Drug targets beyond HMG-CoA reductase: Why venture beyond the statins?

Ingrid C. GELISSEN, Andrew J. BROWN

PDF(231 KB)
PDF(231 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (3) : 197-205. DOI: 10.1007/s11515-011-1130-x
REVIEW
REVIEW

Drug targets beyond HMG-CoA reductase: Why venture beyond the statins?

Author information +
History +

Abstract

In this review, we aim to convey a brief, select history of the development of cholesterol-lowering therapies. We focus particularly on the highly successful statins as well as setbacks that should serve as cautionary tales. We go on to preview recent developments that may complement, if not one day replace, the statins. Our focus is on pharmacological interventions, particularly those targeting the cholesterol biosynthetic pathway. Also, we examine therapies under current investigation that target the assembly of atherogenic lipoproteins (via apolipoprotein B or microsomal triglyceride transfer protein), the stability of the low-density lipoprotein-receptor (via PCSK9, proprotein convertase subtilisin kexin 9), or are designed to increase high-density lipoprotein-cholesterol (via inhibition of cholesteryl ester transfer protein).

Keywords

statins / cholesterol-lowering drugs / side-effects / adverse reactions / cholesterol synthesis

Cite this article

Download citation ▾
Ingrid C. GELISSEN, Andrew J. BROWN. Drug targets beyond HMG-CoA reductase: Why venture beyond the statins?. Front Biol, 2011, 6(3): 197‒205 https://doi.org/10.1007/s11515-011-1130-x

References

[1]
Abe I, Abe T, Lou W, Masuoka T, Noguchi H (2007). Site-directed mutagenesis of conserved aromatic residues in rat squalene epoxidase. Biochem Biophys Res Commun, 352(1): 259–263
CrossRef Pubmed Google scholar
[2]
Abifadel M, Pakradouni J, Collin M, Samson-Bouma M E, Varret M, Rabès J P, Boileau C (2010). Strategies for proprotein convertase subtilisin kexin 9 modulation: a perspective on recent patents. Expert Opin Ther Pat, 20(11): 1547–1571
CrossRef Pubmed Google scholar
[3]
Abifadel M, Varret M, Rabès J P, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derré A, Villéger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf J M, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah N G, Boileau C (2003). Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet, 34(2): 154–156
CrossRef Pubmed Google scholar
[4]
Akdim F, Visser M E, Tribble D L, Baker B F, Stroes E S, Yu R, Flaim J D, Su J, Stein E A, Kastelein J J (2010). Effect of mipomersen, an apolipoprotein B synthesis inhibitor, on low-density lipoprotein cholesterol in patients with familial hypercholesterolemia. Am J Cardiol, 105(10): 1413–1419
CrossRef Pubmed Google scholar
[5]
Anon (2006). Cholesterol: the good, the bad, and the stopped trials. Lancet, 368(9552): 2034
CrossRef Pubmed Google scholar
[6]
Anon (2008). Discontinuation of Development of TAK-475, A Compound for Treatment of Hypercholesterolemia. (<month>December</month>2010)
[7]
Anon (2010). ClinicalTrials.gov. (<month>December</month>2010)
[8]
Baigent C, Blackwell L, Emberson J, Holland L E, Reith C, Bhala N, Peto R, Barnes E H, Keech A, Simes J, Collins R, and the Cholesterol Treatment Trialists’ (CTT) Collaboration (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet, 376(9753): 1670–1681
CrossRef Pubmed Google scholar
[9]
Barter P J, Caulfield M, Eriksson M, Grundy S M, Kastelein J J, Komajda M, Lopez-Sendon J, Mosca L, Tardif J C, Waters D D, Shear C L, Revkin J H, Buhr K A, Fisher M R, Tall A R, Brewer B, and the ILLUMINATE Investigators (2007). Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med, 357(21): 2109–2122
CrossRef Pubmed Google scholar
[10]
Bates T R, Connaughton V M, Watts G F (2009). Non-adherence to statin therapy: a major challenge for preventive cardiology. Expert Opin Pharmacother, 10(18): 2973–2985
CrossRef Pubmed Google scholar
[11]
Britt H, Miller G C, Charles J, Henderson J, Bayram C, Harrison C, Valenti L, Fahridin S, Pan Y, O’Halloran J (2008). General practice activity in Australia 2007-08. Canberra: Australian Institute of Health and Welfare. Report no.
[12]
Brown A J (2009). 24(S),25-epoxycholesterol: a messenger for cholesterol homeostasis. Int J Biochem Cell Biol, 41(4): 744–747
CrossRef Pubmed Google scholar
[13]
Brown A J (2010). Does upsizing statins have a downside? Drug Saf, 33(5): 435–436, author reply 436-437
CrossRef Pubmed Google scholar
[14]
Bruckert E, Hayem G, Dejager S, Yau C, Bégaud B (2005). Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients—the PRIMO study. Cardiovasc Drugs Ther, 19(6): 403–414
CrossRef Pubmed Google scholar
[15]
Bucher N L, Overath P, Lynen F (1960). beta-Hydroxy-beta-methyl-glutaryl coenzyme A reductase, cleavage and condensing enzymes in relation to cholesterol formation in rat liver. Biochim Biophys Acta, 40: 491–501
CrossRef Pubmed Google scholar
[16]
Cannon C P, Shah S, Dansky H M, Davidson M, Brinton E A, Gotto A M, Stepanavage M, Liu S X, Gibbons P, Ashraf T B, Zafarino J, Mitchel Y, Barter P (2010). Safety of Anacetrapib in patients with or at high risk for coronary heart disease. N Engl J Med, 363: 2406–2415
[17]
Chan J C, Piper D E, Cao Q, Liu D, King C, Wang W, Tang J, Liu Q, Higbee J, Xia Z, Di Y, Shetterly S, Arimura Z, Salomonis H, Romanow W G, Thibault S T, Zhang R, Cao P, Yang X P, Yu T, Lu M, Retter M W, Kwon G, Henne K, Pan O, Tsai M M, Fuchslocher B, Yang E, Zhou L, Lee K J, Daris M, Sheng J, Wang Y, Shen W D, Yeh W C, Emery M, Walker N P, Shan B, Schwarz M, Jackson S M (2009). A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci USA, 106(24): 9820–9825
CrossRef Pubmed Google scholar
[18]
Chugh A, Ray A, Gupta J B (2003). Squalene epoxidase as hypocholesterolemic drug target revisited. Prog Lipid Res, 42(1): 37–50
CrossRef Pubmed Google scholar
[19]
Clarke G A, Bouchard G, Paigen B, Carey M C (2004). Cholesterol synthesis inhibition distal to squalene upregulates biliary phospholipid secretion and counteracts cholelithiasis in the genetically prone C57L/J mouse. Gut, 53(1): 136–142
CrossRef Pubmed Google scholar
[20]
Cuchel M, Bloedon L T, Szapary P O, Kolansky D M, Wolfe M L, Sarkis A, Millar J S, Ikewaki K, Siegelman E S, Gregg R E, Rader D J (2007). Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med, 356(2): 148–156
CrossRef Pubmed Google scholar
[21]
Dang H, Liu Y, Pang W, Li C, Wang N, Shyy J Y, Zhu Y (2009). Suppression of 2,3-oxidosqualene cyclase by high fat diet contributes to liver X receptor-alpha-mediated improvement of hepatic lipid profile. J Biol Chem, 284(10): 6218–6226
CrossRef Pubmed Google scholar
[22]
Daskalopoulou S S (2009). When statin therapy stops: implications for the patient. Curr Opin Cardiol, 24(5): 454–460
CrossRef Pubmed Google scholar
[23]
DeBose-Boyd R A (2008). Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res, 18(6): 609–621
CrossRef Pubmed Google scholar
[24]
Dubuc G, Chamberland A, Wassef H, Davignon J, Seidah N G, Bernier L, Prat A (2004). Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol, 24(8): 1454–1459
CrossRef Pubmed Google scholar
[25]
Eisele B, Budzinski R, Müller P, Maier R, Mark M (1997). Effects of a novel 2,3-oxidosqualene cyclase inhibitor on cholesterol biosynthesis and lipid metabolism in vivo. J Lipid Res, 38(3): 564–575
Pubmed
[26]
Endo A (2010). A historical perspective on the discovery of statins. Proc Jpn Acad, Ser B, Phys Biol Sci, 86(5): 484–493
CrossRef Pubmed Google scholar
[27]
Frank-Kamenetsky M, Grefhorst A, Anderson N N, Racie T S, Bramlage B, Akinc A, Butler D, Charisse K, Dorkin R, Fan Y, Gamba-Vitalo C, Hadwiger P, Jayaraman M, John M, Jayaprakash K N, Maier M, Nechev L, Rajeev K G, Read T, Röhl I, Soutschek J, Tan P, Wong J, Wang G, Zimmermann T, de Fougerolles A, Vornlocher H P, Langer R, Anderson D G, Manoharan M, Koteliansky V, Horton J D, Fitzgerald K (2008). Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci USA, 105(33): 11915–11920
CrossRef Pubmed Google scholar
[28]
Frantz I D Jr, Moore R B (1969). The sterol hypothesis in atherogenesis. Am J Med, 46(5): 684–690
CrossRef Pubmed Google scholar
[29]
Funk J, Landes C (2005). Histopathologic findings after treatment with different oxidosqualene cyclase (OSC) inhibitors in hamsters and dogs. Exp Toxicol Pathol, 57(1): 29–38
CrossRef Pubmed Google scholar
[30]
Goldstein J L, DeBose-Boyd R A, Brown M S (2006). Protein sensors for membrane sterols. Cell, 124(1): 35–46
CrossRef Pubmed Google scholar
[31]
Golomb B A, Evans M A (2008). Statin adverse effects : a review of the literature and evidence for a mitochondrial mechanism. Am J Cardiovasc Drugs, 8(6): 373–418
CrossRef Pubmed Google scholar
[32]
Hirano K, Yamashita S, Nakajima N, Arai T, Maruyama T, Yoshida Y, Ishigami M, Sakai N, Kameda-Takemura K, Matsuzawa Y (1997). Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation is not associated with longevity. Arterioscler Thromb Vasc Biol, 17(6): 1053–1059
Pubmed
[33]
Li J J (2009). Triumph of the heart: The story of the statin. Oxford: Oxford University Press
[34]
McGinnis B, Olson K L, Magid D, Bayliss E, Korner E J, Brand D W, Steiner J F (2007). Factors related to adherence to statin therapy. Ann Pharmacother, 41(11): 1805–1811
CrossRef Pubmed Google scholar
[35]
Mera Y, Odani N, Kawai T, Hata T, Suzuki M, Hagiwara A, Katsushima T, Kakutani M (2010). Pharmacological characterization of diethyl-2-({3-dimethylcarbamoyl-4-[(4'-trifluoromethylbiphenyl-2-carbonyl) amino] phenyl} acetyloxymethyl)-2-phenylmalonate, JTT-130, an intestine-specific inhibitor of microsomal triglyceride transfer protein. J Pharmacol Exp Ther, 336(2): 321–327
[36]
Morand O H, Aebi J D, Dehmlow H, Ji Y H, Gains N, Lengsfeld H, Himber J (1997). Ro 48-8.071, a new 2,3-oxidosqualene:lanosterol cyclase inhibitor lowering plasma cholesterol in hamsters, squirrel monkeys, and minipigs: comparison to simvastatin. J Lipid Res, 38(2): 373–390
Pubmed
[37]
Raal F J, Santos R D, Blom D J, Marais A D, Charng M J, Cromwell W C, Lachmann R H, Gaudet D, Tan J L, Chasan-Taber S, Tribble D L, Flaim J D, Crooke S T (2010). Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet, 375(9719): 998–1006
CrossRef Pubmed Google scholar
[38]
Ridker P M, Danielson E, Fonseca F A, Genest J, Gotto A M Jr, Kastelein J J, Koenig W, Libby P, Lorenzatti A J, Macfadyen J G, Nordestgaard B G, Shepherd J, Willerson J T, Glynn R J, and the JUPITER Trial Study Group (2009). Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: a prospective study of the JUPITER trial. Lancet, 373(9670): 1175–1182
CrossRef Pubmed Google scholar
[39]
Robinson J G (2010). Dalcetrapib: a review of Phase II data. Expert Opin Investig Drugs, 19(6): 795–805
CrossRef Pubmed Google scholar
[40]
Robinson J G, Smith B, Maheshwari N, Schrott H (2005). Pleiotropic effects of statins: benefit beyond cholesterol reduction? A meta-regression analysis. J Am Coll Cardiol, 46(10): 1855–1862
CrossRef Pubmed Google scholar
[41]
Rozman D, Monostory K (2010). Perspectives of the non-statin hypolipidemic agents. Pharmacol Ther, 127(1): 19–40
CrossRef Pubmed Google scholar
[42]
Ruckenstuhl C, Lang S, Poschenel A, Eidenberger A, Baral P K, Kohút P, Hapala I, Gruber K, Turnowsky F (2007). Characterization of squalene epoxidase of Saccharomyces cerevisiae by applying terbinafine-sensitive variants. Antimicrob Agents Chemother, 51(1): 275–284
CrossRef Pubmed Google scholar
[43]
Sankatsing R R, Fouchier S W, de Haan S, Hutten B A, de Groot E, Kastelein J J, Stroes E S (2005). Hepatic and cardiovascular consequences of familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol, 25(9): 1979–1984
CrossRef Pubmed Google scholar
[44]
Sattar N, Preiss D, Murray H M, Welsh P, Buckley B M, de Craen A J, Seshasai S R, McMurray J J, Freeman D J, Jukema J W, Macfarlane P W, Packard C J, Stott D J, Westendorp R G, Shepherd J, Davis B R, Pressel S L, Marchioli R, Marfisi R M, Maggioni A P, Tavazzi L, Tognoni G, Kjekshus J, Pedersen T R, Cook T J, Gotto A M, Clearfield M B, Downs J R, Nakamura H, Ohashi Y, Mizuno K, Ray K K, Ford I (2010). Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet, 375(9716): 735–742
CrossRef Pubmed Google scholar
[45]
Schedlbauer A, Schroeder K, Peters T J, Fahey T (2004). Interventions to improve adherence to lipid lowering medication. Cochrane Database Syst Rev, (4): CD004371
Pubmed
[46]
Seiki S, Frishman W H (2009). Pharmacologic inhibition of squalene synthase and other downstream enzymes of the cholesterol synthesis pathway: a new therapeutic approach to treatment of hypercholesterolemia. Cardiol Rev, 17(2): 70–76
CrossRef Pubmed Google scholar
[47]
Silva M, Matthews M L, Jarvis C, Nolan N M, Belliveau P, Malloy M, Gandhi P (2007). Meta-analysis of drug-induced adverse events associated with intensive-dose statin therapy. Clin Ther, 29(2): 253–260
CrossRef Pubmed Google scholar
[48]
Sposito A C, Carvalho L S, Cintra R M, Araújo A L, Ono A H, Andrade J M, Coelho O R, Quinaglia e Silva J C, and the Brasilia Heart Study Group (2009). Rebound inflammatory response during the acute phase of myocardial infarction after simvastatin withdrawal. Atherosclerosis, 207(1): 191–194
CrossRef Pubmed Google scholar
[49]
Staffa J A, Chang J, Green L (2002). Cerivastatin and reports of fatal rhabdomyolysis. N Engl J Med, 346(7): 539–540
CrossRef Pubmed Google scholar
[50]
Steinberg D, Witztum J L (2009). Inhibition of PCSK9: a powerful weapon for achieving ideal LDL cholesterol levels. Proc Natl Acad Sci USA, 106(24): 9546–9547
CrossRef Pubmed Google scholar
[51]
Stone B G, Evans C D, Prigge W F, Duane W C, Gebhard R L (1989). Lovastatin treatment inhibits sterol synthesis and induces HMG-CoA reductase activity in mononuclear leukocytes of normal subjects. J Lipid Res, 30(12): 1943–1952
Pubmed
[52]
Telford D E, Lipson S M, Barrett P H, Sutherland B G, Edwards J Y, Aebi J D, Dehmlow H, Morand O H, Huff M W (2005). A novel inhibitor of oxidosqualene:lanosterol cyclase inhibits very low-density lipoprotein apolipoprotein B100 (apoB100) production and enhances low-density lipoprotein apoB100 catabolism through marked reduction in hepatic cholesterol content. Arterioscler Thromb Vasc Biol, 25(12): 2608–2614
CrossRef Pubmed Google scholar
[53]
Thompson A, Di Angelantonio E, Sarwar N, Erqou S, Saleheen D, Dullaart R P, Keavney B, Ye Z, Danesh J (2008). Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA, 299(23): 2777–2788
CrossRef Pubmed Google scholar
[54]
Visser M E, Kastelein J J, Stroes E S (2010). Apolipoprotein B synthesis inhibition: results from clinical trials. Curr Opin Lipidol, 21(4): 319–323
CrossRef Pubmed Google scholar
[55]
Webster R J, Heeley E L, Peiris D P, Bayram C, Cass A, Patel A A (2009). Gaps in cardiovascular disease risk management in Australian general practice. Med J Aust, 191(6): 324–329
Pubmed
[56]
Wenner Moyer M (2010). The search beyond statins. Nat Med, 16(2): 150–153
CrossRef Pubmed Google scholar
[57]
Wong J, Quinn C M, Brown A J (2004). Statins inhibit synthesis of an oxysterol ligand for the liver x receptor in human macrophages with consequences for cholesterol flux. Arterioscler Thromb Vasc Biol, 24(12): 2365–2371
CrossRef Pubmed Google scholar
[58]
Wong J, Quinn C M, Brown A J (2007). Synthesis of the oxysterol, 24(S), 25-epoxycholesterol, parallels cholesterol production and may protect against cellular accumulation of newly-synthesized cholesterol. Lipids Health Dis, 6(1): 10
CrossRef Pubmed Google scholar
[59]
Yeshurun D, Slobodin G, Keren D, Elias N (2005). Statin escape phenomenon: Does it really exist? Eur J Intern Med, 16(3): 192–194
CrossRef Pubmed Google scholar

Acknowledgments

Our laboratories are supported by grants from the National Health and Medical Research Council and the Prostate Cancer Foundation of Australia. We thank members of the Brown Laboratory for providing critical feedback.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(231 KB)

Accesses

Citations

Detail

Sections
Recommended

/