Identification of cancer stem cells: from leukemia to solid cancers

Yinghui HUANG, Xiaoxue QIU, Ji-Long CHEN

PDF(291 KB)
PDF(291 KB)
Front. Biol. ›› 2010, Vol. 5 ›› Issue (5) : 407-416. DOI: 10.1007/s11515-010-0850-7
REVIEW
REVIEW

Identification of cancer stem cells: from leukemia to solid cancers

Author information +
History +

Abstract

Cancer stem cells (CSCs) are widely considered to be a small cell population in leukemia and many solid cancers with the properties including self-renewal and differentiation to non-tumorigenic cancer cells. Identification and isolation of CSCs significantly depend on the special surface markers of CSCs. Aberrant gene expression and signal transduction contribute to malignancies of CSCs, which result in cancer initiation, progression and recurrence. The inefficient therapy of cancers is mainly attributed to the failure of elimination of the malignant CSCs. However, CSCs have not been detected in all cancers and hierarchical organization of tumors might challenge cancer stem cell models. Additionally, opinions about the validity of the CSC hypothesis, the biological properties of CSCs, and the relevance of CSCs to cancer therapy differ widely. In this review, we discuss the debate of cancer stem cell model, the parameters by which CSCs can or cannot be defined, and the advances in the therapy of CSCs.

Keywords

Cancer stem cell / leukemia / solid tumor / signal transduction / therapy

Cite this article

Download citation ▾
Yinghui HUANG, Xiaoxue QIU, Ji-Long CHEN. Identification of cancer stem cells: from leukemia to solid cancers. Front Biol, 2010, 5(5): 407‒416 https://doi.org/10.1007/s11515-010-0850-7

References

[1]
Abraham B K, Fritz P, McClellan M, Hauptvogel P, Athelogou M, Brauch H (2005). Prevalence of CD44+/CD24-/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res, 11(3): 1154–1159
[2]
Al-Hajj M, Wicha M S, Benito-Hernandez A, Morrison S J, Clarke M F (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 100(7): 3983–3988
CrossRef Google scholar
[3]
Bissell M J, Labarge M A (2005). Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell, 7(1): 17–23
[4]
Blair A, Hogge D E, Ailles L E, Lansdorp P M, Sutherland H J (1997). Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood, 89(9): 3104–3112
[5]
Bonnet D, Dick J E (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 3(7): 730–737
CrossRef Google scholar
[6]
Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005). Opinion: migrating cancer stem cells- an integrated concept of malignant tumour progression. Nat Rev Cancer, 5(9): 744–749
CrossRef Google scholar
[7]
Bruce W R, Van Der Gaag H (1963). A Quantitative Assay for the Number of Murine Lymphoma Cells Capable of Proliferation in Vivo. Nature, 199: 79–80
CrossRef Google scholar
[8]
Bui M R, Hodson V, King T, Leopold D, Dai S, Fiolkoski V, Oakes S, Duke R, Apelian D, Franzusoff A, DeGregori J (2010). Mutation-specific control of BCR-ABL T315I positive leukemia with a recombinant yeast-based therapeutic vaccine in a murine model. Vaccine, 28(37): 6028–6035
CrossRef Google scholar
[9]
Burk U, Schubert J, Wellner U, Schmalhofer O, Vincan E, Spaderna S, Brabletz T (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep, 9(6): 582–589
CrossRef Google scholar
[10]
Campbell L L, Polyak K (2007). Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle, 6(19): 2332–2338
CrossRef Google scholar
[11]
Carpten J D, Faber A L, Horn C, Donoho G P, Briggs S L, Robbins C M, Hostetter G, Boguslawski S, Moses T Y, Savage S, Uhlik M, Lin A, Du J, Qian Y W, Zeckner D J, Tucker-Kellogg G, Touchman J, Patel K, Mousses S, Bittner M, Schevitz R, Lai M H, Blanchard K L, Thomas J E (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature, 448(7152): 439–444
CrossRef Google scholar
[12]
Chen J L, Limnander A, Rothman P B (2008). Pim-1 and Pim-2 kinases are required for efficient pre-B-cell transformation by v-Abl oncogene. Blood, 111(3): 1677–1685
CrossRef Google scholar
[13]
Clarke M F, Dick J E, Dirks P B, Eaves C J, Jamieson C H, Jones D L, Visvader J, Weissman I L, Wahl G M (2006). Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res, 66, 9339–9344
CrossRef Google scholar
[14]
Collins A T, Berry P A, Hyde C, Stower M J, Maitland N J (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res, 65(23): 10946–10951
CrossRef Google scholar
[15]
Deininger M W, Goldman J M, Melo J V (2000). The molecular biology of chronic myeloid leukemia. Blood, 96(10): 3343–3356
[16]
Druker B J, Talpaz M, Resta D J, Peng B, Buchdunger E, Ford J M, Lydon N B, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers C L (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med, 344(14): 1031–1037
CrossRef Google scholar
[17]
Fang D, Nguyen T K, Leishear K, Finko R, Kulp A N, Hotz S, Van Belle P A, Xu X, Elder D E, Herlyn M (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res, 65(20): 9328–9337
CrossRef Google scholar
[18]
Ginestier C, Hur M H, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer C G, Liu S, Schott A, Hayes D, Birnbaum D, Wicha M S, Dontu G (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 1(5): 555–567
CrossRef Google scholar
[19]
Gregory M A, Phang T L, Neviani P, Alvarez-Calderon F, Eide C A, O’Hare T, Zaberezhnyy V, Williams R T, Druker B J, Perrotti D, Degregori J (2010). Wnt/Ca2+/NFAT signaling maintains survival of Ph+ leukemia cells upon inhibition of Bcr-Abl. Cancer Cell, 18(1): 74–87
CrossRef Google scholar
[20]
Gregory P A, Bracken C P, Bert A G, Goodall G J (2008). MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle, 7(20): 3112–3118
[21]
Guo G, Qiu X, Wang S, Chen Y, Rothman P B, Wang Z, Chen Y, Wang G, Chen J L (2010). Oncogenic E17K mutation in the pleckstrin homology domain of AKT1 promotes v-Abl-mediated pre-B-cell transformation and survival of Pim-deficient cells. Oncogene, 29(26): 3845–3853
CrossRef Google scholar
[22]
Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y, Dahlberg S, Neuberg D, Moreau L A, Winter S S, Larson R, Zhang J, Protopopov A, Chin L, Pandolfi P P, Silverman L B, Hunger S P, Sallan S E, Look A T (2009). High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood, 114(3): 647–650
CrossRef Google scholar
[23]
Guzman M L, Jordan C T (2004). Considerations for targeting malignant stem cells in leukemia. Cancer Control, 11(2): 97–104
[24]
Haan S, Wüller S, Kaczor J, Rolvering C, Nöcker T, Behrmann I, Haan C (2009). SOCS-mediated downregulation of mutant Jak2 (V617F, T875N and K539L) counteracts cytokine-independent signaling. Oncogene, 28(34): 3069–3080
CrossRef Google scholar
[25]
Hemmati H D, Nakano I, Lazareff J A, Masterman-Smith M, Geschwind D H, Bronner-Fraser M, Kornblum H I (2003). Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A, 100(25): 15178–15183
CrossRef Google scholar
[26]
Herman S E, Gordon A L, Wagner A J, Heerema N A, Zhao W, Flynn J M, Jones J, Andritsos L, Puri K D, Lannutti B J, Giese N A, Zhang X, Wei L, Byrd J C, Johnson A J (2010). The phosphatidylinositol 3-kinase-{delta} inhibitor CAL-101 demonstrates promising pre-clinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood, 2010(Jun): 3 (Epub ahead of print)
[27]
Hermann P C, Huber S L, Herrler T, Aicher A, Ellwart J W, Guba M, Bruns C J, Heeschen C (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3): 313–323
CrossRef Google scholar
[28]
Hu Z, Pan X F, Wu F Q, Ma L Y, Liu D P, Liu Y, Feng T T, Meng F Y, Liu X L, Jiang Q L, Chen X Q, Liu J L, Liu P, Chen Z, Chen S J, Zhou G B (2009). Synergy between proteasome inhibitors and imatinib mesylate in chronic myeloid leukemia. PLoS One, 4(7): e6257
CrossRef Google scholar
[29]
Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, Rosenblatt J, Avigan D E, Teruya-Feldstein J, Pandolfi P P (2008). PML targeting eradicates quiescent leukaemia-initiating cells. Nature, 453(7198): 1072–1078
CrossRef Google scholar
[30]
Jabbour E, Cortes J, Kantarjian H (2010). Nilotinib for the treatment of chronic myeloid leukemia: An evidence-based review. Core Evid, 4: 207–213
[31]
Jamieson C H, Ailles L E, Dylla S J, Muijtjens M, Jones C, Zehnder J L, Gotlib J, Li K, Manz M G, Keating A, Sawyers C L, Weissman I L (2004). Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med, 351(7): 657–667
CrossRef Google scholar
[32]
Jiang X, Forrest D, Nicolini F, Turhan A, Guilhot J, Yip C, Holyoake T, Jorgensen H, Lambie K, Saw K M, Pang E, Vukovic R, Lehn P, Ringrose A, Yu M, Brinkman R R, Smith C, Eaves A, Eaves C (2010). Properties of CD34+ CML stem/progenitor cells that correlate with different clinical responses to imatinib mesylate. Blood, 116(12): 2112–2121
CrossRef Google scholar
[33]
Jordan C T, Upchurch D, Szilvassy S J, Guzman M L, Howard D S, Pettigrew A L, Meyerrose T, Rossi R, Grimes B, Rizzieri D A, Luger S M, Phillips G L (2000). The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia, 14(10): 1777–1784
CrossRef Google scholar
[34]
Jørgensen H G, Holyoake T L (2007). Characterization of cancer stem cells in chronic myeloid leukaemia. Biochem Soc Trans, 35(Pt 5): 1347–1351
[35]
Karnoub A E, Dash A B, Vo A P, Sullivan A, Brooks M W, Bell G W, Richardson A L, Polyak K, Tubo R, Weinberg R A (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162): 557–563
CrossRef Google scholar
[36]
Kelly P N, Dakic A, Adams J M, Nutt S L, Strasser A (2007). Tumor growth need not be driven by rare cancer stem cells. Science, 317(5836): 337
CrossRef Google scholar
[37]
Kharas M G, Okabe R, Ganis J J, Gozo M, Khandan T, Paktinat M, Gilliland D G, Gritsman K (2010). Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood, 115(7): 1406–1415
CrossRef Google scholar
[38]
Kim C F, Jackson E L, Woolfenden A E, Lawrence S, Babar I, Vogel S, Crowley D, Bronson R T, Jacks T (2005). Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 121(6): 823–835
[39]
Kim K Y, Kim S U, Leung P C, Jeung E B, Choi K C (2010). Influence of the prodrugs 5-fluorocytosine and CPT-11 on ovarian cancer cells using genetically engineered stem cells: tumor-tropic potential and inhibition of ovarian cancer cell growth. Cancer Sci, 101(4): 955–962
CrossRef Google scholar
[40]
Krause D S, Lazarides K, von Andrian U H, Van Etten R A (2006). Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med, 12(10): 1175–1180
CrossRef Google scholar
[41]
Malanchi I, Peinado H, Kassen D, Hussenet T, Metzger D, Chambon P, Huber M, Hohl D, Cano A, Birchmeier W, Huelsken J (2008). Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature, 452(7187): 650–653
CrossRef Google scholar
[42]
Mani S A, Guo W, Liao M J, Eaton E N, Ayyanan A, Zhou A Y, Brooks M, Reinhard F, Zhang C C, Shipitsin M, Campbell L L, Polyak K, Brisken C, Yang J, Weinberg R A (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4): 704–715
[43]
Mantovani A (2009). Cancer: Inflaming metastasis. Nature, 457(7225): 36–37
CrossRef Google scholar
[44]
Moshaver B, van Rhenen A, Kelder A, van der Pol M, Terwijn M, Bachas C, Westra A H, Ossenkoppele G J, Zweegman S, Schuurhuis G J (2008). Identification of a small subpopulation of candidate leukemia initiating cells in the side population (sp) of patients with acute myeloid leukemia. Stem Cells.
[45]
Murray P J (2007). The JAK-STAT signaling pathway: input and output integration. J Immunol, 178(5): 2623–2629
[46]
Nasr R, Guillemin M C, Ferhi O, Soilihi H, Peres L, Berthier C, Rousselot P, Robledo-Sarmiento M, Lallemand-Breitenbach V, Gourmel B, Vitoux D, Pandolfi P P, Rochette-Egly C, Zhu J, de Thé H (2008). Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med, 14(12): 1333–1342
CrossRef Google scholar
[47]
Nusse R (2003). Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development, 130(22): 5297–5305
CrossRef Google scholar
[48]
O’Brien C A, Pollett A, Gallinger S, Dick J E (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123): 106–110
CrossRef Google scholar
[49]
Peng C, Chen Y, Yang Z, Zhang H, Osterby L, Rosmarin A G, Li S (2010). PTEN is a tumor suppressor in CML stem cells and BCR-ABL-induced leukemias in mice. Blood, 115(3): 626–635
CrossRef Google scholar
[50]
Piccirillo S G, Reynolds B A, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi A L (2006). Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature, 444(7120): 761–765
CrossRef Google scholar
[51]
Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti M A, Daidone M G (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res, 65(13): 5506–5511
CrossRef Google scholar
[52]
Pradhan A, Lambert Q T, Reuther G W (2007). Transformation of hematopoietic cells and activation of JAK2-V617F by IL-27R, a component of a heterodimeric type I cytokine receptor. Proc Natl Acad Sci U S A, 104(47): 18502–18507
CrossRef Google scholar
[53]
Quintana E, Shackleton M, Sabel M S, Fullen D R, Johnson T M, Morrison S J (2008). Efficient tumour formation by single human melanoma cells. Nature, 456(7222): 593–598
CrossRef Google scholar
[54]
Reya T, Duncan A W, Ailles L, Domen J, Scherer D C, Willert K, Hintz L, Nusse R, Weissman I L (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423(6938): 409–414
CrossRef Google scholar
[55]
Reya T, Morrison S J, Clarke M F, Weissman I L (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859): 105–111
CrossRef Google scholar
[56]
Savona M, Talpaz M (2008). Getting to the stem of chronic myeloid leukaemia. Nat Rev Cancer, 8(5): 341–350
CrossRef Google scholar
[57]
Singh S K, Hawkins C, Clarke I D, Squire J A, Bayani J, Hide T, Henkelman R M, Cusimano M D, Dirks P B (2004). Identification of human brain tumour initiating cells. Nature, 432(7015): 396–401
CrossRef Google scholar
[58]
Szotek P P, Pieretti-Vanmarcke R, Masiakos P T, Dinulescu D M, Connolly D, Foster R, Dombkowski D, Preffer F, Maclaughlin D T, Donahoe P K (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci U S A, 103(30): 11154–11159
CrossRef Google scholar
[59]
Thiery J P (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2(6): 442–454
CrossRef Google scholar
[60]
Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy J D Jr (2003). The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med, 349(26): 2483–2494
CrossRef Google scholar
[61]
van der Pol M A, Feller N, Roseboom M, Moshaver B, Westra G, Broxterman H J, Ossenkoppele G J, Schuurhuis G J (2003). Assessment of the normal or leukemic nature of CD34+ cells in acute myeloid leukemia with low percentages of CD34 cells. Haematologica, 88(9): 983–993
[62]
van Noort M, Meeldijk J, van der Zee R, Destree O, Clevers H (2002). Wnt signaling controls the phosphorylation status of beta-catenin. J Biol Chem, 277(20): 17901–17905
CrossRef Google scholar
[63]
Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler M U, Ganser A, Eder M, Scherr M (2007). Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood, 109(10): 4399–4405
CrossRef Google scholar
[64]
Viswanathan S R, Daley G Q, Gregory R I (2008). Selective blockade of microRNA processing by Lin28. Science, 320(5872): 97–100
CrossRef Google scholar
[65]
Wang J C, Dick J E (2005). Cancer stem cells: lessons from leukemia. Trends Cell Biol, 15(9): 494–501
CrossRef Google scholar
[66]
Wang Y, Krivtsov A V, Sinha A U, North T E, Goessling W, Feng Z, Zon L I, Armstrong S A (2010). The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science, 327(5973): 1650–1653
CrossRef Google scholar
[67]
Williams R T, den Besten W, Sherr C J (2007). Cytokine-dependent imatinib resistance in mouse BCR-ABL+, Arf-null lymphoblastic leukemia. Genes Dev, 21(18): 2283–2287
CrossRef Google scholar
[68]
Wong D J, Liu H, Ridky T W, Cassarino D, Segal E, Chang H Y (2008). Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell, 2(4): 333–344
CrossRef Google scholar
[69]
Wuchter C, Ratei R, Spahn G, Schoch C, Harbott J, Schnittger S, Haferlach T, Creutzig U, Sperling C, Karawajew L, Ludwig W D (2001). Impact of CD133 (AC133) and CD90 expression analysis for acute leukemia immunophenotyping. Haematologica, 86(2): 154–161
[70]
Yang Y M, Chang J W (2008). Current status and issues in cancer stem cell study. Cancer Invest, 26(7): 741–755
CrossRef Google scholar
[71]
Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, Song E (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6): 1109–1123
[72]
Zhang B, Strauss A C, Chu S, Li M, Ho Y, Shiang K D, Snyder D S, Huettner C S, Shultz L, Holyoake T, Bhatia R (2010). Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell, 17(5): 427–442
CrossRef Google scholar
[73]
Zhao C, Blum J, Chen A, Kwon H Y, Jung S H, Cook J M, Lagoo A, Reya T (2007). Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell, 12(6): 528–541
CrossRef Google scholar

Acknowledgement

This work was supported by National Basic Research Program (973 Project) of China (No. 2009CB918902), Hundreds of Talents Program of Chinese Academy of Sciences 2009-2014, and a grant from Beijing Institutes of Life Science, Chinese Academy of Sciences.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(291 KB)

Accesses

Citations

Detail

Sections
Recommended

/