Amygdala, an important regulator for food intake

Qian ZHANG, Houkai LI, Feifan GUO

PDF(90 KB)
PDF(90 KB)
Front. Biol. ›› 2011, Vol. 06 ›› Issue (01) : 82-85. DOI: 10.1007/s11515-011-0950-z
REVIEW
REVIEW

Amygdala, an important regulator for food intake

Author information +
History +

Abstract

Amygdala plays a critical role in the regulation of emotional behavior and food intake. Neuropeptides are short chains of amino acids secreted by neurons as intercellular messengers, which regulate different functions such as emotion, food intake, learning and memory. In this review, we summarize the recent progress on the regulation of food intake by amygadala, which is mediated by those neuropeptides known to be critical in the regulation of this process.

Keywords

amygdala / food intake / neuropeptide

Cite this article

Download citation ▾
Qian ZHANG, Houkai LI, Feifan GUO. Amygdala, an important regulator for food intake. Front Biol, 2011, 06(01): 82‒85 https://doi.org/10.1007/s11515-011-0950-z

References

[1]
Ahn S, Phillips A G (2002). Modulation by central and basolateral amygdalar nuclei of dopaminergic correlates of feeding to satiety in the rat nucleus accumbens and medial prefrontal cortex. J Neurosci, 22(24): 10958–10965
Pubmed
[2]
Baxter M G, Murray E A (2002). The amygdala and reward. Nat Rev Neurosci, 3(7): 563–573
CrossRef Pubmed Google scholar
[3]
Britton K T, Akwa Y, Spina M G, Koob G F (2000). Neuropeptide Y blocks anxiogenic-like behavioral action of corticotropin-releasing factor in an operant conflict test and elevated plus maze. Peptides, 21(1): 37–44
CrossRef Pubmed Google scholar
[4]
Carlini V P, Varas M M, Cragnolini A B, Schiöth H B, Scimonelli T N, de Barioglio S R (2004). Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin. Biochem Biophys Res Commun, 313(3): 635–641
CrossRef Pubmed Google scholar
[5]
Clark J T, Kalra P S, Crowley W R, Kalra S P (1984). Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology, 115(1): 427–429
CrossRef Pubmed Google scholar
[6]
Davis M, Walker D L, Lee Y (1997). Amygdala and bed nucleus of the stria terminalis: differential roles in fear and anxiety measured with the acoustic startle reflex. Philos Trans R Soc Lond B Biol Sci, 352(1362): 1675–1687
CrossRef Pubmed Google scholar
[7]
Erlanson-Albertsson C (1992). Pancreatic colipase. Structural and physiological aspects. Biochim Biophys Acta, 1125(1): 1–7
Pubmed
[8]
Erlanson-Albertsson C, York D (1997). Enterostatin–a peptide regulating fat intake. Obes Res, 5(4): 360–372
Pubmed
[9]
Figlewicz D P, Bennett J L, Naleid A M, Davis C, Grimm J W (2006). Intraventricular insulin and leptin decrease sucrose self-administration in rats. Physiol Behav, 89(4): 611–616
CrossRef Pubmed Google scholar
[10]
Funk C K, Koob G F (2007). A CRF(2) agonist administered into the central nucleus of the amygdala decreases ethanol self-administration in ethanol-dependent rats. Brain Res, 1155: 172–178
CrossRef Pubmed Google scholar
[11]
Funk C K, Zorrilla E P, Lee M J, Rice K C, Koob G F (2007). Corticotropin-releasing factor 1 antagonists selectively reduce ethanol self-administration in ethanol-dependent rats. Biol Psychiatry, 61(1): 78–86
CrossRef Pubmed Google scholar
[12]
Ghashghaei H T, Barbas H (2002). Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience, 115(4): 1261–1279
CrossRef Pubmed Google scholar
[13]
Goldstein R Z, Volkow N D (2002). Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry, 159(10): 1642–1652
CrossRef Pubmed Google scholar
[14]
Gottfried J A, O’Doherty J, Dolan R J (2003). Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science, 301(5636): 1104–1107
CrossRef Pubmed Google scholar
[15]
Gray T S, Bingaman E W (1996). The amygdala: corticotropin-releasing factor, steroids, and stress. Crit Rev Neurobiol, 10(2): 155–168
Pubmed
[16]
Heilig M, McLeod S, Brot M, Heinrichs S C, Menzaghi F, Koob G F, Britton K T (1993). Anxiolytic-like action of neuropeptide Y: mediation by Y1 receptors in amygdala, and dissociation from food intake effects. Neuropsychopharmacology, 8(4): 357–363
Pubmed
[17]
Heilig M, Widerlöv E (1990). Neuropeptide Y: an overview of central distribution, functional aspects, and possible involvement in neuropsychiatric illnesses. Acta Psychiatr Scand, 82(2): 95–114
CrossRef Pubmed Google scholar
[18]
Heinrichs S C, Menzaghi F, Pich E M, Hauger R L, Koob G F (1993). Corticotropin-releasing factor in the paraventricular nucleus modulates feeding induced by neuropeptide Y. Brain Res, 611(1): 18–24
CrossRef Pubmed Google scholar
[19]
Jewett D C, Cleary J, Levine A S, Schaal D W, Thompson T (1995). Effects of neuropeptide Y, insulin, 2-deoxyglucose, and food deprivation on food-motivated behavior. Psychopharmacology (Berl), 120(3): 267–271
CrossRef Pubmed Google scholar
[20]
Jiménez-Vasquez P A, Overstreet D H, Mathé A A (2000). Neuropeptide Y in male and female brains of Flinders Sensitive Line, a rat model of depression. Effects of electroconvulsive stimuli. J Psychiatr Res, 34(6): 405–412
CrossRef Pubmed Google scholar
[21]
Jochman K A, Newman S M, Kalin N H, Bakshi V P (2005). Corticotropin-releasing factor-1 receptors in the basolateral amygdala mediate stress-induced anorexia. Behav Neurosci, 119(6): 1448–1458
CrossRef Pubmed Google scholar
[22]
Khoshbouei H, Cecchi M, Dove S, Javors M, Morilak D A (2002). Behavioral reactivity to stress: amplification of stress-induced noradrenergic activation elicits a galanin-mediated anxiolytic effect in central amygdala. Pharmacol Biochem Behav, 71(3): 407–417
CrossRef Pubmed Google scholar
[23]
King B M, Cook J T, Rossiter K N, Rollins B L (2003). Obesity-inducing amygdala lesions: examination of anterograde degeneration and retrograde transport. Am J Physiol Regul Integr Comp Physiol, 284(4): R965–R982
Pubmed
[24]
King B M, Rossiter K N, Stines S G, Zaharan G M, Cook J T, Humphries M D, York D A (1998). Amygdaloid-lesion hyperphagia: impaired response to caloric challenges and altered macronutrient selection. Am J Physiol, 275(2 Pt 2): R485–R493
Pubmed
[25]
LeDoux J (2007). The amygdala. Curr Biol, 17(20): R868–R874
CrossRef Pubmed Google scholar
[26]
LeDoux J E (2000). Emotion circuits in the brain. Annu Rev Neurosci, 23(1): 155–184
CrossRef Pubmed Google scholar
[27]
Lepore M, Vorel S R, Lowinson J, Gardner E L (1995). Conditioned place preference induced by delta 9-tetrahydrocannabinol: comparison with cocaine, morphine, and food reward. Life Sci, 56(23-24): 2073–2080
CrossRef Pubmed Google scholar
[28]
Lin L, York D A (1997). Enterostatin actions in the amygdala and PVN to suppress feeding in the rat. Peptides, 18(9): 1341–1347
CrossRef Pubmed Google scholar
[29]
Lin L, York D A (2004). Amygdala enterostatin induces c-Fos expression in regions of hypothalamus that innervate the PVN. Brain Res, 1020(1-2): 147–153
CrossRef Pubmed Google scholar
[30]
Margules D L, Olds J (1962). Identical “feeding” and “rewarding” systems in the lateral hypothalamus of rats. Science, 135(3501): 374–375
CrossRef Pubmed Google scholar
[31]
Merali Z, McIntosh J, Kent P, Michaud D, Anisman H (1998). Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala. J Neurosci, 18(12): 4758–4766
Pubmed
[32]
Petrovich G D, Canteras N S, Swanson L W (2001). Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Brain Res Rev, 38(1-2): 247–289
CrossRef Pubmed Google scholar
[33]
Primeaux S D, York D A, Bray G A (2006). Neuropeptide Y administration into the amygdala alters high fat food intake. Peptides, 27(7): 1644–1651
CrossRef Pubmed Google scholar
[34]
Rassnick S, Heinrichs S C, Britton K T, Koob G F (1993). Microinjection of a corticotropin-releasing factor antagonist into the central nucleus of the amygdala reverses anxiogenic-like effects of ethanol withdrawal. Brain Res, 605(1): 25–32
CrossRef Pubmed Google scholar
[35]
Roozendaal B, Koolhaas J M, Bohus B (1997). The role of the central amygdala in stress and adaption. Acta Physiol Scand Suppl, 640: 51–54
Pubmed
[36]
Sajdyk T J, Vandergriff M G, Gehlert D R (1999). Amygdalar neuropeptide Y Y1 receptors mediate the anxiolytic-like actions of neuropeptide Y in the social interaction test. Eur J Pharmacol, 368(2-3): 143–147
CrossRef Pubmed Google scholar
[37]
Smith B K, York D A, Bray G A (1996). Effects of dietary preference and galanin administration in the paraventricular or amygdaloid nucleus on diet self-selection. Brain Res Bull, 39(3): 149–154
CrossRef Pubmed Google scholar
[38]
Thorsell A, Carlsson K, Ekman R, Heilig M (1999). Behavioral and endocrine adaptation, and up-regulation of NPY expression in rat amygdala following repeated restraint stress. Neuroreport, 10(14): 3003–3007
CrossRef Pubmed Google scholar
[39]
Thorsell A, Svensson P, Wiklund L, Sommer W, Ekman R, Heilig M (1998). Suppressed neuropeptide Y (NPY) mRNA in rat amygdala following restraint stress. Regul Pept, 75-76(1-3): 247–254
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(90 KB)

Accesses

Citations

Detail

Sections
Recommended

/