Gold glitters everywhere: nucleus microRNAs and their functions
Rui TANG, Ke ZEN
Gold glitters everywhere: nucleus microRNAs and their functions
As a highly conserved class of endogenous small (~22 nucleotides) non-coding RNAs, microRNAs (miRNAs) regulate a broad spectrum of biological processes. Increasing evidences suggested that miRNAs generally regulated gene expression at the posttranscriptional stage via inhibiting the translational process or degrading mRNA. Recent studies have also revealed that there is extensive amount of miRNA, as well as miRNA function-related proteins, in the cell nucleus. Although the molecular basis underneath the biogenesis and function of nucleus miRNAs remains largely unknown, the presence of various miRNAs and miRNA function-related proteins in the nucleus strongly argue that miRNAs may execute their role throughout the whole gene expression pathway. Here we review the recent advances in the researches about the nucleus miRNAs, including the biosynthesis pathways, biological functions and potential regulation machinery of nucleus miRNAs.
nucleus miRNA / nucleus RISC / Argonaute family / Exportins / nucleus-cytoplasm shutting / gene regulatory network
[1] |
Ambros V (2004). The functions of animal microRNAs. Nature, 431(7006): 350–355
CrossRef
Pubmed
Google scholar
|
[2] |
Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2): 281–297
CrossRef
Pubmed
Google scholar
|
[3] |
Berezhna S Y, Supekova L, Supek F, Schultz P G, Deniz A A (2006). siRNA in human cells selectively localizes to target RNA sites. Proc Natl Acad Sci USA, 103(20): 7682–7687
CrossRef
Pubmed
Google scholar
|
[4] |
Castanotto D, Lingeman R, Riggs A D, Rossi J J (2009). CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proc Natl Acad Sci USA, 106(51): 21655–21659
CrossRef
Pubmed
Google scholar
|
[5] |
Emmerth S, Schober H, Gaidatzis D, Roloff T, Jacobeit K, Bühler M (2010). Nuclear retention of fission yeast dicer is a prerequisite for RNAi-mediated heterochromatin assembly. Dev Cell, 18(1): 102–113
CrossRef
Pubmed
Google scholar
|
[6] |
Földes-Papp Z, König K, Studier H, Bückle R, Breunig H G, Uchugonova A, Kostner G M (2009). Trafficking of mature miRNA-122 into the nucleus of live liver cells. Curr Pharm Biotechnol, 10(6): 569–578
CrossRef
Pubmed
Google scholar
|
[7] |
Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, Nakayama T, Oshimura M (2004). Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol, 6(8): 784–791
CrossRef
Pubmed
Google scholar
|
[8] |
Guang S, Bochner A F, Pavelec D M, Burkhart K B, Harding S, Lachowiec J, Kennedy S (2008). An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science, 321(5888): 537–541
CrossRef
Pubmed
Google scholar
|
[9] |
Hwang H W, Wentzel E A, Mendell J T (2007). A hexanucleotide element directs microRNA nuclear import. Science, 315(5808): 97–100
CrossRef
Pubmed
Google scholar
|
[10] |
Janowski B A, Huffman K E, Schwartz J C, Ram R, Nordsell R, Shames D S, Minna J D, Corey D R (2006). Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol, 13(9): 787–792
CrossRef
Pubmed
Google scholar
|
[11] |
Janowski B A, Younger S T, Hardy D B, Ram R, Huffman K E, Corey D R (2007). Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol, 3(3): 166–173
CrossRef
Pubmed
Google scholar
|
[12] |
Jeffries C D, Fried H M, Perkins D O (2010). Additional layers of gene regulatory complexity from recently discovered microRNA mechanisms. Int J Biochem Cell Biol, 42(8): 1236–1242
CrossRef
Pubmed
Google scholar
|
[13] |
Kawasaki H, Taira K (2004). Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature, 431(7005): 211–217
CrossRef
Pubmed
Google scholar
|
[14] |
Kim D H, Saetrom P, Snøve O Jr, Rossi J J (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA, 105(42): 16230–16235
CrossRef
Pubmed
Google scholar
|
[15] |
Li L C, Okino S T, Zhao H, Pookot D, Place R F, Urakami S, Enokida H, Dahiya R (2006). Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci USA, 103(46): 17337–17342
CrossRef
Pubmed
Google scholar
|
[16] |
Liao J Y, Ma L M, Guo Y H, Zhang Y C, Zhou H, Shao P, Chen Y Q, Qu L H, Xu S (2010). Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3' trailers. PLoS ONE, 5(5): e10563
CrossRef
Pubmed
Google scholar
|
[17] |
Lund E, Güttinger S, Calado A, Dahlberg J E, Kutay U (2004). Nuclear export of microRNA precursors. Science, 303(5654): 95–98
CrossRef
Pubmed
Google scholar
|
[18] |
Marcon E, Babak T, Chua G, Hughes T, Moens P B (2008). miRNA and piRNA localization in the male mammalian meiotic nucleus. Chromosome Res, 16(2): 243–260
CrossRef
Pubmed
Google scholar
|
[19] |
Meister G, Landthaler M, Dorsett Y, Tuschl T (2004a). Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA, 10(3): 544–550
CrossRef
Pubmed
Google scholar
|
[20] |
Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004b). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell, 15(2): 185–197
CrossRef
Pubmed
Google scholar
|
[21] |
Noto T, Kurth H M, Kataoka K, Aronica L, DeSouza L V, Siu K W, Pearlman R E, Gorovsky M A, Mochizuki K (2010). The Tetrahymena argonaute-binding protein Giw1p directs a mature argonaute-siRNA complex to the nucleus. Cell, 140(5): 692–703
CrossRef
Pubmed
Google scholar
|
[22] |
Ohrt T, Mütze J, Staroske W, Weinmann L, Höck J, Crell K, Meister G, Schwille P (2008). Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res, 36(20): 6439–6449
CrossRef
Pubmed
Google scholar
|
[23] |
Okada C, Yamashita E, Lee S J, Shibata S, Katahira J, Nakagawa A, Yoneda Y, Tsukihara T (2009). A high-resolution structure of the pre-microRNA nuclear export machinery. Science, 326(5957): 1275–1279
CrossRef
Pubmed
Google scholar
|
[24] |
Onodera Y, Haag J R, Ream T, Nunes P C, Pontes O, Pikaard C S (2005). Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell, 120(5): 613–622
CrossRef
Pubmed
Google scholar
|
[25] |
Pal-Bhadra M, Leibovitch B A, Gandhi S G, Rao M, Bhadra U, Birchler J A, Elgin S C (2004). Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science, 303(5658): 669–672
CrossRef
Pubmed
Google scholar
|
[26] |
Place R F, Li L C, Pookot D, Noonan E J, Dahiya R (2008). MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA, 105(5): 1608–1613
CrossRef
Pubmed
Google scholar
|
[27] |
Politz J C, Hogan E M, Pederson T (2009). MicroRNAs with a nucleolar location. RNA, 15(9): 1705–1715
CrossRef
Pubmed
Google scholar
|
[28] |
Politz J C, Zhang F, Pederson T (2006). MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells. Proc Natl Acad Sci USA, 103(50): 18957–18962
CrossRef
Pubmed
Google scholar
|
[29] |
Robb G B, Brown K M, Khurana J, Rana T M (2005). Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol, 12(2): 133–137
CrossRef
Pubmed
Google scholar
|
[30] |
Shibata S, Sasaki M, Miki T, Shimamoto A, Furuichi Y, Katahira J, Yoneda Y (2006). Exportin-5 orthologues are functionally divergent among species. Nucleic Acids Res, 34(17): 4711–4721
CrossRef
Pubmed
Google scholar
|
[31] |
Volpe T A, Kidner C, Hall I M, Teng G, Grewal S I, Martienssen R A (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science, 297(5588): 1833–1837
CrossRef
Pubmed
Google scholar
|
[32] |
Wassenegger M, Heimes S, Riedel L, Sänger H L (1994). RNA-directed de novo methylation of genomic sequences in plants. Cell, 76(3): 567–576
CrossRef
Pubmed
Google scholar
|
[33] |
Weinmann L, Höck J, Ivacevic T, Ohrt T, Mütze J, Schwille P, Kremmer E, Benes V, Urlaub H, Meister G (2009). Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell, 136(3): 496–507
CrossRef
Pubmed
Google scholar
|
[34] |
Winter J, Jung S, Keller S, Gregory R I, Diederichs S (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol, 11(3): 228–234
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |