Histone variants: making structurally and functionally divergent nucleosomes and linkers in chromatin

Leilei SHI, Yuda FANG

PDF(190 KB)
PDF(190 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (2) : 93-101. DOI: 10.1007/s11515-011-1127-5
REVIEW
REVIEW

Histone variants: making structurally and functionally divergent nucleosomes and linkers in chromatin

Author information +
History +

Abstract

In addition to the post-translational modifications of histone proteins, emerging literature suggests that the mosaic nucleosomes formed by incorporation of various histone variants provide another mechanism for modifying chromatin structure and function. The locally defined chromatin by histone variants is involved in transcriptional regulation, DNA repair, centromere packaging, maintenance of pericentromeric heterochromatin, stress responses, temperature sensing, development, and many other biological processes. Here, we review the universal histone variants in H2A, H3 and H1 families and their roles in epigenetics.

Keywords

H2AX / H2AZ / H3.3 / CenH3 / H1

Cite this article

Download citation ▾
Leilei SHI, Yuda FANG. Histone variants: making structurally and functionally divergent nucleosomes and linkers in chromatin. Front Biol, 2011, 6(2): 93‒101 https://doi.org/10.1007/s11515-011-1127-5

References

[1]
Adam M, Robert F, Larochelle M, Gaudreau L (2001). H2A.Z is required for global chromatin integrity and for recruitment of RNA polymerase II under specific conditions. Mol Cell Biol, 21(18): 6270–6279
CrossRef Pubmed Google scholar
[2]
Ahmad K, Henikoff S (2002). The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell, 9(6): 1191–1200
CrossRef Pubmed Google scholar
[3]
Allis C D, Glover C V C, Bowen J K, Gorovsky M A (1980). Histone variants specific to the transcriptionally active, amitotically dividing macronucleus of the unicellular eucaryote, Tetrahymena thermophila. Cell, 20(3): 609–617
CrossRef Pubmed Google scholar
[4]
Altaf M, Auger A, Covic M, Côté J (2009). Connection between histone H2A variants and chromatin remodeling complexes. Biochem Cell Biol, 87(1): 35–50
CrossRef Pubmed Google scholar
[5]
Ascenzi R, Gantt J S (1997). A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants. Plant Mol Biol, 34(4): 629–641
CrossRef Pubmed Google scholar
[6]
Ascenzi R, Gantt J S (1999). Subnuclear distribution of the entire complement of linker histone variants in Arabidopsis thaliana. Chromosoma, 108(6): 345–355
CrossRef Pubmed Google scholar
[7]
Ausió J, Abbott D W, Wang X, Moore S C (2001). Histone variants and histone modifications: a structural perspective. Biochem Cell Biol, 79(6): 693–708
CrossRef Pubmed Google scholar
[8]
Barra J L, Rhounim L, Rossignol J L, Faugeron G (2000). Histone H1 is dispensable for methylation-associated gene silencing in Ascobolus immersus and essential for long life span. Mol Cell Biol, 20(1): 61–69
CrossRef Pubmed Google scholar
[8a]
Bonnefoy E, OrsiG A, CoubleP, LoppinB(2007). The essential role of Drosophila HIRA for de novo assembly of paternal chromatin at fertilization.PLoS Genet , 3(10): 1991–2006
[9]
Carr A M, Dorrington S M, Hindley J, Phear G A, Aves S J, Nurse P (1994). Analysis of a histone H2A variant from fission yeast: evidence for a role in chromosome stability. Mol Gen Genet, 245(5): 628–635
CrossRef Pubmed Google scholar
[10]
Celeste A, Petersen S, Romanienko P J, Fernandez-Capetillo O, Chen H T, Sedelnikova O A, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio M J, Redon C, Pilch D R, Olaru A, Eckhaus M, Camerini-Otero R D, Tessarollo L, Livak F, Manova K, Bonner W M, Nussenzweig M C, Nussenzweig A (2002). Genomic instability in mice lacking histone H2AX. Science, 296(5569): 922–927
CrossRef Pubmed Google scholar
[11]
Chadwick B P, Willard H F (2001a). Histone H2A variants and the inactive X chromosome: identification of a second macroH2A variant. Hum Mol Genet, 10(10): 1101–1113
CrossRef Pubmed Google scholar
[12]
Chadwick B P, Willard H F (2001b). A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol, 152(2): 375–384
CrossRef Pubmed Google scholar
[13]
Chen D, Hinkley C S, Henry R W, Huang S (2002). TBP dynamics in living human cells: constitutive association of TBP with mitotic chromosomes. Mol Biol Cell, 13(1): 276–284
CrossRef Pubmed Google scholar
[14]
Collins K A, Furuyama S, Biggins S (2004). Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr Biol, 14(21): 1968–1972
CrossRef Pubmed Google scholar
[15]
Cremer C, Münkel C, Granzow M, Jauch A, Dietzel S, Eils R, Guan X Y, Meltzer P S, Trent J M, Langowski J, Cremer T (1996). Nuclear architecture and the induction of chromosomal aberrations. Mutat Res, 366(2): 97–116
Pubmed
[16]
Cremer T, Cremer C (2001). Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet, 2(4): 292–301
CrossRef Pubmed Google scholar
[17]
Csink A K, Henikoff S (1996). Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature, 381(6582): 529–531
CrossRef Pubmed Google scholar
[18]
Cui B, Gorovsky M A (2006). Centromeric histone H3 is essential for vegetative cell division and for DNA elimination during conjugation in Tetrahymena thermophila. Mol Cell Biol, 26(12): 4499–4510
CrossRef Pubmed Google scholar
[19]
Cui B, Liu Y, Gorovsky M A (2006). Deposition and function of histone H3 variants in Tetrahymena thermophila. Mol Cell Biol, 26(20): 7719–7730
CrossRef Pubmed Google scholar
[20]
Dalal Y, Wang H, Lindsay S, Henikoff S (2007). Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol, 5(8): e218
CrossRef Pubmed Google scholar
[21]
Dawson S C, Sagolla M S, Cande W Z (2007). The cenH3 histone variant defines centromeres in Giardia intestinalis. Chromosoma, 116(2): 175–184
CrossRef Pubmed Google scholar
[22]
Deal R B, Henikoff J G, Henikoff S (2010). Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science, 328(5982): 1161–1164
CrossRef Pubmed Google scholar
[23]
Delahodde A, Becam A M, Perea J, Jacq C (1986). A yeast protein HX has homologies with the histone H2AF expressed in chicken embryo. Nucleic Acids Res, 14(22): 9213–9214
CrossRef Pubmed Google scholar
[24]
Dernburg A F, Broman K W, Fung J C, Marshall W F, Philips J, Agard D A, Sedat J W (1996). Perturbation of nuclear architecture by long-distance chromosome interactions. Cell, 85(5): 745–759
CrossRef Pubmed Google scholar
[25]
Dhillon N, Oki M, Szyjka S J, Aparicio O M, Kamakaka R T (2006). H2A.Z functions to regulate progression through the cell cycle. Mol Cell Biol, 26(2): 489–501
CrossRef Pubmed Google scholar
[26]
Dimitriadis E K, Weber C, Gill R K, Diekmann S, Dalal Y (2010). Tetrameric organization of vertebrate centromeric nucleosomes. Proc Natl Acad Sci USA, 107(47): 20317–20322
CrossRef Pubmed Google scholar
[28]
Earnshaw W C, Rothfield N (1985). Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma, 91(3–4): 313–321
CrossRef Pubmed Google scholar
[28a]
Erard M S, BelenguerP, Caizergues-FerrerM, PantaloniA, AmalricF(1988). A major nucleolar protein, nucleolin, induces chromatin decondensation by binding to histone H.Eur J Biochem, 175(3): 525–530
[29]
Faast R, Thonglairoam V, Schulz T C, Beall J, Wells J R, Taylor H, Matthaei K, Rathjen P D, Tremethick D J, Lyons I (2001). Histone variant H2A.Z is required for early mammalian development. Curr Biol, 11(15): 1183–1187
CrossRef Pubmed Google scholar
[30]
Fan Y, Nikitina T, Morin-Kensicki E M, Zhao J, Magnuson T R, Woodcock C L, Skoultchi A I (2003). H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol Cell Biol, 23(13): 4559–4572
CrossRef Pubmed Google scholar
[30a]
FangY, SpectorD L(2005). Centromere positioning and dynamics in living Arabidopsis plants.Mol Biol Cell, 16(12): 5710-5718
[31]
Fang Y, Spector D L (2010). Live Cell Imaging of Plants. Cold Spring Harbor Protocols, pdb top68.
[32]
Farris S D, Rubio E D, Moon J J, Gombert W M, Nelson B H, Krumm A (2005). Transcription-induced chromatin remodeling at the c-myc gene involves the local exchange of histone H2A.Z. J Biol Chem, 280(26): 25298–25303
CrossRef Pubmed Google scholar
[33]
Fatemi M, Wade P A (2006). MBD family proteins: reading the epigenetic code. J Cell Sci, 119(Pt 15): 3033–3037
CrossRef Pubmed Google scholar
[34]
Fernandez-Capetillo O, Mahadevaiah S K, Celeste A, Romanienko P J, Camerini-Otero R D, Bonner W M, Manova K, Burgoyne P, Nussenzweig A (2003). H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell, 4(4): 497–508
CrossRef Pubmed Google scholar
[35]
Fischle W, Wang Y, Jacobs S A, Kim Y, Allis C D, Khorasanizadeh S (2003). Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev, 17(15): 1870–1881
CrossRef Pubmed Google scholar
[36]
Gantt J S, Lenvik T R (1991). Arabidopsis thaliana H1 histones. Analysis of two members of a small gene family. Eur J Biochem, 202(3): 1029–1039
CrossRef Pubmed Google scholar
[37]
Gévry N, Chan H M, Laflamme L, Livingston D M, Gaudreau L (2007). p21 transcription is regulated by differential localization of histone H2A.Z. Genes Dev, 21(15): 1869–1881
CrossRef Pubmed Google scholar
[38]
Gévry N, Hardy S, Jacques P E, Laflamme L, Svotelis A, Robert F, Gaudreau L (2009). Histone H2A.Z is essential for estrogen receptor signaling. Genes Dev, 23(13): 1522–1533
CrossRef Pubmed Google scholar
[38a]
Ginisty H, Sicard H, Roger B, Bouvet P(1999). Structure and functions of nucleolin.J Cell Sci, 112 (Pt 6): 761–772
[39]
Goldberg A D, Banaszynski L A, Noh K M, Lewis P W, Elsaesser S J, Stadler S, Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, DeKelver R C, Miller J C, Lee Y L, Boydston E A, Holmes M C, Gregory P D, Greally J M, Rafii S, Yang C, Scambler P J, Garrick D, Gibbons R J, Higgs D R, Cristea I M, Urnov F D, Zheng D, Allis C D (2010). Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell, 140(5): 678–691
CrossRef Pubmed Google scholar
[40]
Govin J, Caron C, Rousseaux S, Khochbin S (2005). Testis-specific histone H3 expression in somatic cells. Trends Biochem Sci, 30(7): 357–359
CrossRef Pubmed Google scholar
[41]
Grove G W, Zweidler A (1984). Regulation of nucleosomal core histone variant levels in differentiating murine erythroleukemia cells. Biochemistry, 23(19): 4436–4443
CrossRef Pubmed Google scholar
[42]
Hake S B, Garcia B A, Kauer M, Baker S P, Shabanowitz J, Hunt D F, Allis C D (2005). Serine 31 phosphorylation of histone variant H3.3 is specific to regions bordering centromeres in metaphase chromosomes. Proc Natl Acad Sci USA, 102(18): 6344–6349
CrossRef Pubmed Google scholar
[43]
Hardy S, Jacques P É, Gévry N, Forest A, Fortin M È, Laflamme L, Gaudreau L, Robert F (2009). The euchromatic and heterochromatic landscapes are shaped by antagonizing effects of transcription on H2A.Z deposition. PLoS Genet, 5(10): e1000687
CrossRef Pubmed Google scholar
[44]
Hashimoto H, Takami Y, Sonoda E, Iwasaki T, Iwano H, Tachibana M, Takeda S, Nakayama T, Kimura H, Shinkai Y (2010). Histone H1 null vertebrate cells exhibit altered nucleosome architecture. Nucleic Acids Res, 38(11): 3533–3545
CrossRef Pubmed Google scholar
[45]
Henikoff S (2008). Nucleosome destabilization in the epigenetic regulation of gene expression. Nat Rev Genet, 9(1): 15–26
CrossRef Pubmed Google scholar
[46]
Henikoff S, Ahmad K (2005). Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol, 21(1): 133–153
CrossRef Pubmed Google scholar
[47]
Hewawasam G, Shivaraju M, Mattingly M, Venkatesh S, Martin-Brown S, Florens L, Workman J L, Gerton J L (2010). Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4. Mol Cell, 40(3): 444–454
CrossRef Pubmed Google scholar
[47a]
HodlM, BaslerK (2009). Transcription in the absence of histone H3.3. Curr Biol, 19(14): 1221–1226
[48]
Ho L, Crabtree G R (2010). Chromatin remodelling during development. Nature, 463(7280): 474–484
CrossRef Pubmed Google scholar
[49]
Ingouff M, Rademacher S, Holec S, Šoljić L, Xin N, Readshaw A, Foo S H, Lahouze B, Sprunck S, Berger F (2010). Zygotic resetting of the HISTONE 3 variant repertoire participates in epigenetic reprogramming in Arabidopsis. Curr Biol, 23(20): 2137–2143
[50]
Jackson J D, Gorovsky M A (2000). Histone H2A.Z has a conserved function that is distinct from that of the major H2A sequence variants. Nucleic Acids Res, 28(19): 3811–3816
CrossRef Pubmed Google scholar
[51]
Jenuwein T, Allis C D (2001). Translating the histone code. Science, 293(5532): 1074–1080
CrossRef Pubmed Google scholar
[52]
Kapros T, Robertson A J, Waterborg J H (1995). Histone H3 transcript stability in alfalfa. Plant Mol Biol, 28(5): 901–914
CrossRef Pubmed Google scholar
[53]
KermekchievM, WorkmanJ L, PikaardC S (1997). Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1.Mol Cell Biol, 17(10): 5833-5842
[53a]
Kojima H, SuzukiT, Kato T, EnomotoK, SatoS, KatoT, TabataS, Sáez-VasquezJ, EcheverríaM, NakagawaT, Ishiguro S, NakamuraK(2007). Sugar-inducible expression of the nucleolin-1 gene of Arabidopsis thaliana and its role in ribosome synthesis, growth and development.Plant J, 49(6):1053–1063
[54]
Kumar S V, Wigge P A (2010). H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell, 140(1): 136–147
CrossRef Pubmed Google scholar
[55]
Larochelle M, Gaudreau L (2003). H2A.Z has a function reminiscent of an activator required for preferential binding to intergenic DNA. EMBO J, 22: 4512–4522
[56]
Leach T J, Mazzeo M, Chotkowski H L, Madigan J P, Wotring M G, Glaser R L (2000). Histone H2A.Z is widely but nonrandomly distributed in chromosomes of Drosophila melanogaster. J Biol Chem, 275(30): 23267–23272
CrossRef Pubmed Google scholar
[57]
Lever M A, Th’ng J P, Sun X, Hendzel M J (2000). Rapid exchange of histone H1.1 on chromatin in living human cells. Nature, 408(6814): 873–876
CrossRef Pubmed Google scholar
[58]
Li C, Mueller J E, Elfline M, Bryk M (2008). Linker histone H1 represses recombination at the ribosomal DNA locus in the budding yeast Saccharomyces cerevisiae. Mol Microbiol, 67(4): 906–919
CrossRef Pubmed Google scholar
[59]
Liu X, Li B, GorovskyMA (1996). Essential and nonessential histone H2A variants in Tetrahymena thermophila. Mol Cell Biol, 16(8): 4305–4311
Pubmed
[60]
Loppin B, Bonnefoy E, Anselme C, Laurençon A, Karr T L, Couble P (2005). The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus. Nature, 437(7063): 1386–1390
CrossRef Pubmed Google scholar
[61]
Loyola A (2004). Histone chaperones, a supporting role in the limelight. Biochimica et Biophysica Acta (BBA) -. Gene Structure and Expression, 1677: 3–11
[62]
Lu X, Wontakal S N, Emelyanov A V, Morcillo P, Konev A Y, Fyodorov D V, Skoultchi A I (2009). Linker histone H1 is essential for Drosophila development, the establishment of pericentric heterochromatin, and a normal polytene chromosome structure. Genes Dev, 23(4): 452–465
CrossRef Pubmed Google scholar
[63]
Luger K, Mäder A W, Richmond R K, Sargent D F, Richmond T J (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648): 251–260
CrossRef Pubmed Google scholar
[64]
Mahadevaiah S K, Turner J M, Baudat F, Rogakou E P, de Boer P, Blanco-Rodríguez J, Jasin M, Keeney S, Bonner W M, Burgoyne P S (2001). Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet, 27(3): 271–276
CrossRef Pubmed Google scholar
[65]
Malik H S, Henikoff S (2001). Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics, 157(3): 1293–1298
Pubmed
[66]
Malik H S, Henikoff S (2003). Phylogenomics of the nucleosome. Nat Struct Biol, 10(11): 882–891
CrossRef Pubmed Google scholar
[67]
March-Díaz R, García-Domínguez M, Lozano-Juste J, León J, Florencio F J, Reyes J C (2008). Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. Plant J, 53(3): 475–487
CrossRef Pubmed Google scholar
[68]
March-Díaz R, Reyes J C (2009). The beauty of being a variant: H2A.Z and the SWR1 complex in plants. Mol Plant, 2(4): 565–577
CrossRef Pubmed Google scholar
[69]
Meneghini M D, Wu M, Madhani H D (2003). Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell, 112(5): 725–736
CrossRef Pubmed Google scholar
[70]
Misteli T (2009). Self-organization in the genome. Proc Natl Acad Sci USA, 106(17): 6885–6886
CrossRef Pubmed Google scholar
[71]
Misteli T, Gunjan A, Hock R, Bustin M, Brown D T (2000). Dynamic binding of histone H1 to chromatin in living cells. Nature, 408(6814): 877–881
CrossRef Pubmed Google scholar
[72]
Misteli T, Soutoglou E (2009). The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol, 10(4): 243–254
CrossRef Pubmed Google scholar
[73]
Mizuguchi G, Xiao H, Wisniewski J, Smith M M, Wu C (2007). Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell, 129(6): 1153–1164
CrossRef Pubmed Google scholar
[73a]
Mongelard F, Bouvet P(2007). Nucleolin: a multiFACeTed protein.Trends Cell Biol, 17(2): 80–86
[74]
Moore L L, Morrison M, Roth M B (1999). HCP-1, a protein involved in chromosome segregation, is localized to the centromere of mitotic chromosomes in Caenorhabditis elegans. J Cell Biol, 147(3): 471–480
CrossRef Pubmed Google scholar
[75]
Mousson F, Ochsenbein F, Mann C (2007). The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways. Chromosoma, 116(2): 79–93
CrossRef Pubmed Google scholar
[76]
Nagaki K, Kashihara K, Murata M (2005). Visualization of diffuse centromeres with centromere-specific histone H3 in the holocentric plant Luzula nivea. Plant Cell, 17(7): 1886–1893
CrossRef Pubmed Google scholar
[77]
Ng R K, Gurdon J B (2008). Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol, 10(1): 102–109
CrossRef Pubmed Google scholar
[78]
Oishi K, Okano H, Sawa H (2007). RMD-1, a novel microtubule-associated protein, functions in chromosome segregation in Caenorhabditis elegans. J Cell Biol, 179(6): 1149–1162
CrossRef Pubmed Google scholar
[79]
Patterton H G, Landel C C, Landsman D, Peterson C L, Simpson R T (1998). The biochemical and phenotypic characterization of Hho1p, the putative linker histone H1 of Saccharomyces cerevisiae. J Biol Chem, 273(13): 7268–7276
CrossRef Pubmed Google scholar
[80]
Paull T T, Rogakou E P, Yamazaki V, Kirchgessner C U, Gellert M, Bonner W M (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol, 10(15): 886–895
CrossRef Pubmed Google scholar
[81]
Pehrson J R, Fried V A (1992). MacroH2A, a core histone containing a large nonhistone region. Science, 257(5075): 1398–1400
CrossRef Pubmed Google scholar
[81a]
PontvianneF, MatíaI, DouetJ, TourmenteS, MedinaF J, EcheverriaM, Sáez-Vásquez J(2007). Characterization of AtNUC-L1 reveals a central role of nucleolin in nucleolus organization and silencing of AtNUC-L2 gene in Arabidopsis.Mol Biol Cell, 18(2): 369–379
[82]
Ramón A, Muro-Pastor M I, Scazzocchio C, Gonzalez R (2000). Deletion of the unique gene encoding a typical histone H1 has no apparent phenotype in Aspergillus nidulans. Mol Microbiol, 35(1): 223–233
CrossRef Pubmed Google scholar
[83]
Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W (2002). Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev, 12(2): 162–169
CrossRef Pubmed Google scholar
[84]
Sakai A, Schwartz B E, Goldstein S, Ahmad K (2009). Transcriptional and developmental functions of the H3.3 histone variant in Drosophila. Curr Biol, 19(21): 1816–1820
CrossRef Pubmed Google scholar
[85]
Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister A J, Torres-Padilla M E (2010). Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol, 12(9): 853–862
CrossRef Pubmed Google scholar
[86]
Sawatsubashi S, Murata T, Lim J, Fujiki R, Ito S, Suzuki E, Tanabe M, Zhao Y, Kimura S, Fujiyama S, Ueda T, Umetsu D, Ito T, Takeyama K, Kato S (2010). A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor. Genes Dev, 24(2): 159–170
CrossRef Pubmed Google scholar
[87]
Schäfer G, McEvoy C R, Patterton H G (2008). The Saccharomyces cerevisiae linker histone Hho1p is essential for chromatin compaction in stationary phase and is displaced by transcription. Proc Natl Acad Sci USA, 105(39): 14838–14843
CrossRef Pubmed Google scholar
[88]
Schwartz B E, Ahmad K (2005). Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev, 19(7): 804–814
CrossRef Pubmed Google scholar
[89]
Sedelnikova O A, Pilch D R, Redon C, Bonner W M (2003). Histone H2AX in DNA damage and repair. Cancer Biol Ther, 2(3): 233–235
Pubmed
[90]
Shen X, Yu L, Weir J W, Gorovsky M A (1995). Linker histones are not essential and affect chromatin condensation in vivo. Cell, 82(1): 47–56
CrossRef Pubmed Google scholar
[90a]
ShuaibM, OuararhniK, DimitrovS, HamicheA(2010). HJURP binds CENP-A via a highly conserved N-terminal domain and mediates its deposition at centromeres.Proc Natl Acad Sci U S A, 107(4): 1349–1354
[91]
Smith M M (2002). Centromeres and variant histones: what, where, when and why? Curr Opin Cell Biol, 14(3): 279–285
CrossRef Pubmed Google scholar
[92]
Stoler S, Keith K C, Curnick K E, Fitzgerald-Hayes M (1995). A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev, 9(5): 573–586
CrossRef Pubmed Google scholar
[93]
Ström L, Lindroos H B, Shirahige K, Sjögren C (2004). Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell, 16(6): 1003–1015
CrossRef Pubmed Google scholar
[94]
Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004). Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell, 116(1): 51–61
CrossRef Pubmed Google scholar
[95]
Talbert P B, Henikoff S (2010). Histone variants—ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol, 11(4): 264–275
CrossRef Pubmed Google scholar
[96]
Talbert P B, Masuelli R, Tyagi A P, Comai L, Henikoff S (2002). Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell, 14(5): 1053–1066
CrossRef Pubmed Google scholar
[97]
Thiriet C, Hayes J J (2005). Replication-independent core histone dynamics at transcriptionally active loci in vivo. Genes Dev, 19(6): 677–682
CrossRef Pubmed Google scholar
[98]
Ünal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber J E, Koshland D (2004). DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell, 16(6): 991–1002
CrossRef Pubmed Google scholar
[99]
Ushinsky S C, Bussey H, Ahmed A A, Wang Y, Friesen J, Williams B A, Storms R K (1997). Histone H1 in Saccharomyces cerevisiae. Yeast, 13(2): 151–161
CrossRef Pubmed Google scholar
[100]
van Attikum H, Gasser S M (2009). Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol, 19(5): 207–217
CrossRef Pubmed Google scholar
[101]
van Daal A, Elgin S C (1992). A histone variant, H2AvD, is essential in Drosophila melanogaster. Mol Biol Cell, 3(6): 593–602
Pubmed
[102]
van der Heijden G W, Derijck A A, Pósfai E, Giele M, Pelczar P, Ramos L, Wansink D G, van der Vlag J, Peters A H, de Boer P (2007). Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet, 39(2): 251–258
CrossRef Pubmed Google scholar
[103]
Waddington C H (1942). The epigenotype. Endeavour,pp. 18–20.
[104]
Waddington C H (1968). Towards a Theoretical Biology. In: The Basic Ideas of Biology Edinburgh: Edinburgh University Press,pp. 1–32
[105]
Walfridsson J, Bjerling P, Thalen M, Yoo E J, Park S D, Ekwall K (2005). The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres. Nucleic Acids Res, 33(9): 2868–2879
CrossRef Pubmed Google scholar
[106]
Waterborg J H (1991). Multiplicity of histone h3 variants in wheat, barley, rice, and maize. Plant Physiol, 96(2): 453–458
CrossRef Pubmed Google scholar
[107]
West M H, Bonner W M (1980). Histone 2A, a heteromorphous family of eight protein species. Biochemistry, 19(14): 3238–3245
CrossRef Pubmed Google scholar
[107a]
WierzbickiA T, JerzmanowskiA(2005). Suppression of histone H1 genes in Arabidopsis results in heritable developmental defects and stochastic changes in DNA methylation.Genetics, 169(2): 997–1008
[108]
Wu Ct, Morris J R (2001). Genes, genetics, and epigenetics: a correspondence. Science, 293(5532): 1103–1105
CrossRef Pubmed Google scholar
[109]
Zhang Q, Wang Y (2010). HMG modifications and nuclear function. Biochim Biophys Acta, 1799(1–2): 28–36
Pubmed
[110]
Zhang X, Germann S, Blus B J, Khorasanizadeh S, Gaudin V, Jacobsen S E (2007). The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol, 14(9): 869–871
CrossRef Pubmed Google scholar
[111]
Zheng Y, John S, Pesavento J J, Schultz-Norton J R, Schiltz R L, Baek S, Nardulli A M, Hager G L, Kelleher N L, Mizzen C A (2010). Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II. J Cell Biol, 189(3): 407–415
CrossRef Pubmed Google scholar
[112]
Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S (2008). Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature, 456(7218): 125–129
CrossRef Pubmed Google scholar

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 91019006 to Y.F.) and the Chinese Academy of Sciences (No. KSCX2-YW-N-099 to Y.F.)

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(190 KB)

Accesses

Citations

Detail

Sections
Recommended

/