Gold glitters everywhere: nucleus microRNAs and their functions

Rui TANG, Ke ZEN

PDF(234 KB)
PDF(234 KB)
Front. Biol. ›› 2011, Vol. 06 ›› Issue (01) : 69-75. DOI: 10.1007/s11515-011-0990-4
REVIEW

Gold glitters everywhere: nucleus microRNAs and their functions

Author information +
History +

Abstract

As a highly conserved class of endogenous small (~22 nucleotides) non-coding RNAs, microRNAs (miRNAs) regulate a broad spectrum of biological processes. Increasing evidences suggested that miRNAs generally regulated gene expression at the posttranscriptional stage via inhibiting the translational process or degrading mRNA. Recent studies have also revealed that there is extensive amount of miRNA, as well as miRNA function-related proteins, in the cell nucleus. Although the molecular basis underneath the biogenesis and function of nucleus miRNAs remains largely unknown, the presence of various miRNAs and miRNA function-related proteins in the nucleus strongly argue that miRNAs may execute their role throughout the whole gene expression pathway. Here we review the recent advances in the researches about the nucleus miRNAs, including the biosynthesis pathways, biological functions and potential regulation machinery of nucleus miRNAs.

Keywords

nucleus miRNA / nucleus RISC / Argonaute family / Exportins / nucleus-cytoplasm shutting / gene regulatory network

Cite this article

Download citation ▾
Rui TANG, Ke ZEN. Gold glitters everywhere: nucleus microRNAs and their functions. Front Biol, 2011, 06(01): 69‒75 https://doi.org/10.1007/s11515-011-0990-4

References

[1]
Ambros V (2004). The functions of animal microRNAs. Nature, 431(7006): 350–355
CrossRef Pubmed Google scholar
[2]
Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2): 281–297
CrossRef Pubmed Google scholar
[3]
Berezhna S Y, Supekova L, Supek F, Schultz P G, Deniz A A (2006). siRNA in human cells selectively localizes to target RNA sites. Proc Natl Acad Sci USA, 103(20): 7682–7687
CrossRef Pubmed Google scholar
[4]
Castanotto D, Lingeman R, Riggs A D, Rossi J J (2009). CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proc Natl Acad Sci USA, 106(51): 21655–21659
CrossRef Pubmed Google scholar
[5]
Emmerth S, Schober H, Gaidatzis D, Roloff T, Jacobeit K, Bühler M (2010). Nuclear retention of fission yeast dicer is a prerequisite for RNAi-mediated heterochromatin assembly. Dev Cell, 18(1): 102–113
CrossRef Pubmed Google scholar
[6]
Földes-Papp Z, König K, Studier H, Bückle R, Breunig H G, Uchugonova A, Kostner G M (2009). Trafficking of mature miRNA-122 into the nucleus of live liver cells. Curr Pharm Biotechnol, 10(6): 569–578
CrossRef Pubmed Google scholar
[7]
Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, Nakayama T, Oshimura M (2004). Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol, 6(8): 784–791
CrossRef Pubmed Google scholar
[8]
Guang S, Bochner A F, Pavelec D M, Burkhart K B, Harding S, Lachowiec J, Kennedy S (2008). An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science, 321(5888): 537–541
CrossRef Pubmed Google scholar
[9]
Hwang H W, Wentzel E A, Mendell J T (2007). A hexanucleotide element directs microRNA nuclear import. Science, 315(5808): 97–100
CrossRef Pubmed Google scholar
[10]
Janowski B A, Huffman K E, Schwartz J C, Ram R, Nordsell R, Shames D S, Minna J D, Corey D R (2006). Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol, 13(9): 787–792
CrossRef Pubmed Google scholar
[11]
Janowski B A, Younger S T, Hardy D B, Ram R, Huffman K E, Corey D R (2007). Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol, 3(3): 166–173
CrossRef Pubmed Google scholar
[12]
Jeffries C D, Fried H M, Perkins D O (2010). Additional layers of gene regulatory complexity from recently discovered microRNA mechanisms. Int J Biochem Cell Biol, 42(8): 1236–1242
CrossRef Pubmed Google scholar
[13]
Kawasaki H, Taira K (2004). Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature, 431(7005): 211–217
CrossRef Pubmed Google scholar
[14]
Kim D H, Saetrom P, Snøve O Jr, Rossi J J (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA, 105(42): 16230–16235
CrossRef Pubmed Google scholar
[15]
Li L C, Okino S T, Zhao H, Pookot D, Place R F, Urakami S, Enokida H, Dahiya R (2006). Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA, 103(46): 17337–17342
CrossRef Pubmed Google scholar
[16]
Liao J Y, Ma L M, Guo Y H, Zhang Y C, Zhou H, Shao P, Chen Y Q, Qu L H, Xu S (2010). Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3' trailers. PLoS ONE, 5(5): e10563
CrossRef Pubmed Google scholar
[17]
Lund E, Güttinger S, Calado A, Dahlberg J E, Kutay U (2004). Nuclear export of microRNA precursors. Science, 303(5654): 95–98
CrossRef Pubmed Google scholar
[18]
Marcon E, Babak T, Chua G, Hughes T, Moens P B (2008). miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Res, 16(2): 243–260
CrossRef Pubmed Google scholar
[19]
Meister G, Landthaler M, Dorsett Y, Tuschl T (2004a). Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA, 10(3): 544–550
CrossRef Pubmed Google scholar
[20]
Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004b). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell, 15(2): 185–197
CrossRef Pubmed Google scholar
[21]
Noto T, Kurth H M, Kataoka K, Aronica L, DeSouza L V, Siu K W, Pearlman R E, Gorovsky M A, Mochizuki K (2010). The Tetrahymena argonaute-binding protein Giw1p directs a mature argonaute-siRNA complex to the nucleus. Cell, 140(5): 692–703
CrossRef Pubmed Google scholar
[22]
Ohrt T, Mütze J, Staroske W, Weinmann L, Höck J, Crell K, Meister G, Schwille P (2008). Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res, 36(20): 6439–6449
CrossRef Pubmed Google scholar
[23]
Okada C, Yamashita E, Lee S J, Shibata S, Katahira J, Nakagawa A, Yoneda Y, Tsukihara T (2009). A high-resolution structure of the pre-microRNA nuclear export machinery. Science, 326(5957): 1275–1279
CrossRef Pubmed Google scholar
[24]
Onodera Y, Haag J R, Ream T, Nunes P C, Pontes O, Pikaard C S (2005). Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell, 120(5): 613–622
CrossRef Pubmed Google scholar
[25]
Pal-Bhadra M, Leibovitch B A, Gandhi S G, Rao M, Bhadra U, Birchler J A, Elgin S C (2004). Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science, 303(5658): 669–672
CrossRef Pubmed Google scholar
[26]
Place R F, Li L C, Pookot D, Noonan E J, Dahiya R (2008). MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA, 105(5): 1608–1613
CrossRef Pubmed Google scholar
[27]
Politz J C, Hogan E M, Pederson T (2009). MicroRNAs with a nucleolar location. RNA, 15(9): 1705–1715
CrossRef Pubmed Google scholar
[28]
Politz J C, Zhang F, Pederson T (2006). MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells. Proc Natl Acad Sci USA, 103(50): 18957–18962
CrossRef Pubmed Google scholar
[29]
Robb G B, Brown K M, Khurana J, Rana T M (2005). Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol, 12(2): 133–137
CrossRef Pubmed Google scholar
[30]
Shibata S, Sasaki M, Miki T, Shimamoto A, Furuichi Y, Katahira J, Yoneda Y (2006). Exportin-5 orthologues are functionally divergent among species. Nucleic Acids Res, 34(17): 4711–4721
CrossRef Pubmed Google scholar
[31]
Volpe T A, Kidner C, Hall I M, Teng G, Grewal S I, Martienssen R A (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 297(5588): 1833–1837
CrossRef Pubmed Google scholar
[32]
Wassenegger M, Heimes S, Riedel L, Sänger H L (1994). RNA-directed de novo methylation of genomic sequences in plants. Cell, 76(3): 567–576
CrossRef Pubmed Google scholar
[33]
Weinmann L, Höck J, Ivacevic T, Ohrt T, Mütze J, Schwille P, Kremmer E, Benes V, Urlaub H, Meister G (2009). Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell, 136(3): 496–507
CrossRef Pubmed Google scholar
[34]
Winter J, Jung S, Keller S, Gregory R I, Diederichs S (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol, 11(3): 228–234
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(234 KB)

Accesses

Citations

Detail

Sections
Recommended

/