Developmental genes during placentation: insights from mouse mutants

Jinhua LU, Qiang WANG, Bingyan WANG, Fengchao WANG, Haibin WANG

PDF(333 KB)
PDF(333 KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (4) : 300-311. DOI: 10.1007/s11515-011-1120-z
REVIEW
REVIEW

Developmental genes during placentation: insights from mouse mutants

Author information +
History +

Abstract

Placenta, a temporary organ first formed during the development of a new life is essential for the survival and growth of the fetus in eutherian mammals. It serves as an interface for the exchange of nutrients, gases and wastes between the maternal and fetal compartments. During the past decades, studies employing gene-engineered mouse mutants have revealed a wide range of signaling molecules governing the trophoblast development and function during placentation under various pathophysiological conditions. Here, we summarize the recent progress with particular respect to the involvement of developmental genes during placentation.

Keywords

developmental gene / placentation / mouse mutant

Cite this article

Download citation ▾
Jinhua LU, Qiang WANG, Bingyan WANG, Fengchao WANG, Haibin WANG. Developmental genes during placentation: insights from mouse mutants. Front Biol, 2011, 6(4): 300‒311 https://doi.org/10.1007/s11515-011-1120-z

References

[1]
Abell A N, Granger D A, Johnson N L, Vincent-Jordan N, Dibble C F, Johnson G L (2009). Trophoblast stem cell maintenance by fibroblast growth factor 4 requires MEKK4 activation of Jun N-terminal kinase. Mol Cell Biol, 29(10): 2748–2761
CrossRef Pubmed Google scholar
[2]
Adams R H, Porras A, Alonso G, Jones M, Vintersten K, Panelli S, Valladares A, Perez L, Klein R, Nebreda A R (2000). Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell, 6(1): 109–116
CrossRef Pubmed Google scholar
[3]
Adamson S L, Lu Y, Whiteley K J, Holmyard D, Hemberger M, Pfarrer C, Cross J C (2002). Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol, 250(2): 358–373
Pubmed
[4]
Akhurst R J, Lehnert S A, Faissner A, Duffie E (1990). TGF beta in murine morphogenetic processes: the early embryo and cardiogenesis. Development, 108(4): 645–656
Pubmed
[5]
Arman E, Haffner-Krausz R, Chen Y, Heath J K, Lonai P (1998). Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci U S A, 95(9): 5082–5087
CrossRef Pubmed Google scholar
[6]
Armelin H A (1973). Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc Natl Acad Sci U S A, 70(9): 2702–2706
CrossRef Pubmed Google scholar
[7]
Bafico A, Liu G, Yaniv A, Gazit A, Aaronson S A (2001). Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol, 3(7): 683–686
CrossRef Pubmed Google scholar
[8]
Baird A (1994). Fibroblast growth factors: activities and significance of non-neurotrophin neurotrophic growth factors. Curr Opin Neurobiol, 4(1): 78–86
CrossRef Pubmed Google scholar
[9]
Basilico C, Moscatelli D (1992). The FGF family of growth factors and oncogenes. Adv Cancer Res, 59: 115–165
CrossRef Pubmed Google scholar
[10]
Beenken A, Mohammadi M (2009). The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov, 8(3): 235–253
CrossRef Pubmed Google scholar
[11]
Bhanot P, Brink M, Samos C H, Hsieh J C, Wang Y, Macke J P, Andrew D, Nathans J, Nusse R (1996). A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature, 382(6588): 225–230
CrossRef Pubmed Google scholar
[12]
Bissonauth V, Roy S, Gravel M, Guillemette S, Charron J (2006). Requirement for Map2k1 (Mek1) in extra-embryonic ectoderm during placentogenesis. Development, 133(17): 3429–3440
CrossRef Pubmed Google scholar
[13]
Böttcher R T, Niehrs C (2005). Fibroblast growth factor signaling during early vertebrate development. Endocr Rev, 26(1): 63–77
CrossRef Pubmed Google scholar
[14]
Bray S J (2006). Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol, 7(9): 678–689
CrossRef Pubmed Google scholar
[15]
Chang H, Brown C W, Matzuk M M (2002). Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev, 23(6): 787–823
CrossRef Pubmed Google scholar
[16]
Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk M M, Zwijsen A (1999). Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development, 126(8): 1631–1642
Pubmed
[17]
Coan P M, Ferguson-Smith A C, Burton G J (2005). Ultrastructural changes in the interhaemal membrane and junctional zone of the murine chorioallantoic placenta across gestation. J Anat, 207(6): 783–796
CrossRef Pubmed Google scholar
[18]
Copp A J (1979). Interaction between inner cell mass and trophectoderm of the mouse blastocyst. II. The fate of the polar trophectoderm. J Embryol Exp Morphol, 51: 109–120
Pubmed
[19]
Cross J C, Simmons D G, Watson E D (2003). Chorioallantoic morphogenesis and formation of the placental villous tree. Ann N Y Acad Sci, 995(1): 84–93
CrossRef Pubmed Google scholar
[20]
Cross J C, Werb Z, Fisher S J (1994). Implantation and the placenta: key pieces of the development puzzle. Science, 266(5190): 1508–1518
CrossRef Pubmed Google scholar
[21]
Dey S K (2005). Reproductive biology: fatty link to fertility. Nature, 435(7038): 34–35
CrossRef Pubmed Google scholar
[22]
Dickson M C, Martin J S, Cousins F M, Kulkarni A B, Karlsson S, Akhurst R J (1995). Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development, 121(6): 1845–1854
Pubmed
[23]
Downs K M (2006). In vitro methods for studying vascularization of the murine allantois and allantoic union with the chorion. Methods Mol Med, 121: 241–272
Pubmed
[24]
Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, Costa L, Henrique D, Rossant J (2004). Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev, 18(20): 2474–2478
CrossRef Pubmed Google scholar
[25]
Ehebauer M, Hayward P, Arias A M (2006). Notch, a universal arbiter of cell fate decisions. Science, 314(5804): 1414–1415
CrossRef Pubmed Google scholar
[26]
Eriksson A E, Cousens L S, Weaver L H, Matthews B W (1991). Three-dimensional structure of human basic fibroblast growth factor. Proc Natl Acad Sci U S A, 88(8): 3441–3445
CrossRef Pubmed Google scholar
[27]
Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M (2004). The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev, 18(8): 901–911
CrossRef Pubmed Google scholar
[28]
Fuerer C, Nusse R, Ten Berge D (2008). Wnt signalling in development and disease. Max Delbrück Center for Molecular Medicine meeting on Wnt signaling in Development and Disease. EMBO Rep, 9(2): 134–138
CrossRef Pubmed Google scholar
[29]
Galabova-Kovacs G, Matzen D, Piazzolla D, Meissl K, Plyushch T, Chen A P, Silva A, Baccarini M (2006). Essential role of B-Raf in ERK activation during extraembryonic development. Proc Natl Acad Sci U S A, 103(5): 1325–1330
CrossRef Pubmed Google scholar
[30]
Galceran J, Fariñas I, Depew M J, Clevers H, Grosschedl R (1999). Wnt3a-/-—like phenotype and limb deficiency in Lef1-/-Tcf1-/- mice. Genes Dev, 13(6): 709–717
CrossRef Pubmed Google scholar
[31]
Gale N W, Dominguez M G, Noguera I, Pan L, Hughes V, Valenzuela D M, Murphy A J, Adams N C, Lin H C, Holash J, Thurston G, Yancopoulos G D (2004). Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A, 101(45): 15949–15954
CrossRef Pubmed Google scholar
[32]
Gasperowicz M, Otto F (2008). The notch signalling pathway in the development of the mouse placenta. Placenta, 29(8): 651–659
CrossRef Pubmed Google scholar
[33]
Giroux S, Tremblay M, Bernard D, Cardin-Girard J F, Aubry S, Larouche L, Rousseau S, Huot J, Landry J, Jeannotte L, Charron J (1999). Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr Biol, 9(7): 369–372
CrossRef Pubmed Google scholar
[34]
Glinka A, Wu W, Delius H, Monaghan A P, Blumenstock C, Niehrs C (1998). Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature, 391(6665): 357–362
CrossRef Pubmed Google scholar
[35]
Gordon M D, Nusse R (2006). Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem, 281(32): 22429–22433
CrossRef Pubmed Google scholar
[36]
Gospodarowicz D (1974). Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature, 249(453): 123–127
CrossRef Pubmed Google scholar
[37]
Gotoh N, Manova K, Tanaka S, Murohashi M, Hadari Y, Lee A, Hamada Y, Hiroe T, Ito M, Kurihara T, Nakazato H, Shibuya M, Lax I, Lacy E, Schlessinger J (2005). The docking protein FRS2alpha is an essential component of multiple fibroblast growth factor responses during early mouse development. Mol Cell Biol, 25(10): 4105–4116
CrossRef Pubmed Google scholar
[38]
Gridley T (2007). Notch signaling in vascular development and physiology. Development, 134(15): 2709–2718
CrossRef Pubmed Google scholar
[39]
Grigoryan T, Wend P, Klaus A, Birchmeier W (2008). Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev, 22(17): 2308–2341
CrossRef Pubmed Google scholar
[40]
Guillemot F, Nagy A, Auerbach A, Rossant J, Joyner A L (1994). Essential role of Mash-2 in extraembryonic development. Nature, 371(6495): 333–336
CrossRef Pubmed Google scholar
[41]
Gurtner G C, Davis V, Li H, McCoy M J, Sharpe A, Cybulsky M I (1995). Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev, 9(1): 1–14
CrossRef Pubmed Google scholar
[42]
Haffner-Krausz R, Gorivodsky M, Chen Y, Lonai P (1999). Expression of Fgfr2 in the early mouse embryo indicates its involvement in preimplantation development. Mech Dev, 85(1-2): 167–172
CrossRef Pubmed Google scholar
[43]
Hamada Y, Hiroe T, Suzuki Y, Oda M, Tsujimoto Y, Coleman J R, Tanaka S (2007). Notch2 is required for formation of the placental circulatory system, but not for cell-type specification in the developing mouse placenta. Differentiation, 75(3): 268–278
CrossRef Pubmed Google scholar
[44]
Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman J R, Tsujimoto Y (1999). Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development, 126(15): 3415–3424
Pubmed
[45]
Hatano N, Mori Y, Oh-hora M, Kosugi A, Fujikawa T, Nakai N, Niwa H, Miyazaki J, Hamaoka T, Ogata M (2003). Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells, 8(11): 847–856
CrossRef Pubmed Google scholar
[46]
He X (2003). A Wnt-Wnt situation. Dev Cell, 4(6): 791–797
CrossRef Pubmed Google scholar
[47]
Hong K H, Seki T, Oh S P (2007). Activin receptor-like kinase 1 is essential for placental vascular development in mice. Lab Invest, 87(7): 670–679
CrossRef Pubmed Google scholar
[48]
Huang H, He X (2008). Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol, 20(2): 119–125
CrossRef Pubmed Google scholar
[49]
Huang H C, Klein P S (2004). Interactions between BMP and Wnt signaling pathways in mammalian cancers. Cancer Biol Ther, 3(7): 676–678
CrossRef Pubmed Google scholar
[50]
Hunter T (2000). Signaling—2000 and beyond. Cell, 100(1): 113–127
CrossRef Pubmed Google scholar
[51]
Iannaccone P M, Zhou X, Khokha M, Boucher D, Kuehn M R (1992). Insertional mutation of a gene involved in growth regulation of the early mouse embryo. Dev Dyn, 194(3): 198–208
Pubmed
[52]
Inman K E, Downs K M (2007). The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis, 45(5): 237–258
CrossRef Pubmed Google scholar
[53]
Ishikawa T, Tamai Y, Zorn A M, Yoshida H, Seldin M F, Nishikawa S, Taketo M M (2001). Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development, 128(1): 25–33
Pubmed
[54]
Itoh M, Yoshida Y, Nishida K, Narimatsu M, Hibi M, Hirano T (2000). Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol, 20(10): 3695–3704
CrossRef Pubmed Google scholar
[55]
Johnson D E, Williams L T (1993). Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res, 60: 1–41
CrossRef Pubmed Google scholar
[56]
Jones R L, Stoikos C, Findlay J K, Salamonsen L A (2006). TGF-beta superfamily expression and actions in the endometrium and placenta. Reproduction, 132(2): 217–232
CrossRef Pubmed Google scholar
[57]
Krebs L T, Shutter J R, Tanigaki K, Honjo T, Stark K L, Gridley T (2004). Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev, 18(20): 2469–2473
CrossRef Pubmed Google scholar
[58]
Krebs L T, Xue Y, Norton C R, Shutter J R, Maguire M, Sundberg J P, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith G H, Stark K L, Gridley T (2000). Notch signaling is essential for vascular morphogenesis in mice. Genes Dev, 14(11): 1343–1352
Pubmed
[59]
Kühl M, Sheldahl L C, Park M, Miller J R, Moon R T (2000). The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet, 16(7): 279–283
CrossRef Pubmed Google scholar
[60]
Kwee L, Baldwin H S, Shen H M, Stewart C L, Buck C, Buck C A, Labow M A (1995). Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development, 121(2): 489–503
Pubmed
[61]
Lawler S, Candia A F, Ebner R, Shum L, Lopez A R, Moses H L, Wright C V, Derynck R (1994). The murine type II TGF-beta receptor has a coincident embryonic expression and binding preference for TGF-beta 1. Development, 120(1): 165–175
Pubmed
[62]
Lawson K A, Dunn N R, Roelen B A, Zeinstra L M, Davis A M, Wright C V, Korving J P, Hogan B L (1999). Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev, 13(4): 424–436
CrossRef Pubmed Google scholar
[63]
Lechleider R J, Ryan J L, Garrett L, Eng C, Deng C, Wynshaw-Boris A, Roberts A B (2001). Targeted mutagenesis of Smad1 reveals an essential role in chorioallantoic fusion. Dev Biol, 240(1): 157–167
CrossRef Pubmed Google scholar
[64]
Lee P L, Johnson D E, Cousens L S, Fried V A, Williams L T (1989). Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science, 245(4913): 57–60
CrossRef Pubmed Google scholar
[65]
Levine R J, Lam C, Qian C, Yu K F, Maynard S E, Sachs B P, Sibai B M, Epstein F H, Romero R, Thadhani R, Karumanchi S A, the CPEP Study Group (2006). Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med, 355(10): 992–1005
CrossRef Pubmed Google scholar
[66]
Limbourg F P, Takeshita K, Radtke F, Bronson R T, Chin M T, Liao J K (2005). Essential role of endothelial Notch1 in angiogenesis. Circulation, 111(14): 1826–1832
CrossRef Pubmed Google scholar
[67]
Ma G T, Soloveva V, Tzeng S J, Lowe L A, Pfendler K C, Iannaccone P M, Kuehn M R, Linzer D I (2001). Nodal regulates trophoblast differentiation and placental development. Dev Biol, 236(1): 124–135
CrossRef Pubmed Google scholar
[68]
Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler B M, Delius H, Hoppe D, Stannek P, Walter C, Glinka A, Niehrs C (2002). Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature, 417(6889): 664–667
CrossRef Pubmed Google scholar
[69]
Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C (2001). LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature, 411(6835): 321–325
CrossRef Pubmed Google scholar
[70]
Melillo R M, Santoro M, Ong S H, Billaud M, Fusco A, Hadari Y R, Schlessinger J, Lax I (2001). Docking protein FRS2 links the protein tyrosine kinase RET and its oncogenic forms with the mitogen-activated protein kinase signaling cascade. Mol Cell Biol, 21(13): 4177–4187
CrossRef Pubmed Google scholar
[71]
Mikula M, Schreiber M, Husak Z, Kucerova L, Rüth J, Wieser R, Zatloukal K, Beug H, Wagner E F, Baccarini M (2001). Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J, 20(8): 1952–1962
CrossRef Pubmed Google scholar
[72]
Mlodzik M (2002). Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet, 18(11): 564–571
CrossRef Pubmed Google scholar
[73]
Monkley S J, Delaney S J, Pennisi D J, Christiansen J H, Wainwright B J (1996). Targeted disruption of the Wnt2 gene results in placentation defects. Development, 122(11): 3343–3353
Pubmed
[74]
Moon R T, Kohn A D, De Ferrari G V, Kaykas A (2004). WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet, 5(9): 691–701
CrossRef Pubmed Google scholar
[75]
Mudgett J S, Ding J, Guh-Siesel L, Chartrain N A, Yang L, Gopal S, Shen M M (2000). Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci U S A, 97(19): 10454–10459
CrossRef Pubmed Google scholar
[76]
Murphy V E, Smith R, Giles W B, Clifton V L (2006). Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev, 27(2): 141–169
CrossRef Pubmed Google scholar
[77]
Nadeau V, Guillemette S, Bélanger L F, Jacob O, Roy S, Charron J (2009). Map2k1 and Map2k2 genes contribute to the normal development of syncytiotrophoblasts during placentation. Development, 136(8): 1363–1374
CrossRef Pubmed Google scholar
[78]
Nakamura Y, Hamada Y, Fujiwara T, Enomoto H, Hiroe T, Tanaka S, Nose M, Nakahara M, Yoshida N, Takenawa T, Fukami K (2005). Phospholipase C-delta1 and -delta3 are essential in the trophoblast for placental development. Mol Cell Biol, 25(24): 10979–10988
CrossRef Pubmed Google scholar
[79]
Nakayama H, Liu Y, Stifani S, Cross J C (1997). Developmental restriction of Mash-2 expression in trophoblast correlates with potential activation of the notch-2 pathway. Dev Genet, 21(1): 21–30
CrossRef Pubmed Google scholar
[80]
Natale D R, Hemberger M, Hughes M, Cross J C (2009). Activin promotes differentiation of cultured mouse trophoblast stem cells towards a labyrinth cell fate. Dev Biol, 335(1): 120–131
CrossRef Pubmed Google scholar
[81]
Natale D R, Starovic M, Cross J C (2006). Phenotypic analysis of the mouse placenta. Methods Mol Med, 121: 275–293
Pubmed
[82]
Nusse R, Varmus H E (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 31(1): 99–109
CrossRef Pubmed Google scholar
[83]
Oike Y, Takakura N, Hata A, Kaname T, Akizuki M, Yamaguchi Y, Yasue H, Araki K, Yamamura K, Suda T (1999). Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood, 93(9): 2771–2779
Pubmed
[84]
Oka C, Nakano T, Wakeham A, de la Pompa J L, Mori C, Sakai T, Okazaki S, Kawaichi M, Shiota K, Mak T W, Honjo T (1995). Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development, 121(10): 3291–3301
Pubmed
[85]
Ornitz D M, Itoh N (2001). Fibroblast growth factors. Genome Biol, 2(3): 1-12
[86]
Ornitz D M, Xu J, Colvin J S, McEwen D G, MacArthur C A, Coulier F, Gao G, Goldfarb M (1996). Receptor specificity of the fibroblast growth factor family. J Biol Chem, 271(25): 15292–15297
CrossRef Pubmed Google scholar
[87]
Oshima M, Oshima H, Taketo M M (1996). TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol, 179(1): 297–302
CrossRef Pubmed Google scholar
[88]
Parr B A, Cornish V A, Cybulsky M I, McMahon A P (2001). Wnt7b regulates placental development in mice. Dev Biol, 237(2): 324–332
CrossRef Pubmed Google scholar
[89]
Peng S, Miao C, Li J, Fan X, Cao Y, Duan E (2006). Dickkopf-1 induced apoptosis in human placental choriocarcinoma is independent of canonical Wnt signaling. Biochem Biophys Res Commun, 350(3): 641–647
CrossRef Pubmed Google scholar
[90]
Plotnikov A N, Hubbard S R, Schlessinger J, Mohammadi M (2000). Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell, 101(4): 413–424
CrossRef Pubmed Google scholar
[91]
Polakis P (2000). Wnt signaling and cancer. Genes Dev, 14(15): 1837–1851
Pubmed
[92]
Pollheimer J, Knofler M (2005). Signalling pathways regulating the invasive differentiation of human trophoblasts: a review. Placenta, 26 (Suppl A): S21–30
[93]
Pollheimer J, Loregger T, Sonderegger S, Saleh L, Bauer S, Bilban M, Czerwenka K, Husslein P, Knöfler M (2006). Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast. Am J Pathol, 168(4): 1134–1147
CrossRef Pubmed Google scholar
[94]
Powers C J, McLeskey S W, Wellstein A (2000). Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer, 7(3): 165–197
CrossRef Pubmed Google scholar
[95]
Qian X, Esteban L, Vass W C, Upadhyaya C, Papageorge A G, Yienger K, Ward J M, Lowy D R, Santos E (2000). The Sos1 and Sos2 Ras-specific exchange factors: differences in placental expression and signaling properties. EMBO J, 19(4): 642–654
CrossRef Pubmed Google scholar
[96]
Rattner A, Hsieh J C, Smallwood P M, Gilbert D J, Copeland N G, Jenkins N A, Nathans J (1997). A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc Natl Acad Sci U S A, 94(7): 2859–2863
CrossRef Pubmed Google scholar
[97]
Redline R W, Chernicky C L, Tan H Q, Ilan J, Ilan J (1993). Differential expression of insulin-like growth factor-II in specific regions of the late (post day 9.5) murine placenta. Mol Reprod Dev, 36(2): 121–129
CrossRef Pubmed Google scholar
[98]
Regan C P, Li W, Boucher D M, Spatz S, Su M S, Kuida K (2002). Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc Natl Acad Sci U S A, 99(14): 9248–9253
CrossRef Pubmed Google scholar
[99]
Robinson M L, MacMillan-Crow L A, Thompson J A, Overbeek P A (1995). Expression of a truncated FGF receptor results in defective lens development in transgenic mice. Development, 121(12): 3959–3967
Pubmed
[100]
Roca C, Adams R H (2007). Regulation of vascular morphogenesis by Notch signaling. Genes Dev, 21(20): 2511–2524
CrossRef Pubmed Google scholar
[101]
Rossant J, Cross J C (2001). Placental development: lessons from mouse mutants. Nat Rev Genet, 2(7): 538–548
CrossRef Pubmed Google scholar
[102]
Saba-El-Leil M K, Vella F D, Vernay B, Voisin L, Chen L, Labrecque N, Ang S L, Meloche S (2003). An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep, 4(10): 964–968
CrossRef Pubmed Google scholar
[103]
Saxton T M, Cheng A M, Ong S H, Lu Y, Sakai R, Cross J C, Pawson T (2001). Gene dosage-dependent functions for phosphotyrosine-Grb2 signaling during mammalian tissue morphogenesis. Curr Biol, 11(9): 662–670
CrossRef Pubmed Google scholar
[104]
Schlessinger J (2000). Cell signaling by receptor tyrosine kinases. Cell, 103(2): 211–225
CrossRef Pubmed Google scholar
[105]
Scifres C M, Nelson D M (2009). Intrauterine growth restriction, human placental development and trophoblast cell death. J Physiol, 587(Pt 14): 3453–3458
CrossRef Pubmed Google scholar
[106]
Semënov M V, Tamai K, Brott B K, Kühl M, Sokol S, He X (2001). Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol, 11(12): 951–961
CrossRef Pubmed Google scholar
[107]
Sleeman M, Fraser J, McDonald M, Yuan S, White D, Grandison P, Kumble K, Watson J D, Murison J G (2001). Identification of a new fibroblast growth factor receptor, FGFR5. Gene, 271(2): 171–182
CrossRef Pubmed Google scholar
[108]
Sohn S J, Sarvis B K, Cado D, Winoto A (2002). ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression. J Biol Chem, 277(45): 43344–43351
CrossRef Pubmed Google scholar
[109]
Solloway M J, Robertson E J (1999). Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development, 126(8): 1753–1768
Pubmed
[110]
Sonderegger S, Husslein H, Leisser C,Knofler M (2007). Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta , 28 (Suppl A): S97–102
[111]
Song H, Lim H, Paria B C, Matsumoto H, Swift L L, Morrow J, Bonventre J V, Dey S K (2002). Cytosolic phospholipase A2alpha is crucial [correction of A2alpha deficiency is crucial] for ‘on-time’ embryo implantation that directs subsequent development. Development, 129(12): 2879–2889
Pubmed
[112]
Swiatek P J, Lindsell C E, del Amo F F, Weinmaster G, Gridley T (1994). Notch1 is essential for postimplantation development in mice. Genes Dev, 8(6): 707–719
CrossRef Pubmed Google scholar
[113]
Tanaka M, Gertsenstein M, Rossant J, Nagy A (1997). Mash2 acts cell autonomously in mouse spongiotrophoblast development. Dev Biol, 190(1): 55–65
CrossRef Pubmed Google scholar
[114]
Tanaka S, Kunath T, Hadjantonakis A K, Nagy A, Rossant J (1998). Promotion of trophoblast stem cell proliferation by FGF4. Science, 282(5396): 2072–2075
CrossRef Pubmed Google scholar
[115]
Tremblay K D, Dunn N R, Robertson E J (2001). Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development, 128(18): 3609–3621
Pubmed
[116]
Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim Y M, Bdolah Y, Lim K H, Yuan H T, Libermann T A, Stillman I E, Roberts D, D’Amore P A, Epstein F H, Sellke F W, Romero R, Sukhatme V P, Letarte M, Karumanchi S A (2006). Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med, 12(6): 642–649
CrossRef Pubmed Google scholar
[117]
Wang H, Dey S K (2006). Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet, 7(3): 185–199
CrossRef Pubmed Google scholar
[118]
Watson E D, Cross J C (2005). Development of structures and transport functions in the mouse placenta. Physiology (Bethesda), 20(3): 180–193
CrossRef Pubmed Google scholar
[119]
Wilcox A J, Baird D D, Weinberg C R (1999). Time of implantation of the conceptus and loss of pregnancy. N Engl J Med, 340(23): 1796–1799
CrossRef Pubmed Google scholar
[120]
Willert K, Brown J D, Danenberg E, Duncan A W, Weissman I L, Reya T, Yates J R 3rd, Nusse R (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 423(6938): 448–452
CrossRef Pubmed Google scholar
[121]
Willert K, Jones K A (2006). Wnt signaling: is the party in the nucleus? Genes Dev, 20(11): 1394–1404
CrossRef Pubmed Google scholar
[122]
Winnier G, Blessing M, Labosky P A, Hogan B L (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev, 9(17): 2105–2116
CrossRef Pubmed Google scholar
[123]
Xie H, Tranguch S, Jia X, Zhang H, Das S K, Dey S K, Kuo C J, Wang H (2008). Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation. Development, 135(4): 717–727
CrossRef Pubmed Google scholar
[124]
Xu X, Weinstein M, Li C, Naski M, Cohen R I, Ornitz D M, Leder P, Deng C (1998). Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development, 125(4): 753–765
Pubmed
[125]
Xue Y, Gao X, Lindsell C E, Norton C R, Chang B, Hicks C, Gendron-Maguire M, Rand E B, Weinmaster G, Gridley T (1999). Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet, 8(5): 723–730
CrossRef Pubmed Google scholar
[126]
Yan L, Carr J, Ashby P R, Murry-Tait V, Thompson C, Arthur J S (2003). Knockout of ERK5 causes multiple defects in placental and embryonic development. BMC Dev Biol, 3(1): 11
CrossRef Pubmed Google scholar
[127]
Yang J, Boerm M, McCarty M, Bucana C, Fidler I J, Zhuang Y, Su B (2000). Mekk3 is essential for early embryonic cardiovascular development. Nat Genet, 24(3): 309–313
CrossRef Pubmed Google scholar
[128]
Yang J T, Rayburn H, Hynes R O (1995). Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development, 121(2): 549–560
Pubmed
[129]
Yang W, Klaman L D, Chen B, Araki T, Harada H, Thomas S M, George E L, Neel B G (2006). An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev Cell, 10(3): 317–327
CrossRef Pubmed Google scholar
[130]
Yang Z Z, Tschopp O, Hemmings-Mieszczak M, Feng J, Brodbeck D, Perentes E, Hemmings B A (2003). Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem, 278(34): 32124–32131
CrossRef Pubmed Google scholar
[131]
Yao T P, Oh S P, Fuchs M, Zhou N D, Ch’ng L E, Newsome D, Bronson R T, Li E, Livingston D M, Eckner R (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell, 93(3): 361–372
CrossRef Pubmed Google scholar
[132]
Ye X, Hama K, Contos J J, Anliker B, Inoue A, Skinner M K, Suzuki H, Amano T, Kennedy G, Arai H, Aoki J, Chun J (2005). LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature, 435(7038): 104–108
CrossRef Pubmed Google scholar
[133]
Ying Y, Liu X M, Marble A, Lawson K A, Zhao G Q (2000). Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol, 14(7): 1053–1063
CrossRef Pubmed Google scholar
[134]
Zeigler B M, Sugiyama D, Chen M, Guo Y, Downs K M, Speck N A (2006). The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development, 133(21): 4183–4192
CrossRef Pubmed Google scholar
[135]
Zhang H, Bradley A (1996). Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development, 122(10): 2977–2986
Pubmed
[136]
Zhu X, Komiya H, Chirino A, Faham S, Fox G M, Arakawa T, Hsu B T, Rees D C (1991). Three-dimensional structures of acidic and basic fibroblast growth factors. Science, 251(4989): 90–93
CrossRef Pubmed Google scholar

Acknowledgements

Works incorporated in this article were partially supported by the National Basic Research Program of China (No. 2011CB944401), the National Natural Science Foundation of China (Grant Nos. 2299390, 31000659) and the Beijing Natural Science Foundation (No. 5091002). Haibin Wang is a recipient of “National Science Foundation for Distinguished Young Scholars” (No. 30825015).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(333 KB)

Accesses

Citations

Detail

Sections
Recommended

/