
CrossRef Pubmed Google scholar
[55]
Tamaki H, Shimada A, Ito Y, Ohya M, Takase J, Miyashita M, Miyagawa H, Nozaki H, Nakayama R, Kumagai H (2007). LPT1 encodes a membrane-bound O-acyltransferase involved in the acylation of lysophospholipids in the yeast Saccharomyces cerevisiae. J Biol Chem, 282(47): 34288–34298
CrossRef Pubmed Google scholar
[56]
Turkish A R, Sturley S L (2009). The genetics of neutral lipid biosynthesis: an evolutionary perspective. Am J Physiol Endocrinol Metab, 297(1): E19–E27
CrossRef Pubmed Google scholar
[57]
Willert K, Brown J D, Danenberg E, Duncan A W, Weissman I L, Reya T, Yates J R 3rd, Nusse R (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 423(6938): 448–452
CrossRef Pubmed Google scholar
[58]
Willner E L, Tow B, Buhman K K, Wilson M, Sanan D A, Rudel L L, Farese R V Jr (2003). Deficiency of acyl CoA:cholesterol acyltransferase 2 prevents atherosclerosis in apolipoprotein E-deficient mice. Proc Natl Acad Sci USA, 100(3): 1262–1267
CrossRef Pubmed Google scholar
[59]
Yang H, Bard M, Bruner D A, Gleeson A, Deckelbaum R J, Aljinovic G, Pohl T M, Rothstein R, Sturtey S L(1996). Sterol esterification in yeast: a two-gene process. Science, 272: 1353–1356
[60]
Yang J, Brown M S, Liang G, Grishin N V, Goldstein J L (2008). Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell, 132(3): 387–396
CrossRef Pubmed Google scholar
[61]
Yen C L, Monetti M, Burri B J, Farese R V Jr (2005). The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters. J Lipid Res, 46(7): 1502–1511
CrossRef Pubmed Google scholar
[62]
Yen C L, Stone S J, Koliwad S, Harris C, Farese R V Jr (2008). Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res, 49(11): 2283–2301
CrossRef Pubmed Google scholar
[63]
Yu C, Kennedy N J, Chang C C Y, Rothblatt J A (1996). Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA:sterol acyltransferase. J Biol Chem, 271(39): 24157–24163
CrossRef Pubmed Google scholar
[64]
Zhai L, Chaturvedi D, Cumberledge S (2004). Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J Biol Chem, 279(32): 33220–33227
CrossRef Pubmed Google scholar
[65]
Zhao Y, Chen Y Q, Bonacci T M, Bredt D S, Li S, Bensch W R, Moller D E, Kowala M, Konrad R J, Cao G (2008). Identification and characterization of a major liver lysophosphatidylcholine acyltransferase. J Biol Chem, 283(13): 8258–8265
CrossRef Pubmed Google scholar

Acknowledgments

We thank Dr. Ellen Chang and the reviewer for careful reading of the manuscript. The research in our laboratory is supported by US NIH grants HL60306 and AG37609. Due to a lack of space, we were not able to cover the relevant literature comprehensively.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(234 KB)

Accesses

Citations

Detail

Sections
Recommended

/