Developmental genes during placentation: insights from mouse mutants

Jinhua LU , Qiang WANG , Bingyan WANG , Fengchao WANG , Haibin WANG

Front. Biol. ›› 2011, Vol. 6 ›› Issue (4) : 300 -311.

PDF (333KB)
Front. Biol. ›› 2011, Vol. 6 ›› Issue (4) : 300 -311. DOI: 10.1007/s11515-011-1120-z
REVIEW
REVIEW

Developmental genes during placentation: insights from mouse mutants

Author information +
History +
PDF (333KB)

Abstract

Placenta, a temporary organ first formed during the development of a new life is essential for the survival and growth of the fetus in eutherian mammals. It serves as an interface for the exchange of nutrients, gases and wastes between the maternal and fetal compartments. During the past decades, studies employing gene-engineered mouse mutants have revealed a wide range of signaling molecules governing the trophoblast development and function during placentation under various pathophysiological conditions. Here, we summarize the recent progress with particular respect to the involvement of developmental genes during placentation.

Keywords

developmental gene / placentation / mouse mutant

Cite this article

Download citation ▾
Jinhua LU, Qiang WANG, Bingyan WANG, Fengchao WANG, Haibin WANG. Developmental genes during placentation: insights from mouse mutants. Front. Biol., 2011, 6(4): 300-311 DOI:10.1007/s11515-011-1120-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abell A N, Granger D A, Johnson N L, Vincent-Jordan N, Dibble C F, Johnson G L (2009). Trophoblast stem cell maintenance by fibroblast growth factor 4 requires MEKK4 activation of Jun N-terminal kinase. Mol Cell Biol, 29(10): 2748–2761

[2]

Adams R H, Porras A, Alonso G, Jones M, Vintersten K, Panelli S, Valladares A, Perez L, Klein R, Nebreda A R (2000). Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell, 6(1): 109–116

[3]

Adamson S L, Lu Y, Whiteley K J, Holmyard D, Hemberger M, Pfarrer C, Cross J C (2002). Interactions between trophoblast cells and the maternal and fetal circulation in the mouse placenta. Dev Biol, 250(2): 358–373

[4]

Akhurst R J, Lehnert S A, Faissner A, Duffie E (1990). TGF beta in murine morphogenetic processes: the early embryo and cardiogenesis. Development, 108(4): 645–656

[5]

Arman E, Haffner-Krausz R, Chen Y, Heath J K, Lonai P (1998). Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci U S A, 95(9): 5082–5087

[6]

Armelin H A (1973). Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc Natl Acad Sci U S A, 70(9): 2702–2706

[7]

Bafico A, Liu G, Yaniv A, Gazit A, Aaronson S A (2001). Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol, 3(7): 683–686

[8]

Baird A (1994). Fibroblast growth factors: activities and significance of non-neurotrophin neurotrophic growth factors. Curr Opin Neurobiol, 4(1): 78–86

[9]

Basilico C, Moscatelli D (1992). The FGF family of growth factors and oncogenes. Adv Cancer Res, 59: 115–165

[10]

Beenken A, Mohammadi M (2009). The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov, 8(3): 235–253

[11]

Bhanot P, Brink M, Samos C H, Hsieh J C, Wang Y, Macke J P, Andrew D, Nathans J, Nusse R (1996). A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature, 382(6588): 225–230

[12]

Bissonauth V, Roy S, Gravel M, Guillemette S, Charron J (2006). Requirement for Map2k1 (Mek1) in extra-embryonic ectoderm during placentogenesis. Development, 133(17): 3429–3440

[13]

Böttcher R T, Niehrs C (2005). Fibroblast growth factor signaling during early vertebrate development. Endocr Rev, 26(1): 63–77

[14]

Bray S J (2006). Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol, 7(9): 678–689

[15]

Chang H, Brown C W, Matzuk M M (2002). Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocr Rev, 23(6): 787–823

[16]

Chang H, Huylebroeck D, Verschueren K, Guo Q, Matzuk M M, Zwijsen A (1999). Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development, 126(8): 1631–1642

[17]

Coan P M, Ferguson-Smith A C, Burton G J (2005). Ultrastructural changes in the interhaemal membrane and junctional zone of the murine chorioallantoic placenta across gestation. J Anat, 207(6): 783–796

[18]

Copp A J (1979). Interaction between inner cell mass and trophectoderm of the mouse blastocyst. II. The fate of the polar trophectoderm. J Embryol Exp Morphol, 51: 109–120

[19]

Cross J C, Simmons D G, Watson E D (2003). Chorioallantoic morphogenesis and formation of the placental villous tree. Ann N Y Acad Sci, 995(1): 84–93

[20]

Cross J C, Werb Z, Fisher S J (1994). Implantation and the placenta: key pieces of the development puzzle. Science, 266(5190): 1508–1518

[21]

Dey S K (2005). Reproductive biology: fatty link to fertility. Nature, 435(7038): 34–35

[22]

Dickson M C, Martin J S, Cousins F M, Kulkarni A B, Karlsson S, Akhurst R J (1995). Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development, 121(6): 1845–1854

[23]

Downs K M (2006). In vitro methods for studying vascularization of the murine allantois and allantoic union with the chorion. Methods Mol Med, 121: 241–272

[24]

Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, Costa L, Henrique D, Rossant J (2004). Dosage-sensitive requirement for mouse Dll4 in artery development. Genes Dev, 18(20): 2474–2478

[25]

Ehebauer M, Hayward P, Arias A M (2006). Notch, a universal arbiter of cell fate decisions. Science, 314(5804): 1414–1415

[26]

Eriksson A E, Cousens L S, Weaver L H, Matthews B W (1991). Three-dimensional structure of human basic fibroblast growth factor. Proc Natl Acad Sci U S A, 88(8): 3441–3445

[27]

Fischer A, Schumacher N, Maier M, Sendtner M, Gessler M (2004). The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev, 18(8): 901–911

[28]

Fuerer C, Nusse R, Ten Berge D (2008). Wnt signalling in development and disease. Max Delbrück Center for Molecular Medicine meeting on Wnt signaling in Development and Disease. EMBO Rep, 9(2): 134–138

[29]

Galabova-Kovacs G, Matzen D, Piazzolla D, Meissl K, Plyushch T, Chen A P, Silva A, Baccarini M (2006). Essential role of B-Raf in ERK activation during extraembryonic development. Proc Natl Acad Sci U S A, 103(5): 1325–1330

[30]

Galceran J, Fariñas I, Depew M J, Clevers H, Grosschedl R (1999). Wnt3a-/-—like phenotype and limb deficiency in Lef1-/-Tcf1-/- mice. Genes Dev, 13(6): 709–717

[31]

Gale N W, Dominguez M G, Noguera I, Pan L, Hughes V, Valenzuela D M, Murphy A J, Adams N C, Lin H C, Holash J, Thurston G, Yancopoulos G D (2004). Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci U S A, 101(45): 15949–15954

[32]

Gasperowicz M, Otto F (2008). The notch signalling pathway in the development of the mouse placenta. Placenta, 29(8): 651–659

[33]

Giroux S, Tremblay M, Bernard D, Cardin-Girard J F, Aubry S, Larouche L, Rousseau S, Huot J, Landry J, Jeannotte L, Charron J (1999). Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr Biol, 9(7): 369–372

[34]

Glinka A, Wu W, Delius H, Monaghan A P, Blumenstock C, Niehrs C (1998). Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature, 391(6665): 357–362

[35]

Gordon M D, Nusse R (2006). Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem, 281(32): 22429–22433

[36]

Gospodarowicz D (1974). Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature, 249(453): 123–127

[37]

Gotoh N, Manova K, Tanaka S, Murohashi M, Hadari Y, Lee A, Hamada Y, Hiroe T, Ito M, Kurihara T, Nakazato H, Shibuya M, Lax I, Lacy E, Schlessinger J (2005). The docking protein FRS2alpha is an essential component of multiple fibroblast growth factor responses during early mouse development. Mol Cell Biol, 25(10): 4105–4116

[38]

Gridley T (2007). Notch signaling in vascular development and physiology. Development, 134(15): 2709–2718

[39]

Grigoryan T, Wend P, Klaus A, Birchmeier W (2008). Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev, 22(17): 2308–2341

[40]

Guillemot F, Nagy A, Auerbach A, Rossant J, Joyner A L (1994). Essential role of Mash-2 in extraembryonic development. Nature, 371(6495): 333–336

[41]

Gurtner G C, Davis V, Li H, McCoy M J, Sharpe A, Cybulsky M I (1995). Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev, 9(1): 1–14

[42]

Haffner-Krausz R, Gorivodsky M, Chen Y, Lonai P (1999). Expression of Fgfr2 in the early mouse embryo indicates its involvement in preimplantation development. Mech Dev, 85(1-2): 167–172

[43]

Hamada Y, Hiroe T, Suzuki Y, Oda M, Tsujimoto Y, Coleman J R, Tanaka S (2007). Notch2 is required for formation of the placental circulatory system, but not for cell-type specification in the developing mouse placenta. Differentiation, 75(3): 268–278

[44]

Hamada Y, Kadokawa Y, Okabe M, Ikawa M, Coleman J R, Tsujimoto Y (1999). Mutation in ankyrin repeats of the mouse Notch2 gene induces early embryonic lethality. Development, 126(15): 3415–3424

[45]

Hatano N, Mori Y, Oh-hora M, Kosugi A, Fujikawa T, Nakai N, Niwa H, Miyazaki J, Hamaoka T, Ogata M (2003). Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells, 8(11): 847–856

[46]

He X (2003). A Wnt-Wnt situation. Dev Cell, 4(6): 791–797

[47]

Hong K H, Seki T, Oh S P (2007). Activin receptor-like kinase 1 is essential for placental vascular development in mice. Lab Invest, 87(7): 670–679

[48]

Huang H, He X (2008). Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol, 20(2): 119–125

[49]

Huang H C, Klein P S (2004). Interactions between BMP and Wnt signaling pathways in mammalian cancers. Cancer Biol Ther, 3(7): 676–678

[50]

Hunter T (2000). Signaling—2000 and beyond. Cell, 100(1): 113–127

[51]

Iannaccone P M, Zhou X, Khokha M, Boucher D, Kuehn M R (1992). Insertional mutation of a gene involved in growth regulation of the early mouse embryo. Dev Dyn, 194(3): 198–208

[52]

Inman K E, Downs K M (2007). The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis, 45(5): 237–258

[53]

Ishikawa T, Tamai Y, Zorn A M, Yoshida H, Seldin M F, Nishikawa S, Taketo M M (2001). Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development, 128(1): 25–33

[54]

Itoh M, Yoshida Y, Nishida K, Narimatsu M, Hibi M, Hirano T (2000). Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol, 20(10): 3695–3704

[55]

Johnson D E, Williams L T (1993). Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res, 60: 1–41

[56]

Jones R L, Stoikos C, Findlay J K, Salamonsen L A (2006). TGF-beta superfamily expression and actions in the endometrium and placenta. Reproduction, 132(2): 217–232

[57]

Krebs L T, Shutter J R, Tanigaki K, Honjo T, Stark K L, Gridley T (2004). Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants. Genes Dev, 18(20): 2469–2473

[58]

Krebs L T, Xue Y, Norton C R, Shutter J R, Maguire M, Sundberg J P, Gallahan D, Closson V, Kitajewski J, Callahan R, Smith G H, Stark K L, Gridley T (2000). Notch signaling is essential for vascular morphogenesis in mice. Genes Dev, 14(11): 1343–1352

[59]

Kühl M, Sheldahl L C, Park M, Miller J R, Moon R T (2000). The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet, 16(7): 279–283

[60]

Kwee L, Baldwin H S, Shen H M, Stewart C L, Buck C, Buck C A, Labow M A (1995). Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development, 121(2): 489–503

[61]

Lawler S, Candia A F, Ebner R, Shum L, Lopez A R, Moses H L, Wright C V, Derynck R (1994). The murine type II TGF-beta receptor has a coincident embryonic expression and binding preference for TGF-beta 1. Development, 120(1): 165–175

[62]

Lawson K A, Dunn N R, Roelen B A, Zeinstra L M, Davis A M, Wright C V, Korving J P, Hogan B L (1999). Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev, 13(4): 424–436

[63]

Lechleider R J, Ryan J L, Garrett L, Eng C, Deng C, Wynshaw-Boris A, Roberts A B (2001). Targeted mutagenesis of Smad1 reveals an essential role in chorioallantoic fusion. Dev Biol, 240(1): 157–167

[64]

Lee P L, Johnson D E, Cousens L S, Fried V A, Williams L T (1989). Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science, 245(4913): 57–60

[65]

Levine R J, Lam C, Qian C, Yu K F, Maynard S E, Sachs B P, Sibai B M, Epstein F H, Romero R, Thadhani R, Karumanchi S A, the CPEP Study Group (2006). Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med, 355(10): 992–1005

[66]

Limbourg F P, Takeshita K, Radtke F, Bronson R T, Chin M T, Liao J K (2005). Essential role of endothelial Notch1 in angiogenesis. Circulation, 111(14): 1826–1832

[67]

Ma G T, Soloveva V, Tzeng S J, Lowe L A, Pfendler K C, Iannaccone P M, Kuehn M R, Linzer D I (2001). Nodal regulates trophoblast differentiation and placental development. Dev Biol, 236(1): 124–135

[68]

Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler B M, Delius H, Hoppe D, Stannek P, Walter C, Glinka A, Niehrs C (2002). Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature, 417(6889): 664–667

[69]

Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C (2001). LDL-receptor-related protein 6 is a receptor for Dickkopf proteins. Nature, 411(6835): 321–325

[70]

Melillo R M, Santoro M, Ong S H, Billaud M, Fusco A, Hadari Y R, Schlessinger J, Lax I (2001). Docking protein FRS2 links the protein tyrosine kinase RET and its oncogenic forms with the mitogen-activated protein kinase signaling cascade. Mol Cell Biol, 21(13): 4177–4187

[71]

Mikula M, Schreiber M, Husak Z, Kucerova L, Rüth J, Wieser R, Zatloukal K, Beug H, Wagner E F, Baccarini M (2001). Embryonic lethality and fetal liver apoptosis in mice lacking the c-raf-1 gene. EMBO J, 20(8): 1952–1962

[72]

Mlodzik M (2002). Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet, 18(11): 564–571

[73]

Monkley S J, Delaney S J, Pennisi D J, Christiansen J H, Wainwright B J (1996). Targeted disruption of the Wnt2 gene results in placentation defects. Development, 122(11): 3343–3353

[74]

Moon R T, Kohn A D, De Ferrari G V, Kaykas A (2004). WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet, 5(9): 691–701

[75]

Mudgett J S, Ding J, Guh-Siesel L, Chartrain N A, Yang L, Gopal S, Shen M M (2000). Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci U S A, 97(19): 10454–10459

[76]

Murphy V E, Smith R, Giles W B, Clifton V L (2006). Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev, 27(2): 141–169

[77]

Nadeau V, Guillemette S, Bélanger L F, Jacob O, Roy S, Charron J (2009). Map2k1 and Map2k2 genes contribute to the normal development of syncytiotrophoblasts during placentation. Development, 136(8): 1363–1374

[78]

Nakamura Y, Hamada Y, Fujiwara T, Enomoto H, Hiroe T, Tanaka S, Nose M, Nakahara M, Yoshida N, Takenawa T, Fukami K (2005). Phospholipase C-delta1 and -delta3 are essential in the trophoblast for placental development. Mol Cell Biol, 25(24): 10979–10988

[79]

Nakayama H, Liu Y, Stifani S, Cross J C (1997). Developmental restriction of Mash-2 expression in trophoblast correlates with potential activation of the notch-2 pathway. Dev Genet, 21(1): 21–30

[80]

Natale D R, Hemberger M, Hughes M, Cross J C (2009). Activin promotes differentiation of cultured mouse trophoblast stem cells towards a labyrinth cell fate. Dev Biol, 335(1): 120–131

[81]

Natale D R, Starovic M, Cross J C (2006). Phenotypic analysis of the mouse placenta. Methods Mol Med, 121: 275–293

[82]

Nusse R, Varmus H E (1982). Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell, 31(1): 99–109

[83]

Oike Y, Takakura N, Hata A, Kaname T, Akizuki M, Yamaguchi Y, Yasue H, Araki K, Yamamura K, Suda T (1999). Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood, 93(9): 2771–2779

[84]

Oka C, Nakano T, Wakeham A, de la Pompa J L, Mori C, Sakai T, Okazaki S, Kawaichi M, Shiota K, Mak T W, Honjo T (1995). Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development, 121(10): 3291–3301

[85]

Ornitz D M, Itoh N (2001). Fibroblast growth factors. Genome Biol, 2(3): 1-12

[86]

Ornitz D M, Xu J, Colvin J S, McEwen D G, MacArthur C A, Coulier F, Gao G, Goldfarb M (1996). Receptor specificity of the fibroblast growth factor family. J Biol Chem, 271(25): 15292–15297

[87]

Oshima M, Oshima H, Taketo M M (1996). TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol, 179(1): 297–302

[88]

Parr B A, Cornish V A, Cybulsky M I, McMahon A P (2001). Wnt7b regulates placental development in mice. Dev Biol, 237(2): 324–332

[89]

Peng S, Miao C, Li J, Fan X, Cao Y, Duan E (2006). Dickkopf-1 induced apoptosis in human placental choriocarcinoma is independent of canonical Wnt signaling. Biochem Biophys Res Commun, 350(3): 641–647

[90]

Plotnikov A N, Hubbard S R, Schlessinger J, Mohammadi M (2000). Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell, 101(4): 413–424

[91]

Polakis P (2000). Wnt signaling and cancer. Genes Dev, 14(15): 1837–1851

[92]

Pollheimer J, Knofler M (2005). Signalling pathways regulating the invasive differentiation of human trophoblasts: a review. Placenta, 26 (Suppl A): S21–30

[93]

Pollheimer J, Loregger T, Sonderegger S, Saleh L, Bauer S, Bilban M, Czerwenka K, Husslein P, Knöfler M (2006). Activation of the canonical wingless/T-cell factor signaling pathway promotes invasive differentiation of human trophoblast. Am J Pathol, 168(4): 1134–1147

[94]

Powers C J, McLeskey S W, Wellstein A (2000). Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer, 7(3): 165–197

[95]

Qian X, Esteban L, Vass W C, Upadhyaya C, Papageorge A G, Yienger K, Ward J M, Lowy D R, Santos E (2000). The Sos1 and Sos2 Ras-specific exchange factors: differences in placental expression and signaling properties. EMBO J, 19(4): 642–654

[96]

Rattner A, Hsieh J C, Smallwood P M, Gilbert D J, Copeland N G, Jenkins N A, Nathans J (1997). A family of secreted proteins contains homology to the cysteine-rich ligand-binding domain of frizzled receptors. Proc Natl Acad Sci U S A, 94(7): 2859–2863

[97]

Redline R W, Chernicky C L, Tan H Q, Ilan J, Ilan J (1993). Differential expression of insulin-like growth factor-II in specific regions of the late (post day 9.5) murine placenta. Mol Reprod Dev, 36(2): 121–129

[98]

Regan C P, Li W, Boucher D M, Spatz S, Su M S, Kuida K (2002). Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc Natl Acad Sci U S A, 99(14): 9248–9253

[99]

Robinson M L, MacMillan-Crow L A, Thompson J A, Overbeek P A (1995). Expression of a truncated FGF receptor results in defective lens development in transgenic mice. Development, 121(12): 3959–3967

[100]

Roca C, Adams R H (2007). Regulation of vascular morphogenesis by Notch signaling. Genes Dev, 21(20): 2511–2524

[101]

Rossant J, Cross J C (2001). Placental development: lessons from mouse mutants. Nat Rev Genet, 2(7): 538–548

[102]

Saba-El-Leil M K, Vella F D, Vernay B, Voisin L, Chen L, Labrecque N, Ang S L, Meloche S (2003). An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep, 4(10): 964–968

[103]

Saxton T M, Cheng A M, Ong S H, Lu Y, Sakai R, Cross J C, Pawson T (2001). Gene dosage-dependent functions for phosphotyrosine-Grb2 signaling during mammalian tissue morphogenesis. Curr Biol, 11(9): 662–670

[104]

Schlessinger J (2000). Cell signaling by receptor tyrosine kinases. Cell, 103(2): 211–225

[105]

Scifres C M, Nelson D M (2009). Intrauterine growth restriction, human placental development and trophoblast cell death. J Physiol, 587(Pt 14): 3453–3458

[106]

Semënov M V, Tamai K, Brott B K, Kühl M, Sokol S, He X (2001). Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol, 11(12): 951–961

[107]

Sleeman M, Fraser J, McDonald M, Yuan S, White D, Grandison P, Kumble K, Watson J D, Murison J G (2001). Identification of a new fibroblast growth factor receptor, FGFR5. Gene, 271(2): 171–182

[108]

Sohn S J, Sarvis B K, Cado D, Winoto A (2002). ERK5 MAPK regulates embryonic angiogenesis and acts as a hypoxia-sensitive repressor of vascular endothelial growth factor expression. J Biol Chem, 277(45): 43344–43351

[109]

Solloway M J, Robertson E J (1999). Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development, 126(8): 1753–1768

[110]

Sonderegger S, Husslein H, Leisser C,Knofler M (2007). Complex expression pattern of Wnt ligands and frizzled receptors in human placenta and its trophoblast subtypes. Placenta , 28 (Suppl A): S97–102

[111]

Song H, Lim H, Paria B C, Matsumoto H, Swift L L, Morrow J, Bonventre J V, Dey S K (2002). Cytosolic phospholipase A2alpha is crucial [correction of A2alpha deficiency is crucial] for ‘on-time’ embryo implantation that directs subsequent development. Development, 129(12): 2879–2889

[112]

Swiatek P J, Lindsell C E, del Amo F F, Weinmaster G, Gridley T (1994). Notch1 is essential for postimplantation development in mice. Genes Dev, 8(6): 707–719

[113]

Tanaka M, Gertsenstein M, Rossant J, Nagy A (1997). Mash2 acts cell autonomously in mouse spongiotrophoblast development. Dev Biol, 190(1): 55–65

[114]

Tanaka S, Kunath T, Hadjantonakis A K, Nagy A, Rossant J (1998). Promotion of trophoblast stem cell proliferation by FGF4. Science, 282(5396): 2072–2075

[115]

Tremblay K D, Dunn N R, Robertson E J (2001). Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development, 128(18): 3609–3621

[116]

Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim Y M, Bdolah Y, Lim K H, Yuan H T, Libermann T A, Stillman I E, Roberts D, D’Amore P A, Epstein F H, Sellke F W, Romero R, Sukhatme V P, Letarte M, Karumanchi S A (2006). Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med, 12(6): 642–649

[117]

Wang H, Dey S K (2006). Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet, 7(3): 185–199

[118]

Watson E D, Cross J C (2005). Development of structures and transport functions in the mouse placenta. Physiology (Bethesda), 20(3): 180–193

[119]

Wilcox A J, Baird D D, Weinberg C R (1999). Time of implantation of the conceptus and loss of pregnancy. N Engl J Med, 340(23): 1796–1799

[120]

Willert K, Brown J D, Danenberg E, Duncan A W, Weissman I L, Reya T, Yates J R 3rd, Nusse R (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 423(6938): 448–452

[121]

Willert K, Jones K A (2006). Wnt signaling: is the party in the nucleus? Genes Dev, 20(11): 1394–1404

[122]

Winnier G, Blessing M, Labosky P A, Hogan B L (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev, 9(17): 2105–2116

[123]

Xie H, Tranguch S, Jia X, Zhang H, Das S K, Dey S K, Kuo C J, Wang H (2008). Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation. Development, 135(4): 717–727

[124]

Xu X, Weinstein M, Li C, Naski M, Cohen R I, Ornitz D M, Leder P, Deng C (1998). Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development, 125(4): 753–765

[125]

Xue Y, Gao X, Lindsell C E, Norton C R, Chang B, Hicks C, Gendron-Maguire M, Rand E B, Weinmaster G, Gridley T (1999). Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum Mol Genet, 8(5): 723–730

[126]

Yan L, Carr J, Ashby P R, Murry-Tait V, Thompson C, Arthur J S (2003). Knockout of ERK5 causes multiple defects in placental and embryonic development. BMC Dev Biol, 3(1): 11

[127]

Yang J, Boerm M, McCarty M, Bucana C, Fidler I J, Zhuang Y, Su B (2000). Mekk3 is essential for early embryonic cardiovascular development. Nat Genet, 24(3): 309–313

[128]

Yang J T, Rayburn H, Hynes R O (1995). Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development, 121(2): 549–560

[129]

Yang W, Klaman L D, Chen B, Araki T, Harada H, Thomas S M, George E L, Neel B G (2006). An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Dev Cell, 10(3): 317–327

[130]

Yang Z Z, Tschopp O, Hemmings-Mieszczak M, Feng J, Brodbeck D, Perentes E, Hemmings B A (2003). Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem, 278(34): 32124–32131

[131]

Yao T P, Oh S P, Fuchs M, Zhou N D, Ch’ng L E, Newsome D, Bronson R T, Li E, Livingston D M, Eckner R (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell, 93(3): 361–372

[132]

Ye X, Hama K, Contos J J, Anliker B, Inoue A, Skinner M K, Suzuki H, Amano T, Kennedy G, Arai H, Aoki J, Chun J (2005). LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature, 435(7038): 104–108

[133]

Ying Y, Liu X M, Marble A, Lawson K A, Zhao G Q (2000). Requirement of Bmp8b for the generation of primordial germ cells in the mouse. Mol Endocrinol, 14(7): 1053–1063

[134]

Zeigler B M, Sugiyama D, Chen M, Guo Y, Downs K M, Speck N A (2006). The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development, 133(21): 4183–4192

[135]

Zhang H, Bradley A (1996). Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development, 122(10): 2977–2986

[136]

Zhu X, Komiya H, Chirino A, Faham S, Fox G M, Arakawa T, Hsu B T, Rees D C (1991). Three-dimensional structures of acidic and basic fibroblast growth factors. Science, 251(4989): 90–93

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (333KB)

1792

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/