Fate determination of fetal Leydig cells
Qing WEN, Yixun LIU, Fei GAO
Fate determination of fetal Leydig cells
Leydig cell (LC) is one of the most important somatic cell types in testis, which localized in the interstitium between seminiferous tubules. The major function of Leydig cells is to produce steroid hormone, androgens. LC differentiation exhibits a biphasic pattern in rodent testes, which are divided into two different temporal mature populations, fetal Leydig cells (FLCs) and adult Leydig cells (ALCs). FLCs are transiently present in fetal testes and undergo involution or degeneration after birth. FLCs are completely devoid and replaced by ALCs in adult testes. Comparing to ALCs, FLCs display unique morphology, ultrastructure and functions. The origin of FLCs has been debated for many years, but it is still a mystery. Many factors have been reported regulating the specification, proliferation and differentiation of FLCs. FLCs degenerate in a few weeks postnatally, however, the underlying mechanism is still unknown. In this review, we will focus on the fate determination of FLCs, and summarize the resent progress on the morphology, ultrastructure, function, origin and involution of FLCs.
fetal Leydig cells / adult Leydig cells / fate determination
[1] |
Angelova P, Davidoff M, Baleva K, Staykova M (1991). Substance P- and neuron-specific enolase-like immunoreactivity of rodent Leydig cells in tissue section and cell culture. Acta Histochem, 91(2): 131–139
Pubmed
|
[2] |
Baarends W M, Hoogerbrugge J W, Post M, Visser J A, De Rooij D G, Parvinen M, Themmen A P, Grootegoed J A (1995). Anti-mullerian hormone and anti-mullerian hormone type II receptor messenger ribonucleic acid expression during postnatal testis development and in the adult testis of the rat. Endocrinology, 136(12): 5614–5622
CrossRef
Pubmed
Google scholar
|
[3] |
Baarends W M, van Helmond M J, Post M, van der Schoot P J, Hoogerbrugge J W, de Winter J P, Uilenbroek J T, Karels B, Wilming L G, Meijers J H,
Pubmed
|
[4] |
Baillie A H (1964). FURTHER OBSERVATIONS ON THE GROWTH AND HISTOCHEMISTRY OF LEYDIG TISSUE IN THE POSTNATAL PREPUBERTAL MOUSE TESTIS. J Anat, 98: 403–418
Pubmed
|
[5] |
Barsoum I B, Bingham N C, Parker K L, Jorgensen J S, Yao H H (2009). Activation of the Hedgehog pathway in the mouse fetal ovary leads to ectopic appearance of fetal Leydig cells and female pseudohermaphroditism. Dev Biol, 329(1): 96–103
CrossRef
Pubmed
Google scholar
|
[6] |
Barsoum I B, Yao H H (2010). Fetal Leydig cells: progenitor cell maintenance and differentiation. J Androl, 31(1): 11–15
CrossRef
Pubmed
Google scholar
|
[7] |
Behringer R R, Cate R L, Froelick G J, Palmiter R D, Brinster R L (1990). Abnormal sexual development in transgenic mice chronically expressing müllerian inhibiting substance. Nature, 345(6271): 167–170
CrossRef
Pubmed
Google scholar
|
[8] |
Behringer R R, Finegold M J, Cate R L (1994). Müllerian-inhibiting substance function during mammalian sexual development. Cell, 79(3): 415–425
CrossRef
Pubmed
Google scholar
|
[9] |
Betsholtz C, Raines E W (1997). Platelet-derived growth factor: a key regulator of connective tissue cells in embryogenesis and pathogenesis. Kidney Int, 51(5): 1361–1369
CrossRef
Pubmed
Google scholar
|
[10] |
Bitgood M J, McMahon A P (1995). Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev Biol, 172(1): 126–138
CrossRef
Pubmed
Google scholar
|
[11] |
Boström H, Willetts K, Pekny M, Levéen P, Lindahl P, Hedstrand H, Pekna M, Hellström M, Gebre-Medhin S, Schalling M, Nilsson M, Kurland S, Törnell J, Heath J K, Betsholtz C (1996). PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell, 85(6): 863–873
CrossRef
Pubmed
Google scholar
|
[12] |
Brennan J, Capel B (2004). One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet, 5(7): 509–521
CrossRef
Pubmed
Google scholar
|
[13] |
Brennan J, Tilmann C, Capel B (2003). Pdgfr-alpha mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev, 17(6): 800–810
CrossRef
Pubmed
Google scholar
|
[14] |
Buehr M, Gu S, McLaren A (1993). Mesonephric contribution to testis differentiation in the fetal mouse. Development, 117(1): 273–281
Pubmed
|
[15] |
Chiwakata C, Brackmann B, Hunt N, Davidoff M, Schulze W, Ivell R (1991). Tachykinin (substance-P) gene expression in Leydig cells of the human and mouse testis. Endocrinology, 128(5): 2441–2448
CrossRef
Pubmed
Google scholar
|
[16] |
Cui S, Ross A, Stallings N, Parker K L, Capel B, Quaggin S E (2004). Disrupted gonadogenesis and male-to-female sex reversal in Pod1 knockout mice. Development, 131(16): 4095–4105
CrossRef
Pubmed
Google scholar
|
[17] |
Davidoff M S, Middendorff R, Müller D, Holstein A F, Müller D (2009). Fetal and Adult Leydig Cells Are of Common Orig. In The Neuroendocrine Leydig Cells and their Stem Cell Progenitors, the Pericytes. Berlin: Springer, pp. 89–103
|
[18] |
De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm J S, Schroeter E H, Schrijvers V, Wolfe M S, Ray W J, Goate A, Kopan R (1999). A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature, 398(6727): 518–522
CrossRef
Pubmed
Google scholar
|
[19] |
di Clemente N, Wilson C, Faure E, Boussin L, Carmillo P, Tizard R, Picard J Y, Vigier B, Josso N, Cate R (1994). Cloning, expression, and alternative splicing of the receptor for anti-Müllerian hormone. Mol Endocrinol, 8(8): 1006–1020
CrossRef
Pubmed
Google scholar
|
[20] |
Faria M J S, Simões Z L, Lunardi L O, Hartfelder K (2003). Apoptosis process in mouse Leydig cells during postnatal development. Microsc Microanal, 9(1): 68–73
CrossRef
Pubmed
Google scholar
|
[21] |
Gondos B, Morrison K P, Renston R H (1977). Leydig cell differentiation in the prepubertal rabbit testis. Biol Reprod, 17(5): 745–748
CrossRef
Pubmed
Google scholar
|
[22] |
Habert R, Lejeune H, Saez J M (2001). Origin, differentiation and regulation of fetal and adult Leydig cells. Mol Cell Endocrinol, 179(1-2): 47–74
CrossRef
Pubmed
Google scholar
|
[23] |
Haider S G (2004). Cell biology of Leydig cells in the testis. Int Rev Cytol, 233: 181–241
CrossRef
Pubmed
Google scholar
|
[24] |
Haider S G, Servos G, Tran N (2007). Structural and Histological Analysis of Leydig Cell Steroidogenic Function. In Payne A H, Hardy M P, eds. The Leydig Cell in Health and Disease. New Jersey: Humana Press, pp. 33–45
|
[25] |
Hatano O, Takakusu A, Nomura M, Morohashi K (1996). Identical origin of adrenal cortex and gonad revealed by expression profiles of Ad4BP/SF-1. Genes Cells, 1(7): 663–671
CrossRef
Pubmed
Google scholar
|
[26] |
Huppert S S, Le A, Schroeter E H, Mumm J S, Saxena M T, Milner L A, Kopan R (2000). Embryonic lethality in mice homozygous for a processing-deficient allele of Notch1. Nature, 405(6789): 966–970
CrossRef
Pubmed
Google scholar
|
[27] |
Kageyama R, Ohtsuka T, Kobayashi T (2007). The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development, 134(7): 1243–1251
CrossRef
Pubmed
Google scholar
|
[28] |
Karl J, Capel B (1998). Sertoli cells of the mouse testis originate from the coelomic epithelium. Dev Biol, 203(2): 323–333
CrossRef
Pubmed
Google scholar
|
[29] |
Karlsson L, Lindahl P, Heath J K, Betsholtz C (2000). Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development, 127(16): 3457–3466
Pubmed
|
[30] |
Kitamura K, Yanazawa M, Sugiyama N, Miura H, Iizuka-Kogo A, Kusaka M, Omichi K, Suzuki R, Kato-Fukui Y, Kamiirisa K, Matsuo M, Kamijo S, Kasahara M, Yoshioka H, Ogata T, Fukuda T, Kondo I, Kato M, Dobyns W B, Yokoyama M, Morohashi K (2002). Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet, 32(3): 359–369
CrossRef
Pubmed
Google scholar
|
[31] |
Lai E C (2004). Notch signaling: control of cell communication and cell fate. Development, 131(5): 965–973
CrossRef
Pubmed
Google scholar
|
[32] |
Lee M M, Donahoe P K (1993). Mullerian inhibiting substance: a gonadal hormone with multiple functions. Endocr Rev, 14(2): 152–164
Pubmed
|
[33] |
Lee M M, Seah C C, Masiakos P T, Sottas C M, Preffer F I, Donahoe P K, Maclaughlin D T, Hardy M P (1999). Müllerian-inhibiting substance type II receptor expression and function in purified rat Leydig cells. Endocrinology, 140(6): 2819–2827
CrossRef
Pubmed
Google scholar
|
[34] |
Lindahl P, Hellström M, Kalén M, Karlsson L, Pekny M, Pekna M, Soriano P, Betsholtz C (1998). Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. Development, 125(17): 3313–3322
Pubmed
|
[35] |
Lording D W, De Kretser D M (1972). Comparative ultrastructural and histochemical studies of the interstitial cells of the rat testis during fetal and postnatal development. J Reprod Fertil, 29(2): 261–269
CrossRef
Pubmed
Google scholar
|
[36] |
Luo X, Ikeda Y, Parker K L (1994). A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell, 77(4): 481–490
CrossRef
Pubmed
Google scholar
|
[37] |
Martineau J, Nordqvist K, Tilmann C, Lovell-Badge R, Capel B (1997). Male-specific cell migration into the developing gonad. Curr Biol, 7(12): 958–968
CrossRef
Pubmed
Google scholar
|
[38] |
Mayerhofer A, Lahr G, Seidl K, Eusterschulte B, Christoph A, Gratzl M (1996). The neural cell adhesion molecule (NCAM) provides clues to the development of testicular Leydig cells. J Androl, 17(3): 223–230
Pubmed
|
[39] |
Mendis-Handagama S M, Ariyaratne H B (2001). Differentiation of the adult Leydig cell population in the postnatal testis. Biol Reprod, 65(3): 660–671
CrossRef
Pubmed
Google scholar
|
[40] |
Merchant-Larios H, Moreno-Mendoza N (1998). Mesonephric stromal cells differentiate into Leydig cells in the mouse fetal testis. Exp Cell Res, 244(1): 230–238
CrossRef
Pubmed
Google scholar
|
[41] |
Mishina Y, Rey R, Finegold M J, Matzuk M M, Josso N, Cate R L, Behringer R R (1996). Genetic analysis of the Müllerian-inhibiting substance signal transduction pathway in mammalian sexual differentiation. Genes Dev, 10(20): 2577–2587
CrossRef
Pubmed
Google scholar
|
[42] |
Niemi M, Kormano M (1964). CELL RENEWAL IN THE INTERSTITIAL TISSUE OF POSTNATAL PREPUBERAL RAT TESTIS. Endocrinology, 74(6): 996–998
CrossRef
Pubmed
Google scholar
|
[43] |
Nishino K, Yamanouchi K, Naito K, Tojo H (2001). Characterization of mesonephric cells that migrate into the XY gonad during testis differentiation. Exp Cell Res, 267(2): 225–232
CrossRef
Pubmed
Google scholar
|
[44] |
Racine C, Rey R, Forest M G, Louis F, Ferré A, Huhtaniemi I, Josso N, di Clemente N (1998). Receptors for anti-müllerian hormone on Leydig cells are responsible for its effects on steroidogenesis and cell differentiation. Proc Natl Acad Sci USA, 95(2): 594–599
CrossRef
Pubmed
Google scholar
|
[45] |
Roosen-Runge E C, Anderson D (1959). The development of the interstitial cells in the testis of the albino rat. Acta Anat (Basel), 37(1-2): 125–137
CrossRef
Pubmed
Google scholar
|
[46] |
Sadovsky Y, Crawford P A, Woodson K G, Polish J A, Clements M A, Tourtellotte L M, Simburger K, Milbrandt J (1995). Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Natl Acad Sci U S A, 92(24): 10939–10943
CrossRef
Pubmed
Google scholar
|
[47] |
Schmahl J, Eicher E M, Washburn L L, Capel B (2000). Sry induces cell proliferation in the mouse gonad. Development, 127(1): 65–73
Pubmed
|
[48] |
Schroeter E H, Kisslinger J A, Kopan R (1998). Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature, 393(6683): 382–386
CrossRef
Pubmed
Google scholar
|
[49] |
Soriano P (1994). Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev, 8(16): 1888–1896
CrossRef
Pubmed
Google scholar
|
[50] |
Tang H, Brennan J, Karl J, Hamada Y, Raetzman L, Capel B (2008). Notch signaling maintains Leydig progenitor cells in the mouse testis. Development, 135(22): 3745–3753
CrossRef
Pubmed
Google scholar
|
[51] |
Teixeira J, He W W, Shah P C, Morikawa N, Lee M M, Catlin E A, Hudson P L, Wing J, Maclaughlin D T, Donahoe P K (1996). Developmental expression of a candidate müllerian inhibiting substance type II receptor. Endocrinology, 137(1): 160–165
CrossRef
Pubmed
Google scholar
|
[52] |
Tilmann C, Capel B (1999). Mesonephric cell migration induces testis cord formation and Sertoli cell differentiation in the mammalian gonad. Development, 126(13): 2883–2890
Pubmed
|
[53] |
Yao H H, Capel B (2002). Disruption of testis cords by cyclopamine or forskolin reveals independent cellular pathways in testis organogenesis. Dev Biol, 246(2): 356–365
CrossRef
Pubmed
Google scholar
|
[54] |
Yao H H, Whoriskey W, Capel B (2002). Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev, 16(11): 1433–1440
CrossRef
Pubmed
Google scholar
|
[55] |
Yao H H C, Barsoum I (2007). Fetal Leydig Cells. In: A HPayne, Hardy M P, eds. The Leydig Cell in Health and Disease. New Jersey: Humana Press, pp. 47–54
|
/
〈 | 〉 |