Novel computational biology methods and their applications to drug discovery
Sharangdhar S. PHATAK, Hoang T. TRAN, Shuxing ZHANG
Novel computational biology methods and their applications to drug discovery
Computational biology methods are now firmly entrenched in the drug discovery process. These methods focus on modeling and simulations of biological systems to complement and direct conventional experimental approaches. Two important branches of computational biology include protein homology modeling and the computational biophysics method of molecular dynamics. Protein modeling methods attempt to accurately predict three-dimensional (3D) structures of uncrystallized proteins for subsequent structure-based drug design applications. Molecular dynamics methods aim to elucidate the molecular motions of the static representations of crystallized protein structures. In this review we highlight recent novel methodologies in the field of homology modeling and molecular dynamics. Selected drug discovery applications using these methods conclude the review.
computational biology / drug discovery / homology modeling / molecular dynamics / structure-based drug design
[1] |
Allen M P, Tildesley D J (1989). Computer Simulations of Liquids. New York, Oxford University Press
|
[2] |
Bahar I, Lezon T R, Bakan A, Shrivastava I H (2010). Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem Rev, 110(3): 1463–1497
CrossRef
Pubmed
Google scholar
|
[3] |
Baker D, Sali A (2001). Protein structure prediction and structural genomics. Science, 294(5540): 93–96
CrossRef
Pubmed
Google scholar
|
[4] |
Baker N A, Sept D, Joseph S, Holst M J, McCammon J A (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA, 98(18): 10037–10041
CrossRef
Pubmed
Google scholar
|
[5] |
Barbosa L C, Garrido S S, Garcia A, Delfino D B, Marchetto R (2010). Function inferences from a molecular structural model of bacterial ParE toxin. Bioinformation, 4(10): 438–440
Pubmed
|
[6] |
Barcellos G B, Pauli I, Caceres R A, Timmers L F, Dias R, de Azevedo W F Jr (2008). Molecular modeling as a tool for drug discovery. Curr Drug Targets, 9(12): 1084–1091
CrossRef
Pubmed
Google scholar
|
[7] |
Bond P J, Wee C L, Sansom M S (2008). Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer. Biochemistry, 47(43): 11321–11331
CrossRef
Pubmed
Google scholar
|
[8] |
Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009). Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc, 4(1): 1–13
CrossRef
Pubmed
Google scholar
|
[9] |
Bradley P, Misura K M, Baker D (2005). Toward high-resolution de novo structure prediction for small proteins. Science, 309(5742): 1868–1871
CrossRef
Pubmed
Google scholar
|
[10] |
Brunetti L, Di Stefano M, Ruggieri S, Cimadamore F, Magni G (2010). Homology modeling and deletion mutants of human nicotinamide mononucleotide adenylyltransferase isozyme 2: new insights on structure and function relationship. Protein Sci, 19(12): 2440–2450
CrossRef
Pubmed
Google scholar
|
[11] |
Burley S K, Joachimiak A, Montelione G T, Wilson I A (2008). Contributions to the NIH-NIGMS protein structure initiative from the PSI production centers. Structure, 16(1): 5–11
CrossRef
Pubmed
Google scholar
|
[12] |
Butler K V, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski A P (2010). Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc, 132(31): 10842–10846
CrossRef
Pubmed
Google scholar
|
[13] |
Bystroff C, Krogh A (2008). Hidden Markov Models for prediction of protein features. Methods Mol Biol, 413: 173–198
CrossRef
Pubmed
Google scholar
|
[14] |
B-Rao C, Subramanian J, Sharma S D (2009). Managing protein flexibility in docking and its applications. Drug Discov Today, 14(7-8): 394–400
|
[15] |
Carter P H, Tebben A J (2009). Chapter 12. The use of receptor homology modeling to facilitate the design of selective chemokine receptor antagonists. Methods Enzymol, 461: 249–279
CrossRef
Pubmed
Google scholar
|
[16] |
Cavasotto C N, Orry A J, Murgolo N J, Czarniecki M F, Kocsi S A, Hawes B E, O’Neill K A, Hine H, Burton M S, Voigt J H, Abagyan R A, Bayne M L, Monsma F J Jr (2008). Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. J Med Chem, 51(3): 581–588
CrossRef
Pubmed
Google scholar
|
[17] |
Cavasotto C N, Phatak S S (2009). Homology modeling in drug discovery: current trends and applications. Drug Discov Today, 14(13-14): 676–683
CrossRef
Pubmed
Google scholar
|
[18] |
Cherezov V, Abola E, Stevens R C (2010). Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets. Methods Mol Biol, 654: 141–168
CrossRef
Pubmed
Google scholar
|
[19] |
Chopra G, Kalisman N, Levitt M (2010). Consistent refinement of submitted models at CASP using a knowledge-based potential. Proteins, 78(12): 2668–2678
Pubmed
|
[20] |
Colizzi F, Perozzo R, Scapozza L, Recanatini M, Cavalli A (2010). Single-molecule pulling simulations can discern active from inactive enzyme inhibitors. J Am Chem Soc, 132(21): 7361–7371
CrossRef
Pubmed
Google scholar
|
[21] |
Cornell W, Nam K (2009). Steroid hormone binding receptors: application of homology modeling, induced fit docking, and molecular dynamics to study structure-function relationships. Curr Top Med Chem, 9(9): 844–853
CrossRef
Pubmed
Google scholar
|
[22] |
Coumar M S, Chu C Y, Lin C W, Shiao H Y, Ho Y L, Reddy R, Lin W H, Chen C H, Peng Y H, Leou J S, Lien T W, Huang C T, Fang M Y, Wu S H, Wu J S, Chittimalla S K, Song J S, Hsu J T, Wu S Y, Liao C C, Chao Y S, Hsieh H P (2010). Fast-forwarding hit to lead: aurora and epidermal growth factor receptor kinase inhibitor lead identification. J Med Chem, 53(13): 4980–4988
CrossRef
Pubmed
Google scholar
|
[23] |
Cozzetto D, Tramontano A (2008). Advances and pitfalls in protein structure prediction. Curr Protein Pept Sci, 9(6): 567–577
CrossRef
Pubmed
Google scholar
|
[24] |
Cozzini P, Kellogg G E, Spyrakis F, Abraham D J, Costantino G, Emerson A, Fanelli F, Gohlke H, Kuhn L A, Morris G M, Orozco M, Pertinhez T A, Rizzi M, Sotriffer C A (2008). Target flexibility: an emerging consideration in drug discovery and design. J Med Chem, 51(20): 6237–6255
CrossRef
Pubmed
Google scholar
|
[25] |
Daga P R, Patel R Y, Doerksen R J (2010). Template-based protein modeling: recent methodological advances. Curr Top Med Chem, 10(1): 84–94
CrossRef
Pubmed
Google scholar
|
[26] |
Das R, Baker D (2008). Macromolecular modeling with rosetta. Annu Rev Biochem, 77(1): 363–382
CrossRef
Pubmed
Google scholar
|
[27] |
Das R, Qian B, Raman S, Vernon R, Thompson J, Bradley P, Khare S, Tyka M D, Bhat D, Chivian D, Kim D E, Sheffler W H, Malmström L, Wollacott A M, Wang C, Andre I, Baker D (2007). Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins, 69(S8 Suppl 8): 118–128
CrossRef
Pubmed
Google scholar
|
[28] |
Deng Y, Roux B (2009). Computations of standard binding free energies with molecular dynamics simulations. J Phys Chem B, 113(8): 2234–2246
CrossRef
Pubmed
Google scholar
|
[29] |
Deschavanne P, Tufféry P (2009). Enhanced protein fold recognition using a structural alphabet. Proteins, 76(1): 129–137
CrossRef
Pubmed
Google scholar
|
[30] |
Dessailly B H, Nair R, Jaroszewski L, Fajardo J E, Kouranov A, Lee D, Fiser A, Godzik A, Rost B, Orengo C (2009). PSI-2: structural genomics to cover protein domain family space. Structure, 17(6): 869–881
CrossRef
Pubmed
Google scholar
|
[31] |
Diaz P, Phatak S S, Xu J, Astruc-Diaz F, Cavasotto C N, Naguib M (2009a). 6-Methoxy-N-alkyl isatin acylhydrazone derivatives as a novel series of potent selective cannabinoid receptor 2 inverse agonists: design, synthesis, and binding mode prediction. J Med Chem, 52(2): 433–444
CrossRef
Pubmed
Google scholar
|
[32] |
Diaz P, Phatak S S, Xu J, Fronczek F R, Astruc-Diaz F, Thompson C M, Cavasotto C N, Naguib M (2009b). 2,3-Dihydro-1-benzofuran derivatives as a series of potent selective cannabinoid receptor 2 agonists: design, synthesis, and binding mode prediction through ligand-steered modeling. ChemMedChem, 4(10): 1615–1629
CrossRef
Pubmed
Google scholar
|
[33] |
Duan J, Wu J, Cheng Y, Duan R D (2010). Understanding the molecular activity of alkaline sphingomyelinase (NPP7) by computer modeling. Biochemistry, 49(42): 9096–9105
CrossRef
Pubmed
Google scholar
|
[34] |
Dunbrack R L Jr (2006). Sequence comparison and protein structure prediction. Curr Opin Struct Biol, 16(3): 374–384
CrossRef
Pubmed
Google scholar
|
[35] |
Engels K, Beyer C, Suárez Fernández M L, Bender F, Gassel M, Unden G, Marhöfer R J, Mottram J C, Selzer P M (2010). Inhibition of Eimeria tenella CDK-related kinase 2: From target identification to lead compounds. ChemMedChem, 5(8): 1259–1271
CrossRef
Pubmed
Google scholar
|
[36] |
Evers A, Gohlke H, Klebe G (2003). Ligand-supported homology modelling of protein binding-sites using knowledge-based potentials. J Mol Biol, 334(2): 327–345
CrossRef
Pubmed
Google scholar
|
[37] |
Evers A, Klebe G (2004). Successful virtual screening for a submicromolar antagonist of the neurokinin-1 receptor based on a ligand-supported homology model. J Med Chem, 47(22): 5381–5392
CrossRef
Pubmed
Google scholar
|
[38] |
Fariselli P, Rossi I, Capriotti E, Casadio R (2007). The WWWH of remote homolog detection: the state of the art. Brief Bioinform, 8(2): 78–87
CrossRef
Pubmed
Google scholar
|
[39] |
Frenkel D, Smit B (2002). Understanding Molecular Simulations: From Algorithms to Applications. San Diego, Academic Press
|
[40] |
Fujitani H, Tanida Y, Ito M, Jayachandran G, Snow C D, Shirts M R, Sorin E J, Pande V S (2005). Direct calculation of the binding free energies of FKBP ligands. J Chem Phys, 123(8): 084108
CrossRef
Pubmed
Google scholar
|
[41] |
Ge X, Roux B (2010). Absolute binding free energy calculations of sparsomycin analogs to the bacterial ribosome. J Phys Chem B, 114(29): 9525–9539
CrossRef
Pubmed
Google scholar
|
[42] |
Gerek Z N, Ozkan S B (2010). A flexible docking scheme to explore the binding selectivity of PDZ domains. Protein Sci, 19(5): 914–928
Pubmed
|
[43] |
Ginalski K (2006). Comparative modeling for protein structure prediction. Curr Opin Struct Biol, 16(2): 172–177
CrossRef
Pubmed
Google scholar
|
[44] |
Goodsell D S, Morris G M, Olson A J (1996). Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit, 9(1): 1–5
CrossRef
Pubmed
Google scholar
|
[45] |
Grant M A (2009). Protein structure prediction in structure-based ligand design and virtual screening. Comb Chem High Throughput Screen, 12(10): 940–960
CrossRef
Pubmed
Google scholar
|
[46] |
Gruber C W, Muttenthaler M, Freissmuth M (2010). Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors. Curr Pharm Des, 16(28): 3071–3088
CrossRef
Pubmed
Google scholar
|
[47] |
Grünberg R, Nilges M, Leckner J (2007). Biskit—a software platform for structural bioinformatics. Bioinformatics, 23(6): 769–770
CrossRef
Pubmed
Google scholar
|
[48] |
Hildebrand A, Remmert M, Biegert A, Söding J (2009). Fast and accurate automatic structure prediction with HHpred. Proteins, 77(S9 Suppl 9): 128–132
CrossRef
Pubmed
Google scholar
|
[49] |
Holford N, Ma S C, Ploeger B A (2010). Clinical trial simulation: a review. Clin Pharmacol Ther, 88(2): 166–182
CrossRef
Pubmed
Google scholar
|
[50] |
Hou T, Wang J, Li Y Y, Wang W (2011). Assessing the performance of the MM/PBSA and MM/GBSA Methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model, 51(1): 69–82
|
[51] |
Hu H, He L Y, Gong Z, Li N, Lu Y N, Zhai Q W, Liu H, Jiang H L, Zhu W L, Wang H Y (2009). A novel class of antagonists for the FFAs receptor GPR40. Biochem Biophys Res Commun, 390(3): 557–563
CrossRef
Pubmed
Google scholar
|
[52] |
Irwin J J, Shoichet B K (2005). ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model, 45(1): 177–182
CrossRef
Pubmed
Google scholar
|
[53] |
Jamieson C, Basten S, Campbell R A, Cumming I A, Gillen K J, Gillespie J, Kazemier B, Kiczun M, Lamont Y, Lyons A J, Maclean J K, Moir E M, Morrow J A, Papakosta M, Rankovic Z, Smith L (2010). A novel series of positive modulators of the AMPA receptor: discovery and structure based hit-to-lead studies. Bioorg Med Chem Lett, 20(19): 5753–5756
CrossRef
Pubmed
Google scholar
|
[54] |
Jayalakshmi R, Natarajan R, Vivekanandan M, Natarajan G S (2010). Alignment-free sequence comparison using N-dimensional similarity space. Curr Comput Aided Drug Des, 6(4): 290–296
Pubmed
|
[55] |
Jiao D, Golubkov P A, Darden T A, Ren P (2008). Calculation of protein-ligand binding free energy by using a polarizable potential. Proc Natl Acad Sci USA, 105(17): 6290–6295
CrossRef
Pubmed
Google scholar
|
[56] |
Jiao D, Zhang J, Duke R E, Li G, Schnieders M J, Ren P (2009). Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential. J Comput Chem, 30(11): 1701–1711
CrossRef
Pubmed
Google scholar
|
[57] |
Kannan S, Zacharias M (2010). Application of biasing-potential replica-exchange simulations for loop modeling and refinement of proteins in explicit solvent. Proteins, 78(13): 2809–2819
CrossRef
Pubmed
Google scholar
|
[58] |
Karplus K (2009). SAM-T08, HMM-based protein structure prediction. Nucleic Acids Res, 37(Suppl 2): W492–W497
|
[59] |
Kaufmann K W, Lemmon G H, Deluca S L, Sheehan J H, Meiler J (2010). Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry, 49(14): 2987–2998
CrossRef
Pubmed
Google scholar
|
[60] |
Khalili-Araghi F, Gumbart J, Wen P C, Sotomayor M, Tajkhorshid E, Schulten K (2009). Molecular dynamics simulations of membrane channels and transporters. Curr Opin Struct Biol, 19(2): 128–137
CrossRef
Pubmed
Google scholar
|
[61] |
Kikugawa G, Apostolov R, Kamiya N, Taiji M, Himeno R, Nakamura H, Yonezawa Y (2009). Application of MDGRAPE-3, a special purpose board for molecular dynamics simulations, to periodic biomolecular systems. J Comput Chem, 30(1): 110–118
CrossRef
Pubmed
Google scholar
|
[62] |
Kim D E, Chivian D, Baker D (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res, 32(Suppl 2): W526–W531
|
[63] |
Kimura S R, Tebben A J, Langley D R (2008). Expanding GPCR homology model binding sites via a balloon potential: A molecular dynamics refinement approach. Proteins, 71(4): 1919–1929
CrossRef
Pubmed
Google scholar
|
[64] |
Kiran M, Coakley S, Walkinshaw N, McMinn P, Holcombe M (2008). Validation and discovery from computational biology models. Biosystems, 93(1-2): 141–150
CrossRef
Pubmed
Google scholar
|
[65] |
Klepeis J L, Lindorff-Larsen K, Dror R O, Shaw D E (2009). Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol, 19(2): 120–127
CrossRef
Pubmed
Google scholar
|
[66] |
Kortagere S, Cheng S Y, Antonio T, Zhen J, Reith M E, Dutta A K (2011). Interaction of novel hybrid compounds with the D3 dopamine receptor: Site-directed mutagenesis and homology modeling studies. Biochem Pharmacol, 81(1): 157–163
CrossRef
Pubmed
Google scholar
|
[67] |
Kryshtafovych A, Fidelis K (2009). Protein structure prediction and model quality assessment. Drug Discov Today, 14(7-8): 386–393
CrossRef
Pubmed
Google scholar
|
[68] |
Kubarenko A, Frank M, Weber A N (2007). Structure-function relationships of Toll-like receptor domains through homology modelling and molecular dynamics. Biochem Soc Trans, 35(Pt 6): 1515–1518
CrossRef
Pubmed
Google scholar
|
[69] |
Kurkcuoglu O, Bates P A (2010). Mechanism of cohesin loading onto chromosomes: a conformational dynamics study. Biophys J, 99(4): 1212–1220
CrossRef
Pubmed
Google scholar
|
[70] |
Kutzner C, van der Spoel D, Fechner M, Lindahl E, Schmitt U W, de Groot B L, Grubmüller H (2007). Speeding up parallel GROMACS on high-latency networks. J Comput Chem, 28(12): 2075–2084
CrossRef
Pubmed
Google scholar
|
[71] |
Lampros C, Papaloukas C, Exarchos K, Fotiadis D I, Tsalikakis D (2009). Improving the protein fold recognition accuracy of a reduced state-space Hidden Markov model. Comput Biol Med, 39(10): 907–914
CrossRef
Pubmed
Google scholar
|
[72] |
Larsson P, Wallner B, Lindahl E, Elofsson A (2008). Using multiple templates to improve quality of homology models in automated homology modeling. Protein Sci, 17(6): 990–1002
CrossRef
Pubmed
Google scholar
|
[73] |
Laursen L (2009). Computational biology: Biological logic. Nature, 462(7272): 408–410
CrossRef
Pubmed
Google scholar
|
[74] |
Leach A R (2001). Molecular Modeling: Principles and Applications. Dorset, Pearson Education Ltd.
|
[75] |
Lee M M, Bundschuh R, Chan M K (2008). Distant homology detection using a LEngth and STructure-based sequence Alignment Tool (LESTAT). Proteins, 71(3): 1409–1419
CrossRef
Pubmed
Google scholar
|
[76] |
Lin J H, Perryman A L, Schames J R, McCammon J A (2002). Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc, 124(20): 5632–5633
CrossRef
Pubmed
Google scholar
|
[77] |
Lindahl E, Sansom M S (2008). Membrane proteins: molecular dynamics simulations. Curr Opin Struct Biol, 18(4): 425–431
CrossRef
Pubmed
Google scholar
|
[78] |
Liphardt J, Dumont S, Smith S B, Tinoco I Jr, Bustamante C (2002). Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science, 296(5574): 1832–1835
CrossRef
Pubmed
Google scholar
|
[79] |
Lobley A, Sadowski M I, Jones D T (2009). pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics, 25(14): 1761–1767
CrossRef
Pubmed
Google scholar
|
[80] |
Lu G, Zhang S, Fang X (2008). An improved string composition method for sequence comparison. BMC Bioinformatics, 9(Suppl 6): S15
CrossRef
Pubmed
Google scholar
|
[81] |
Malmström L, Goodlett D R (2010). Protein structure modeling. Methods Mol Biol, 673: 63–72
CrossRef
Pubmed
Google scholar
|
[82] |
Marco E, Gago F (2007). Overcoming the inadequacies or limitations of experimental structures as drug targets by using computational modeling tools and molecular dynamics simulations. ChemMedChem, 2(10): 1388–1401
CrossRef
Pubmed
Google scholar
|
[83] |
Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H (2007). The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B, 111(27): 7812–7824
CrossRef
Pubmed
Google scholar
|
[84] |
Medina-Franco J L, Lopez-Vallejo F, Kuck D, Lyko F (2010). Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers,
CrossRef
Google scholar
|
[85] |
Michino M, Chen J, Stevens R C, Brooks C L 3rd (2010). FoldGPCR: structure prediction protocol for the transmembrane domain of G protein-coupled receptors from class A. Proteins, 78(10): 2189–2201
CrossRef
Pubmed
Google scholar
|
[86] |
Montelione G T, Szyperski T (2010). Advances in protein NMR provided by the NIGMS Protein Structure Initiative: impact on drug discovery. Curr Opin Drug Discov Devel, 13(3): 335–349
Pubmed
|
[87] |
Mooney C, Pollastri G (2009). Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information. Proteins, 77(1): 181–190
CrossRef
Pubmed
Google scholar
|
[88] |
Moro S, Deflorian F, Bacilieri M, Spalluto G (2006). Ligand-based homology modeling as attractive tool to inspect GPCR structural plasticity. Curr Pharm Des, 12(17): 2175–2185
CrossRef
Pubmed
Google scholar
|
[89] |
Morra G, Meli M, Colombo G (2008). Molecular dynamics simulations of proteins and peptides: from folding to drug design. Curr Protein Pept Sci, 9(2): 181–196
CrossRef
Pubmed
Google scholar
|
[90] |
Mortier J, Frederick R, Ganeff C, Remouchamps C, Talaga P, Pochet L, Wouters J, Piette J, Dejardin E, Masereel B (2010). Pyrazolo[4,3-c]isoquinolines as potential inhibitors of NF-kappaB activation. Biochem Pharmacol, 79(10): 1462–1472
CrossRef
Pubmed
Google scholar
|
[91] |
Mortier J, Masereel B, Remouchamps C, Ganeff C, Piette J, Frederick R (2010). NF-kappaB inducing kinase (NIK) inhibitors: identification of new scaffolds using virtual screening. Bioorg Med Chem Lett, 20(15): 4515–4520
CrossRef
Pubmed
Google scholar
|
[92] |
Muddassar M, Jang J W, Hong S K, Cho Y S, Kim E E, Keum K C, Oh T, Cho S N, Pae A N (2010). Identification of novel antitubercular compounds through hybrid virtual screening approach. Bioorg Med Chem, 18(18): 6914–6921
CrossRef
Pubmed
Google scholar
|
[93] |
Murumkar P R, Zambre V P, Yadav M R (2010). Development of predictive pharmacophore model for in silico screening, and 3D QSAR CoMFA and CoMSIA studies for lead optimization, for designing of potent tumor necrosis factor alpha converting enzyme inhibitors. J Comput Aided Mol Des, 24(2): 143–156
CrossRef
Pubmed
Google scholar
|
[94] |
Myler P J, Stacy R, Stewart L, Staker B L, Van Voorhis W C, Varani G, Buchko G W (2009). The Seattle Structural Genomics Center for Infectious Disease (SSGCID). Infect Disord Drug Targets, 9(5): 493–506
CrossRef
Pubmed
Google scholar
|
[95] |
Neves M A, Simões S, Sá e Melo M L (2010). Ligand-guided optimization of CXCR4 homology models for virtual screening using a multiple chemotype approach. J Comput Aided Mol Des, 24(12): 1023–1033
CrossRef
Pubmed
Google scholar
|
[96] |
Obungu V H, Gelfanova V, Rathnachalam R, Bailey A, Sloan-Lancaster J, Huang L (2009). Determination of the mechanism of action of anti-FasL antibody by epitope mapping and homology modeling. Biochemistry, 48(30): 7251–7260
CrossRef
Pubmed
Google scholar
|
[97] |
Odell L R, Howan D, Gordon C P, Robertson M J, Chau N, Mariana A, Whiting A E, Abagyan R, Daniel J A, Gorgani N N, Robinson P J, McCluskey A (2010). The pthaladyns: GTP competitive inhibitors of dynamin I and II GTPase derived from virtual screening. J Med Chem, 53(14): 5267–5280
CrossRef
Pubmed
Google scholar
|
[98] |
Ogata K, Isomura T, Kawata S, Yamashita H, Kubodera H, Wodak S J (2010). Lead generation and optimization based on protein-ligand complementarity. Molecules, 15(6): 4382–4400
CrossRef
Pubmed
Google scholar
|
[99] |
Okimoto N, Futatsugi N, Fuji H, Suenaga A, Morimoto G, Yanai R, Ohno Y, Narumi T, Taiji M (2010). High-performance drug discovery: Computational screening by combining docking and molecular dynamics simulations. PLoS Comp Bio, 5(10): e1000528
|
[100] |
Okumura H, Gallicchio E, Levy R M (2010). Conformational populations of ligand-sized molecules by replica exchange molecular dynamics and temperature reweighting. J Comput Chem, 31(7): 1357–1367
Pubmed
|
[101] |
Ostrov D A, Magis A T, Wronski T J, Chan E K, Toro E J, Donatelli R E, Sajek K, Haroun I N, Nagib M I, Piedrahita A, Harris A, Holliday L S (2009). Identification of enoxacin as an inhibitor of osteoclast formation and bone resorption by structure-based virtual screening. J Med Chem, 52(16): 5144–5151
CrossRef
Pubmed
Google scholar
|
[102] |
Pandit S A, Scott H L (2009). Multiscale simulations of heterogeneous model membranes. Biochim Biophys Acta, 1788(1): 136–148
CrossRef
Pubmed
Google scholar
|
[103] |
Pecic S, Makkar P, Chaudhary S, Reddy B V, Navarro H A, Harding W W (2010). Affinity of aporphines for the human 5-HT2A receptor: insights from homology modeling and molecular docking studies. Bioorg Med Chem, 18(15): 5562–5575
CrossRef
Pubmed
Google scholar
|
[104] |
Peng J, Xu J (2010). Low-homology protein threading. Bioinformatics, 26(12): i294–i300
CrossRef
Pubmed
Google scholar
|
[105] |
Phatak S S, Clifford C S,
CrossRef
Google scholar
|
[106] |
Phatak S S, Gatica E A, Cavasotto C N (2010). Ligand-steered modeling and docking: a benchmarking study in class a g-protein-coupled receptors. J Chem Inf Model, 50(12): 2119–2128
CrossRef
Pubmed
Google scholar
|
[107] |
Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kalé L, Schulten K (2005). Scalable molecular dynamics with NAMD. J Comput Chem, 26(16): 1781–1802
CrossRef
Pubmed
Google scholar
|
[108] |
Postigo M P, Guido R V, Oliva G, Castilho M S, da R Pitta I, de Albuquerque J F, Andricopulo A D (2010). Discovery of new inhibitors of Schistosoma mansoni PNP by pharmacophore-based virtual screening. J Chem Inf Model, 50(9): 1693–1705
CrossRef
Pubmed
Google scholar
|
[109] |
Radestock S, Weil T, Renner S (2008). Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring. J Chem Inf Model, 48(5): 1104–1117
CrossRef
Pubmed
Google scholar
|
[110] |
Rai B K, Tawa G J, Katz A H, Humblet C (2010). Modeling G protein-coupled receptors for structure-based drug discovery using low-frequency normal modes for refinement of homology models: application to H3 antagonists. Proteins, 78(2): 457–473
CrossRef
Pubmed
Google scholar
|
[111] |
Rajman I (2008). PK/PD modelling and simulations: utility in drug development. Drug Discov Today, 13(7-8): 341–346
CrossRef
Pubmed
Google scholar
|
[112] |
Roy A, Kucukural A, Zhang Y (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc, 5(4): 725–738
CrossRef
Pubmed
Google scholar
|
[113] |
Sansom M S, Scott K A, Bond P J (2008). Coarse-grained simulation: a high-throughput computational approach to membrane proteins. Biochem Soc Trans, 36(Pt 1): 27–32
CrossRef
Pubmed
Google scholar
|
[114] |
Shaw D E, Chao J C, Eastwood M P, Gagliardo J, Grossman J P, Ho C R, Ierardi D J, Kolossváry I, Klepeis J L, Layman T, McLeavey C, Deneroff M M, Moraes M A, Mueller R, Priest E C, Shan Y, Spengler J, Theobald M, Towles B, Wang S C, Dror R O, Kuskin J S, Larson R H, Salmon J K, Young C, Batson B, Bowers K J (2007). Anton, a special-purpose machine for molecular dynamics simulation. ACM SIGARCH Computer Architecture News, 35(2): 1–12
CrossRef
Google scholar
|
[115] |
Shirts M R, Pande V S (2005). Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration. J Chem Phys, 122(14): 144107
CrossRef
Pubmed
Google scholar
|
[116] |
Sierecki E, Sinko W, McCammon J A, Newton A C (2010). Discovery of small molecule inhibitors of the PH domain leucine-rich repeat protein phosphatase (PHLPP) by chemical and virtual screening. J Med Chem, 53(19): 6899–6911
CrossRef
Pubmed
Google scholar
|
[117] |
Sisay M T, Steinmetzer T, Stirnberg M, Maurer E, Hammami M, Bajorath J, Gütschow M (2010). Identification of the first low-molecular-weight inhibitors of matriptase-2. J Med Chem, 53(15): 5523–5535
CrossRef
Pubmed
Google scholar
|
[118] |
Stone J E, Hardy D J, Ufimtsev I S, Schulten K (2010). GPU-accelerated molecular modeling coming of age. J Mol Graph Model, 29(2): 116–125
CrossRef
Pubmed
Google scholar
|
[119] |
Stumpff-Kane A W, Maksimiak K, Lee M S, Feig M (2008). Sampling of near-native protein conformations during protein structure refinement using a coarse-grained model, normal modes, and molecular dynamics simulations. Proteins, 70(4): 1345–1356
CrossRef
Pubmed
Google scholar
|
[120] |
Sugita Y, Okamoto Y (1999). Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett, 314(1-2): 141–151
CrossRef
Google scholar
|
[121] |
Talele T T, Arora P, Kulkarni S S, Patel M R, Singh S, Chudayeu M, Kaushik-Basu N (2010). Structure-based virtual screening, synthesis and SAR of novel inhibitors of hepatitis C virus NS5B polymerase. Bioorg Med Chem, 18(13): 4630–4638
|
[122] |
Trojanowski S, Rutkowska A, Kolinski A (2010). TRACER. A new approach to comparative modeling that combines threading with free-space conformational sampling. Acta Biochim Pol, 57(1): 125–133
Pubmed
|
[123] |
Verdonk M L, Cole J C, Hartshorn M J, Murray C W, Taylor R D (2003). Improved protein-ligand docking using GOLD. Proteins, 52(4): 609–623
CrossRef
Pubmed
Google scholar
|
[124] |
Walsh I, Baù D, Martin A J, Mooney C, Vullo A, Pollastri G (2009). Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks. BMC Struct Biol, 9(1): 5
CrossRef
Pubmed
Google scholar
|
[125] |
Weigelt J (2010). Structural genomics-impact on biomedicine and drug discovery. Exp Cell Res, 316(8): 1332–1338
CrossRef
Pubmed
Google scholar
|
[126] |
White S H (2004). The progress of membrane protein structure determination. Protein Sci, 13(7): 1948–1949
CrossRef
Pubmed
Google scholar
|
[127] |
Wichapong K, Pianwanit S, Sippl W, Kokpol S (2010). Homology modeling and molecular dynamics simulations of Dengue virus NS2B/NS3 protease: insight into molecular interaction. J Mol Recognit, 23(3): 283–300
Pubmed
|
[128] |
Wu S, Skolnick J, Zhang Y (2007). Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol, 5(1): 17
CrossRef
Pubmed
Google scholar
|
[129] |
Xiang Z (2006). Advances in homology protein structure modeling. Curr Protein Pept Sci, 7(3): 217–227
CrossRef
Pubmed
Google scholar
|
[130] |
Yan R X, Si J N, Wang C, Zhang Z (2009). DescFold: a web server for protein fold recognition. BMC Bioinformatics, 10(1): 416
CrossRef
Pubmed
Google scholar
|
[131] |
Yang L J, Zou J, Xie H Z, Li L L, Wei Y Q, Yang S Y (2009). Steered molecular dynamics simulations reveal the likelier dissociation pathway of imatinib from its targeting kinases c-Kit and Abl. PLoS ONE, 4(12): e8470
CrossRef
Pubmed
Google scholar
|
[132] |
Yao L, Evans J A, Rzhetsky A (2009). Novel opportunities for computational biology and sociology in drug discovery. Trends Biotechnol, 27(9): 531–540
CrossRef
Pubmed
Google scholar
|
[133] |
Ying Y, Huang K, Campbell C (2009). Enhanced protein fold recognition through a novel data integration approach. BMC Bioinformatics, 10(1): 267
CrossRef
Pubmed
Google scholar
|
[134] |
Zhang Y (2008). Progress and challenges in protein structure prediction. Curr Opin Struct Biol, 18(3): 342–348
CrossRef
Pubmed
Google scholar
|
[135] |
Zhou H, Skolnick J (2010). Improving threading algorithms for remote homology modeling by combining fragment and template comparisons. Proteins, 78(9): 2041–2048
Pubmed
|
[136] |
Zhu J, Cheng L, Fang Q, Zhou Z H, Honig B (2010). Building and refining protein models within cryo-electron microscopy density maps based on homology modeling and multiscale structure refinement. J Mol Biol, 397(3): 835–851
CrossRef
Pubmed
Google scholar
|
[137] |
Zhu J, Fan H, Periole X, Honig B, Mark A E (2008). Refining homology models by combining replica-exchange molecular dynamics and statistical potentials. Proteins, 72(4): 1171–1188
CrossRef
Pubmed
Google scholar
|
[138] |
Zwier M C, Chong L T (2010). Reaching biological timescales with all-atom molecular dynamics simulations. Curr Opin Pharmacol, 10(6): 745–752
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |