Novel computational biology methods and their applications to drug discovery

Sharangdhar S. PHATAK , Hoang T. TRAN , Shuxing ZHANG

Front. Biol. ›› 2011, Vol. 6 ›› Issue (4) : 289 -299.

PDF (334KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (4) : 289 -299. DOI: 10.1007/s11515-011-1125-7
REVIEW
REVIEW

Novel computational biology methods and their applications to drug discovery

Author information +
History +
PDF (334KB)

Abstract

Computational biology methods are now firmly entrenched in the drug discovery process. These methods focus on modeling and simulations of biological systems to complement and direct conventional experimental approaches. Two important branches of computational biology include protein homology modeling and the computational biophysics method of molecular dynamics. Protein modeling methods attempt to accurately predict three-dimensional (3D) structures of uncrystallized proteins for subsequent structure-based drug design applications. Molecular dynamics methods aim to elucidate the molecular motions of the static representations of crystallized protein structures. In this review we highlight recent novel methodologies in the field of homology modeling and molecular dynamics. Selected drug discovery applications using these methods conclude the review.

Keywords

computational biology / drug discovery / homology modeling / molecular dynamics / structure-based drug design

Cite this article

Download citation ▾
Sharangdhar S. PHATAK, Hoang T. TRAN, Shuxing ZHANG. Novel computational biology methods and their applications to drug discovery. Front. Biol., 2011, 6(4): 289-299 DOI:10.1007/s11515-011-1125-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen M P, Tildesley D J (1989). Computer Simulations of Liquids. New York, Oxford University Press

[2]

Bahar I, Lezon T R, Bakan A, Shrivastava I H (2010). Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem Rev, 110(3): 1463–1497

[3]

Baker D, Sali A (2001). Protein structure prediction and structural genomics. Science, 294(5540): 93–96

[4]

Baker N A, Sept D, Joseph S, Holst M J, McCammon J A (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA, 98(18): 10037–10041

[5]

Barbosa L C, Garrido S S, Garcia A, Delfino D B, Marchetto R (2010). Function inferences from a molecular structural model of bacterial ParE toxin. Bioinformation, 4(10): 438–440

[6]

Barcellos G B, Pauli I, Caceres R A, Timmers L F, Dias R, de Azevedo W F Jr (2008). Molecular modeling as a tool for drug discovery. Curr Drug Targets, 9(12): 1084–1091

[7]

Bond P J, Wee C L, Sansom M S (2008). Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer. Biochemistry, 47(43): 11321–11331

[8]

Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009). Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc, 4(1): 1–13

[9]

Bradley P, Misura K M, Baker D (2005). Toward high-resolution de novo structure prediction for small proteins. Science, 309(5742): 1868–1871

[10]

Brunetti L, Di Stefano M, Ruggieri S, Cimadamore F, Magni G (2010). Homology modeling and deletion mutants of human nicotinamide mononucleotide adenylyltransferase isozyme 2: new insights on structure and function relationship. Protein Sci, 19(12): 2440–2450

[11]

Burley S K, Joachimiak A, Montelione G T, Wilson I A (2008). Contributions to the NIH-NIGMS protein structure initiative from the PSI production centers. Structure, 16(1): 5–11

[12]

Butler K V, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski A P (2010). Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc, 132(31): 10842–10846

[13]

Bystroff C, Krogh A (2008). Hidden Markov Models for prediction of protein features. Methods Mol Biol, 413: 173–198

[14]

B-Rao C, Subramanian J, Sharma S D (2009). Managing protein flexibility in docking and its applications. Drug Discov Today, 14(7-8): 394–400

[15]

Carter P H, Tebben A J (2009). Chapter 12. The use of receptor homology modeling to facilitate the design of selective chemokine receptor antagonists. Methods Enzymol, 461: 249–279

[16]

Cavasotto C N, Orry A J, Murgolo N J, Czarniecki M F, Kocsi S A, Hawes B E, O’Neill K A, Hine H, Burton M S, Voigt J H, Abagyan R A, Bayne M L, Monsma F J Jr (2008). Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. J Med Chem, 51(3): 581–588

[17]

Cavasotto C N, Phatak S S (2009). Homology modeling in drug discovery: current trends and applications. Drug Discov Today, 14(13-14): 676–683

[18]

Cherezov V, Abola E, Stevens R C (2010). Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets. Methods Mol Biol, 654: 141–168

[19]

Chopra G, Kalisman N, Levitt M (2010). Consistent refinement of submitted models at CASP using a knowledge-based potential. Proteins, 78(12): 2668–2678

[20]

Colizzi F, Perozzo R, Scapozza L, Recanatini M, Cavalli A (2010). Single-molecule pulling simulations can discern active from inactive enzyme inhibitors. J Am Chem Soc, 132(21): 7361–7371

[21]

Cornell W, Nam K (2009). Steroid hormone binding receptors: application of homology modeling, induced fit docking, and molecular dynamics to study structure-function relationships. Curr Top Med Chem, 9(9): 844–853

[22]

Coumar M S, Chu C Y, Lin C W, Shiao H Y, Ho Y L, Reddy R, Lin W H, Chen C H, Peng Y H, Leou J S, Lien T W, Huang C T, Fang M Y, Wu S H, Wu J S, Chittimalla S K, Song J S, Hsu J T, Wu S Y, Liao C C, Chao Y S, Hsieh H P (2010). Fast-forwarding hit to lead: aurora and epidermal growth factor receptor kinase inhibitor lead identification. J Med Chem, 53(13): 4980–4988

[23]

Cozzetto D, Tramontano A (2008). Advances and pitfalls in protein structure prediction. Curr Protein Pept Sci, 9(6): 567–577

[24]

Cozzini P, Kellogg G E, Spyrakis F, Abraham D J, Costantino G, Emerson A, Fanelli F, Gohlke H, Kuhn L A, Morris G M, Orozco M, Pertinhez T A, Rizzi M, Sotriffer C A (2008). Target flexibility: an emerging consideration in drug discovery and design. J Med Chem, 51(20): 6237–6255

[25]

Daga P R, Patel R Y, Doerksen R J (2010). Template-based protein modeling: recent methodological advances. Curr Top Med Chem, 10(1): 84–94

[26]

Das R, Baker D (2008). Macromolecular modeling with rosetta. Annu Rev Biochem, 77(1): 363–382

[27]

Das R, Qian B, Raman S, Vernon R, Thompson J, Bradley P, Khare S, Tyka M D, Bhat D, Chivian D, Kim D E, Sheffler W H, Malmström L, Wollacott A M, Wang C, Andre I, Baker D (2007). Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins, 69(S8 Suppl 8): 118–128

[28]

Deng Y, Roux B (2009). Computations of standard binding free energies with molecular dynamics simulations. J Phys Chem B, 113(8): 2234–2246

[29]

Deschavanne P, Tufféry P (2009). Enhanced protein fold recognition using a structural alphabet. Proteins, 76(1): 129–137

[30]

Dessailly B H, Nair R, Jaroszewski L, Fajardo J E, Kouranov A, Lee D, Fiser A, Godzik A, Rost B, Orengo C (2009). PSI-2: structural genomics to cover protein domain family space. Structure, 17(6): 869–881

[31]

Diaz P, Phatak S S, Xu J, Astruc-Diaz F, Cavasotto C N, Naguib M (2009a). 6-Methoxy-N-alkyl isatin acylhydrazone derivatives as a novel series of potent selective cannabinoid receptor 2 inverse agonists: design, synthesis, and binding mode prediction. J Med Chem, 52(2): 433–444

[32]

Diaz P, Phatak S S, Xu J, Fronczek F R, Astruc-Diaz F, Thompson C M, Cavasotto C N, Naguib M (2009b). 2,3-Dihydro-1-benzofuran derivatives as a series of potent selective cannabinoid receptor 2 agonists: design, synthesis, and binding mode prediction through ligand-steered modeling. ChemMedChem, 4(10): 1615–1629

[33]

Duan J, Wu J, Cheng Y, Duan R D (2010). Understanding the molecular activity of alkaline sphingomyelinase (NPP7) by computer modeling. Biochemistry, 49(42): 9096–9105

[34]

Dunbrack R L Jr (2006). Sequence comparison and protein structure prediction. Curr Opin Struct Biol, 16(3): 374–384

[35]

Engels K, Beyer C, Suárez Fernández M L, Bender F, Gassel M, Unden G, Marhöfer R J, Mottram J C, Selzer P M (2010). Inhibition of Eimeria tenella CDK-related kinase 2: From target identification to lead compounds. ChemMedChem, 5(8): 1259–1271

[36]

Evers A, Gohlke H, Klebe G (2003). Ligand-supported homology modelling of protein binding-sites using knowledge-based potentials. J Mol Biol, 334(2): 327–345

[37]

Evers A, Klebe G (2004). Successful virtual screening for a submicromolar antagonist of the neurokinin-1 receptor based on a ligand-supported homology model. J Med Chem, 47(22): 5381–5392

[38]

Fariselli P, Rossi I, Capriotti E, Casadio R (2007). The WWWH of remote homolog detection: the state of the art. Brief Bioinform, 8(2): 78–87

[39]

Frenkel D, Smit B (2002). Understanding Molecular Simulations: From Algorithms to Applications. San Diego, Academic Press

[40]

Fujitani H, Tanida Y, Ito M, Jayachandran G, Snow C D, Shirts M R, Sorin E J, Pande V S (2005). Direct calculation of the binding free energies of FKBP ligands. J Chem Phys, 123(8): 084108

[41]

Ge X, Roux B (2010). Absolute binding free energy calculations of sparsomycin analogs to the bacterial ribosome. J Phys Chem B, 114(29): 9525–9539

[42]

Gerek Z N, Ozkan S B (2010). A flexible docking scheme to explore the binding selectivity of PDZ domains. Protein Sci, 19(5): 914–928

[43]

Ginalski K (2006). Comparative modeling for protein structure prediction. Curr Opin Struct Biol, 16(2): 172–177

[44]

Goodsell D S, Morris G M, Olson A J (1996). Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit, 9(1): 1–5

[45]

Grant M A (2009). Protein structure prediction in structure-based ligand design and virtual screening. Comb Chem High Throughput Screen, 12(10): 940–960

[46]

Gruber C W, Muttenthaler M, Freissmuth M (2010). Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors. Curr Pharm Des, 16(28): 3071–3088

[47]

Grünberg R, Nilges M, Leckner J (2007). Biskit—a software platform for structural bioinformatics. Bioinformatics, 23(6): 769–770

[48]

Hildebrand A, Remmert M, Biegert A, Söding J (2009). Fast and accurate automatic structure prediction with HHpred. Proteins, 77(S9 Suppl 9): 128–132

[49]

Holford N, Ma S C, Ploeger B A (2010). Clinical trial simulation: a review. Clin Pharmacol Ther, 88(2): 166–182

[50]

Hou T, Wang J, Li Y Y, Wang W (2011). Assessing the performance of the MM/PBSA and MM/GBSA Methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model, 51(1): 69–82

[51]

Hu H, He L Y, Gong Z, Li N, Lu Y N, Zhai Q W, Liu H, Jiang H L, Zhu W L, Wang H Y (2009). A novel class of antagonists for the FFAs receptor GPR40. Biochem Biophys Res Commun, 390(3): 557–563

[52]

Irwin J J, Shoichet B K (2005). ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model, 45(1): 177–182

[53]

Jamieson C, Basten S, Campbell R A, Cumming I A, Gillen K J, Gillespie J, Kazemier B, Kiczun M, Lamont Y, Lyons A J, Maclean J K, Moir E M, Morrow J A, Papakosta M, Rankovic Z, Smith L (2010). A novel series of positive modulators of the AMPA receptor: discovery and structure based hit-to-lead studies. Bioorg Med Chem Lett, 20(19): 5753–5756

[54]

Jayalakshmi R, Natarajan R, Vivekanandan M, Natarajan G S (2010). Alignment-free sequence comparison using N-dimensional similarity space. Curr Comput Aided Drug Des, 6(4): 290–296

[55]

Jiao D, Golubkov P A, Darden T A, Ren P (2008). Calculation of protein-ligand binding free energy by using a polarizable potential. Proc Natl Acad Sci USA, 105(17): 6290–6295

[56]

Jiao D, Zhang J, Duke R E, Li G, Schnieders M J, Ren P (2009). Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential. J Comput Chem, 30(11): 1701–1711

[57]

Kannan S, Zacharias M (2010). Application of biasing-potential replica-exchange simulations for loop modeling and refinement of proteins in explicit solvent. Proteins, 78(13): 2809–2819

[58]

Karplus K (2009). SAM-T08, HMM-based protein structure prediction. Nucleic Acids Res, 37(Suppl 2): W492–W497

[59]

Kaufmann K W, Lemmon G H, Deluca S L, Sheehan J H, Meiler J (2010). Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry, 49(14): 2987–2998

[60]

Khalili-Araghi F, Gumbart J, Wen P C, Sotomayor M, Tajkhorshid E, Schulten K (2009). Molecular dynamics simulations of membrane channels and transporters. Curr Opin Struct Biol, 19(2): 128–137

[61]

Kikugawa G, Apostolov R, Kamiya N, Taiji M, Himeno R, Nakamura H, Yonezawa Y (2009). Application of MDGRAPE-3, a special purpose board for molecular dynamics simulations, to periodic biomolecular systems. J Comput Chem, 30(1): 110–118

[62]

Kim D E, Chivian D, Baker D (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res, 32(Suppl 2): W526–W531

[63]

Kimura S R, Tebben A J, Langley D R (2008). Expanding GPCR homology model binding sites via a balloon potential: A molecular dynamics refinement approach. Proteins, 71(4): 1919–1929

[64]

Kiran M, Coakley S, Walkinshaw N, McMinn P, Holcombe M (2008). Validation and discovery from computational biology models. Biosystems, 93(1-2): 141–150

[65]

Klepeis J L, Lindorff-Larsen K, Dror R O, Shaw D E (2009). Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol, 19(2): 120–127

[66]

Kortagere S, Cheng S Y, Antonio T, Zhen J, Reith M E, Dutta A K (2011). Interaction of novel hybrid compounds with the D3 dopamine receptor: Site-directed mutagenesis and homology modeling studies. Biochem Pharmacol, 81(1): 157–163

[67]

Kryshtafovych A, Fidelis K (2009). Protein structure prediction and model quality assessment. Drug Discov Today, 14(7-8): 386–393

[68]

Kubarenko A, Frank M, Weber A N (2007). Structure-function relationships of Toll-like receptor domains through homology modelling and molecular dynamics. Biochem Soc Trans, 35(Pt 6): 1515–1518

[69]

Kurkcuoglu O, Bates P A (2010). Mechanism of cohesin loading onto chromosomes: a conformational dynamics study. Biophys J, 99(4): 1212–1220

[70]

Kutzner C, van der Spoel D, Fechner M, Lindahl E, Schmitt U W, de Groot B L, Grubmüller H (2007). Speeding up parallel GROMACS on high-latency networks. J Comput Chem, 28(12): 2075–2084

[71]

Lampros C, Papaloukas C, Exarchos K, Fotiadis D I, Tsalikakis D (2009). Improving the protein fold recognition accuracy of a reduced state-space Hidden Markov model. Comput Biol Med, 39(10): 907–914

[72]

Larsson P, Wallner B, Lindahl E, Elofsson A (2008). Using multiple templates to improve quality of homology models in automated homology modeling. Protein Sci, 17(6): 990–1002

[73]

Laursen L (2009). Computational biology: Biological logic. Nature, 462(7272): 408–410

[74]

Leach A R (2001). Molecular Modeling: Principles and Applications. Dorset, Pearson Education Ltd.

[75]

Lee M M, Bundschuh R, Chan M K (2008). Distant homology detection using a LEngth and STructure-based sequence Alignment Tool (LESTAT). Proteins, 71(3): 1409–1419

[76]

Lin J H, Perryman A L, Schames J R, McCammon J A (2002). Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc, 124(20): 5632–5633

[77]

Lindahl E, Sansom M S (2008). Membrane proteins: molecular dynamics simulations. Curr Opin Struct Biol, 18(4): 425–431

[78]

Liphardt J, Dumont S, Smith S B, Tinoco I Jr, Bustamante C (2002). Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science, 296(5574): 1832–1835

[79]

Lobley A, Sadowski M I, Jones D T (2009). pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics, 25(14): 1761–1767

[80]

Lu G, Zhang S, Fang X (2008). An improved string composition method for sequence comparison. BMC Bioinformatics, 9(Suppl 6): S15

[81]

Malmström L, Goodlett D R (2010). Protein structure modeling. Methods Mol Biol, 673: 63–72

[82]

Marco E, Gago F (2007). Overcoming the inadequacies or limitations of experimental structures as drug targets by using computational modeling tools and molecular dynamics simulations. ChemMedChem, 2(10): 1388–1401

[83]

Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H (2007). The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B, 111(27): 7812–7824

[84]

Medina-Franco J L, Lopez-Vallejo F, Kuck D, Lyko F (2010). Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers,

[85]

Michino M, Chen J, Stevens R C, Brooks C L 3rd (2010). FoldGPCR: structure prediction protocol for the transmembrane domain of G protein-coupled receptors from class A. Proteins, 78(10): 2189–2201

[86]

Montelione G T, Szyperski T (2010). Advances in protein NMR provided by the NIGMS Protein Structure Initiative: impact on drug discovery. Curr Opin Drug Discov Devel, 13(3): 335–349

[87]

Mooney C, Pollastri G (2009). Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information. Proteins, 77(1): 181–190

[88]

Moro S, Deflorian F, Bacilieri M, Spalluto G (2006). Ligand-based homology modeling as attractive tool to inspect GPCR structural plasticity. Curr Pharm Des, 12(17): 2175–2185

[89]

Morra G, Meli M, Colombo G (2008). Molecular dynamics simulations of proteins and peptides: from folding to drug design. Curr Protein Pept Sci, 9(2): 181–196

[90]

Mortier J, Frederick R, Ganeff C, Remouchamps C, Talaga P, Pochet L, Wouters J, Piette J, Dejardin E, Masereel B (2010). Pyrazolo[4,3-c]isoquinolines as potential inhibitors of NF-kappaB activation. Biochem Pharmacol, 79(10): 1462–1472

[91]

Mortier J, Masereel B, Remouchamps C, Ganeff C, Piette J, Frederick R (2010). NF-kappaB inducing kinase (NIK) inhibitors: identification of new scaffolds using virtual screening. Bioorg Med Chem Lett, 20(15): 4515–4520

[92]

Muddassar M, Jang J W, Hong S K, Cho Y S, Kim E E, Keum K C, Oh T, Cho S N, Pae A N (2010). Identification of novel antitubercular compounds through hybrid virtual screening approach. Bioorg Med Chem, 18(18): 6914–6921

[93]

Murumkar P R, Zambre V P, Yadav M R (2010). Development of predictive pharmacophore model for in silico screening, and 3D QSAR CoMFA and CoMSIA studies for lead optimization, for designing of potent tumor necrosis factor alpha converting enzyme inhibitors. J Comput Aided Mol Des, 24(2): 143–156

[94]

Myler P J, Stacy R, Stewart L, Staker B L, Van Voorhis W C, Varani G, Buchko G W (2009). The Seattle Structural Genomics Center for Infectious Disease (SSGCID). Infect Disord Drug Targets, 9(5): 493–506

[95]

Neves M A, Simões S, Sá e Melo M L (2010). Ligand-guided optimization of CXCR4 homology models for virtual screening using a multiple chemotype approach. J Comput Aided Mol Des, 24(12): 1023–1033

[96]

Obungu V H, Gelfanova V, Rathnachalam R, Bailey A, Sloan-Lancaster J, Huang L (2009). Determination of the mechanism of action of anti-FasL antibody by epitope mapping and homology modeling. Biochemistry, 48(30): 7251–7260

[97]

Odell L R, Howan D, Gordon C P, Robertson M J, Chau N, Mariana A, Whiting A E, Abagyan R, Daniel J A, Gorgani N N, Robinson P J, McCluskey A (2010). The pthaladyns: GTP competitive inhibitors of dynamin I and II GTPase derived from virtual screening. J Med Chem, 53(14): 5267–5280

[98]

Ogata K, Isomura T, Kawata S, Yamashita H, Kubodera H, Wodak S J (2010). Lead generation and optimization based on protein-ligand complementarity. Molecules, 15(6): 4382–4400

[99]

Okimoto N, Futatsugi N, Fuji H, Suenaga A, Morimoto G, Yanai R, Ohno Y, Narumi T, Taiji M (2010). High-performance drug discovery: Computational screening by combining docking and molecular dynamics simulations. PLoS Comp Bio, 5(10): e1000528

[100]

Okumura H, Gallicchio E, Levy R M (2010). Conformational populations of ligand-sized molecules by replica exchange molecular dynamics and temperature reweighting. J Comput Chem, 31(7): 1357–1367

[101]

Ostrov D A, Magis A T, Wronski T J, Chan E K, Toro E J, Donatelli R E, Sajek K, Haroun I N, Nagib M I, Piedrahita A, Harris A, Holliday L S (2009). Identification of enoxacin as an inhibitor of osteoclast formation and bone resorption by structure-based virtual screening. J Med Chem, 52(16): 5144–5151

[102]

Pandit S A, Scott H L (2009). Multiscale simulations of heterogeneous model membranes. Biochim Biophys Acta, 1788(1): 136–148

[103]

Pecic S, Makkar P, Chaudhary S, Reddy B V, Navarro H A, Harding W W (2010). Affinity of aporphines for the human 5-HT2A receptor: insights from homology modeling and molecular docking studies. Bioorg Med Chem, 18(15): 5562–5575

[104]

Peng J, Xu J (2010). Low-homology protein threading. Bioinformatics, 26(12): i294–i300

[105]

Phatak S S, Clifford C S, (2009). High-throughput and in silico screening in drug discovery. Exp. Opn. Drug Disc, 4(9): 947–959

[106]

Phatak S S, Gatica E A, Cavasotto C N (2010). Ligand-steered modeling and docking: a benchmarking study in class a g-protein-coupled receptors. J Chem Inf Model, 50(12): 2119–2128

[107]

Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kalé L, Schulten K (2005). Scalable molecular dynamics with NAMD. J Comput Chem, 26(16): 1781–1802

[108]

Postigo M P, Guido R V, Oliva G, Castilho M S, da R Pitta I, de Albuquerque J F, Andricopulo A D (2010). Discovery of new inhibitors of Schistosoma mansoni PNP by pharmacophore-based virtual screening. J Chem Inf Model, 50(9): 1693–1705

[109]

Radestock S, Weil T, Renner S (2008). Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring. J Chem Inf Model, 48(5): 1104–1117

[110]

Rai B K, Tawa G J, Katz A H, Humblet C (2010). Modeling G protein-coupled receptors for structure-based drug discovery using low-frequency normal modes for refinement of homology models: application to H3 antagonists. Proteins, 78(2): 457–473

[111]

Rajman I (2008). PK/PD modelling and simulations: utility in drug development. Drug Discov Today, 13(7-8): 341–346

[112]

Roy A, Kucukural A, Zhang Y (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc, 5(4): 725–738

[113]

Sansom M S, Scott K A, Bond P J (2008). Coarse-grained simulation: a high-throughput computational approach to membrane proteins. Biochem Soc Trans, 36(Pt 1): 27–32

[114]

Shaw D E, Chao J C, Eastwood M P, Gagliardo J, Grossman J P, Ho C R, Ierardi D J, Kolossváry I, Klepeis J L, Layman T, McLeavey C, Deneroff M M, Moraes M A, Mueller R, Priest E C, Shan Y, Spengler J, Theobald M, Towles B, Wang S C, Dror R O, Kuskin J S, Larson R H, Salmon J K, Young C, Batson B, Bowers K J (2007). Anton, a special-purpose machine for molecular dynamics simulation. ACM SIGARCH Computer Architecture News, 35(2): 1–12

[115]

Shirts M R, Pande V S (2005). Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration. J Chem Phys, 122(14): 144107

[116]

Sierecki E, Sinko W, McCammon J A, Newton A C (2010). Discovery of small molecule inhibitors of the PH domain leucine-rich repeat protein phosphatase (PHLPP) by chemical and virtual screening. J Med Chem, 53(19): 6899–6911

[117]

Sisay M T, Steinmetzer T, Stirnberg M, Maurer E, Hammami M, Bajorath J, Gütschow M (2010). Identification of the first low-molecular-weight inhibitors of matriptase-2. J Med Chem, 53(15): 5523–5535

[118]

Stone J E, Hardy D J, Ufimtsev I S, Schulten K (2010). GPU-accelerated molecular modeling coming of age. J Mol Graph Model, 29(2): 116–125

[119]

Stumpff-Kane A W, Maksimiak K, Lee M S, Feig M (2008). Sampling of near-native protein conformations during protein structure refinement using a coarse-grained model, normal modes, and molecular dynamics simulations. Proteins, 70(4): 1345–1356

[120]

Sugita Y, Okamoto Y (1999). Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett, 314(1-2): 141–151

[121]

Talele T T, Arora P, Kulkarni S S, Patel M R, Singh S, Chudayeu M, Kaushik-Basu N (2010). Structure-based virtual screening, synthesis and SAR of novel inhibitors of hepatitis C virus NS5B polymerase. Bioorg Med Chem, 18(13): 4630–4638

[122]

Trojanowski S, Rutkowska A, Kolinski A (2010). TRACER. A new approach to comparative modeling that combines threading with free-space conformational sampling. Acta Biochim Pol, 57(1): 125–133

[123]

Verdonk M L, Cole J C, Hartshorn M J, Murray C W, Taylor R D (2003). Improved protein-ligand docking using GOLD. Proteins, 52(4): 609–623

[124]

Walsh I, Baù D, Martin A J, Mooney C, Vullo A, Pollastri G (2009). Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks. BMC Struct Biol, 9(1): 5

[125]

Weigelt J (2010). Structural genomics-impact on biomedicine and drug discovery. Exp Cell Res, 316(8): 1332–1338

[126]

White S H (2004). The progress of membrane protein structure determination. Protein Sci, 13(7): 1948–1949

[127]

Wichapong K, Pianwanit S, Sippl W, Kokpol S (2010). Homology modeling and molecular dynamics simulations of Dengue virus NS2B/NS3 protease: insight into molecular interaction. J Mol Recognit, 23(3): 283–300

[128]

Wu S, Skolnick J, Zhang Y (2007). Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol, 5(1): 17

[129]

Xiang Z (2006). Advances in homology protein structure modeling. Curr Protein Pept Sci, 7(3): 217–227

[130]

Yan R X, Si J N, Wang C, Zhang Z (2009). DescFold: a web server for protein fold recognition. BMC Bioinformatics, 10(1): 416

[131]

Yang L J, Zou J, Xie H Z, Li L L, Wei Y Q, Yang S Y (2009). Steered molecular dynamics simulations reveal the likelier dissociation pathway of imatinib from its targeting kinases c-Kit and Abl. PLoS ONE, 4(12): e8470

[132]

Yao L, Evans J A, Rzhetsky A (2009). Novel opportunities for computational biology and sociology in drug discovery. Trends Biotechnol, 27(9): 531–540

[133]

Ying Y, Huang K, Campbell C (2009). Enhanced protein fold recognition through a novel data integration approach. BMC Bioinformatics, 10(1): 267

[134]

Zhang Y (2008). Progress and challenges in protein structure prediction. Curr Opin Struct Biol, 18(3): 342–348

[135]

Zhou H, Skolnick J (2010). Improving threading algorithms for remote homology modeling by combining fragment and template comparisons. Proteins, 78(9): 2041–2048

[136]

Zhu J, Cheng L, Fang Q, Zhou Z H, Honig B (2010). Building and refining protein models within cryo-electron microscopy density maps based on homology modeling and multiscale structure refinement. J Mol Biol, 397(3): 835–851

[137]

Zhu J, Fan H, Periole X, Honig B, Mark A E (2008). Refining homology models by combining replica-exchange molecular dynamics and statistical potentials. Proteins, 72(4): 1171–1188

[138]

Zwier M C, Chong L T (2010). Reaching biological timescales with all-atom molecular dynamics simulations. Curr Opin Pharmacol, 10(6): 745–752

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (334KB)

1886

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/