Melatonin and mitochondria in aging
Weiguo DONG, Fang HUANG, Hongwen HE
Melatonin and mitochondria in aging
The worldwide prolongation of mean life expectancy has resulted in a rapid increase of the size of the elderly population, both in numbers and as a proportion of the whole. In addition, the incidence of age-related diseases is obviously increasing as the population ages. Finding means to preserve optimal health in old age has become a primary goal of biomedical research. Aging is a multifactorial process that includes progressive cellular loss, endocrine and metabolic deficits, reduced defense mechanisms and functional losses that increase the risk of death. Mitochondria fulfill a number of essential cellular functions and play a key role in the aging process. Melatonin, which is synthesized in the pineal gland and other organs, plays a role in the biologic regulation of aging. Noctural melatonin serum levels are high during childhood and diminish substantially as people age. Melatonin preserves mitochondrial homeostasis, reduces free radical generation, e.g., by enhancing mitochondrial glutathione levels; it also safeguards proton potential and ATP synthesis by stimulating complex I and IV activities. In this article, we review the role of melatonin and mitochondria in aging.
aging / melatonin / mitochondria / respiratory / reactive oxygen species
[1] |
Acuña C D, Escames G, Carazo A, León J, Khaldy H, Reiter R J (2002). Melatonin, mitochondrial homeostasis and mitochondrial-related diseases. Curr Top Med Chem, 2(2): 133-151
CrossRef
Google scholar
|
[2] |
Acuña-Castroviejo D, Escames G, Rodriguez M I, Lopez L C (2007). Melatonin role in the mitochondrial function. Front Biosci, 12: 947-963
CrossRef
Google scholar
|
[3] |
Acuña-Castroviejo D, Martín M, Macías M, Escames G, León J, Khaldy H, Reiter R J (2001). Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res, 30(2): 65-74
CrossRef
Google scholar
|
[4] |
Acuña-Castroviejo D, Reiter R J, Menéndez-Peláez A, Pablos M I, Burgos A (1994). Characterization of high-affinity melatonin binding sites in purified cell nuclei of rat liver. J Pineal Res, 16(2): 100-112
CrossRef
Google scholar
|
[5] |
Allegra M, Reiter R J, Tan D X, Gentile C, Tesoriere L, Livrea M A (2003). The chemistry of melatonin’s interaction with reactive species. J Pineal Res, 34(1): 1-10
CrossRef
Google scholar
|
[6] |
Antolín I, Rodríguez C, Saínz R M, Mayo J C, Uría H, Kotler M L, Rodríguez-Colunga M J, Tolivia D, Menéndez-Peláez A (1996). Neurohormone melatonin prevents cell damage: effect on gene expression for antioxidant enzymes. FASEB J, 10(8): 882-890
|
[7] |
Becker-André M, Wiesenberg I, Schaeren-Wiemers N, André E, Missbach M, Saurat J H, Carlberg C (1994). Pineal gland hormone melatonin binds and activates an orphan of the nuclear receptor superfamily. J Biol Chem, 269(46): 28531-28534
|
[8] |
Benot S, Goberna R, Reiter R J, Garcia-Mauriño S, Osuna C, Guerrero J M (1999). Physiological levels of melatonin contribute to the antioxidant capacity of human serum. J Pineal Res, 27(1): 59-64
CrossRef
Google scholar
|
[9] |
Bondy S C, Li H, Zhou J, Wu M, Bailey J A, Lahiri D K (2010), Melatonin alters age-related changes in transcription factors and kinase activation. Neurochem Res, doi: 10.1007/s11064-010-0206-3
CrossRef
Google scholar
|
[10] |
Bondy S C, Sharman E H (2007). Melatonin and the aging brain. Neurochem Int, 50(4): 571-580
CrossRef
Google scholar
|
[11] |
Bowling A C, Beal M F (1995). Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sci, 56(14): 1151-1171
CrossRef
Google scholar
|
[12] |
Brown G C (1992). Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J, 284(Pt 1): 1-13
|
[13] |
Camello-Almaraz C, Gomez-Pinilla P J, Pozo M J, Camello P J (2008). Age-related alterations in Ca2+ signals and mitochondrial membrane potential in exocrine cells are prevented by melatonin. J Pineal Res, 45(2): 191-198
CrossRef
Google scholar
|
[14] |
Carlberg C (2000). Gene regulation by melatonin. Ann N Y Acad Sci, 917: 387-396
CrossRef
Google scholar
|
[15] |
Carranza-Lira S, García López F (2000). Melatonin and climactery. Med Sci Monit, 6(6): 1209-1212
|
[16] |
Carretero M, Escames G, López L C, Venegas C, Dayoub J C, García L, Acuña-Castroviejo D (2009). Long-term melatonin administration protects brain mitochondria from aging. J Pineal Res, 47(2): 192-200
CrossRef
Google scholar
|
[17] |
Carrillo-Vico A, Guerrero J M, Lardone P J, Reiter R J (2005). A review of the multiple actions of melatonin on the immune system. Endocrine, 27(2): 189-200
CrossRef
Google scholar
|
[18] |
Costa E J, Shida C S, Biaggi M H, Ito A S, Lamy-Freund M T (1997). How melatonin interacts with lipid bilayers: a study by fluorescence and ESR spectroscopies. FEBS Lett, 416(1): 103-106
CrossRef
Google scholar
|
[19] |
Crespo E, Macías M, Pozo D, Escames G, Martín M, Vives F, Guerrero J M, Acuña-Castroviejo D (1999). Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. FASEB J, 13(12): 1537-1546
|
[20] |
Dong W G, Huang F, Fan W G, Cheng S W, Chen Y, Zhang W G, Shi H, He H W (2010). Differential effects of melatonin on amyloid-beta peptide 25-35-induced mitochondrial dysfunction in hippocampal neurons at different stages of culture. J Pineal Res, 48(2): 117-125
CrossRef
Google scholar
|
[21] |
Dubocovich M L, Markowska M (2005). Functional MT1 and MT2 melatonin receptors in mammals. Endocrine, 27(2): 101-110
CrossRef
Google scholar
|
[22] |
Ersahin M, Toklu H Z, Cetinel S, Yüksel M, Yeğen B C, Sener G (2009). Melatonin reduces experimental subarachnoid hemorrhage-induced oxidative brain damage and neurological symptoms. J Pineal Res, 46(3): 324-332
CrossRef
Google scholar
|
[23] |
Escames G, León J, Macías M, Khaldy H, Acuña-Castroviejo D (2003). Melatonin counteracts lipopolysaccharide-induced expression and activity of mitochondrial nitric oxide synthase in rats. FASEB J, 17(8): 932-934
|
[24] |
Esteban S, Garau C, Aparicio S, Moranta D, Barceló P, Fiol M A, Rial R (2010). Chronic melatonin treatment and its precursor L-tryptophan improve the monoaminergic neurotransmission and related behavior in the aged rat brain. J Pineal Res, 48(2): 170-177
CrossRef
Google scholar
|
[25] |
Figueiredo P A, Mota M P, Appell H J, Duarte J A (2008). The role of mitochondria in aging of skeletal muscle. Biogerontology, 9(2): 67-84
CrossRef
Google scholar
|
[26] |
García J J, Piñol-Ripoll G, Martínez-Ballarín E, Fuentes-Broto L, Miana-Mena F J, Venegas C, Caballero B, Escames G, Coto-Montes A, Acuña-Castroviejo D (2010). Melatonin reduces membrane rigidity and oxidative damage in the brain of SAMP(8) mice. Neurobiol Aging, doi:10.1016/j.neurobiolaging.2009.12.013
CrossRef
Google scholar
|
[27] |
García J J, Reiter R J, Pié J, Ortiz G G, Cabrera J, Sáinz R M, Acuña-Castroviejo D (1999). Role of pinoline and melatonin in stabilizing hepatic microsomal membranes against oxidative stress. J Bioenerg Biomembr, 31(6): 609-616
CrossRef
Google scholar
|
[28] |
Haddad J J (2004). Redox and oxidant-mediated regulation of apoptosis signaling pathways: immuno-pharmaco-redox conception of oxidative siege versus cell death commitment. Int Immunopharmacol, 4(4): 475-493
CrossRef
Google scholar
|
[29] |
Halestrap A P (2006). Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans, 34(Pt 2): 232-237
|
[30] |
Hardeland R, Balzer I, Poeggeler B, Fuhrberg B, Uría H, Behrmann G, Wolf R, Meyer T J, Reiter R J (1995). On the primary functions of melatonin in evolution: mediation of photoperiodic signals in a unicell, photooxidation, and scavenging of free radicals. J Pineal Res, 18(2): 104-111
CrossRef
Google scholar
|
[31] |
Hardeland R, Tan D X, Reiter R J (2009). Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J Pineal Res, 47(2): 109-126
CrossRef
Google scholar
|
[32] |
Herrera F, Martin V, García-Santos G, Rodriguez-Blanco J, Antolín I, Rodriguez C (2007). Melatonin prevents glutamate-induced oxytosis in the HT22 mouse hippocampal cell line through an antioxidant effect specifically targeting mitochondria. J Neurochem, 100(3): 736-746
CrossRef
Google scholar
|
[33] |
Jagota A, Kalyani D (2010). Effect of melatonin on age induced changes in daily serotonin rhythms in suprachiasmatic nucleus of male Wistar rat. Biogerontology, 11(3): 299-308
CrossRef
Google scholar
|
[34] |
Jou M J, Peng T I, Hsu L F, Jou S B, Reiter R J, Yang C M, Chiao C C, Lin Y F, Chen C C (2010). Visualization of melatonin’s multiple mitochondrial levels of protection against mitochondrial Ca(2+)-mediated permeability transition and beyond in rat brain astrocytes. J Pineal Res, 48(1): 20-38
CrossRef
Google scholar
|
[35] |
Jou M J, Peng T I, Yu P Z, Jou S B, Reiter R J, Chen J Y, Wu H Y, Chen C C, Hsu L F (2007). Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J Pineal Res, 43(4): 389-403
CrossRef
Google scholar
|
[36] |
Kaptanoglu E, Tuncel M, Palaoglu S, Konan A, Demirpençe E, Kilinç K (2000). Comparison of the effects of melatonin and methylprednisolone in experimental spinal cord injury. J Neurosurg, 93(1 Suppl): 77-84
|
[37] |
Karasek M (2007). Does melatonin play a role in aging processes? J Physiol Pharmacol, 58(Suppl 6): 105-113
|
[38] |
Karasek M, Reiter R J, Cardinali D P, Pawlikowski M (2002). Future of melatonin as a therapeutic agent. Neuro Endocrinol Lett, 23(Suppl 1): 118-121
|
[39] |
Karbownik M, Reiter R J, Garcia J J, Tan D X, Qi W, Manchester L C (2000a). Melatonin reduces rat hepatic macromolecular damage due to oxidative stress caused by delta-aminolevulinic acid. Biochim Biophys Acta, 1523(2-3): 140-146
|
[40] |
Karbownik M, Tan D, Manchester L C, Reiter R J (2000b). Renal toxicity of the carcinogen delta-aminolevulinic acid: antioxidant effects of melatonin. Cancer Lett, 161(1): 1-7
CrossRef
Google scholar
|
[41] |
Kedziora-Kornatowska K, Szewczyk-Golec K, Kozakiewicz M, Pawluk H, Czuczejko J, Kornatowski T, Bartosz G, Kedziora J (2009). Melatonin improves oxidative stress parameters measured in the blood of elderly type 2 diabetic patients. J Pineal Res, 46(3): 333-337
CrossRef
Google scholar
|
[42] |
Kim R, Emi M, Tanabe K (2006). Role of mitochondria as the gardens of cell death. Cancer Chemother Pharmacol, 57(5): 545-553
CrossRef
Google scholar
|
[43] |
Lahiri D K, Ge Y W, Sharman E H, Bondy S C (2004). Age-related changes in serum melatonin in mice: higher levels of combined melatonin and 6-hydroxymelatonin sulfate in the cerebral cortex than serum, heart, liver and kidney tissues. J Pineal Res, 36(4): 217-223
CrossRef
Google scholar
|
[44] |
Lee H C, Wei Y H (1997). Role of mitochondria in human aging. J Biomed Sci, 4(6): 319-326
CrossRef
Google scholar
|
[45] |
León J, Acuña-Castroviejo D, Escames G, Tan D X, Reiter R J (2005). Melatonin mitigates mitochondrial malfunction. J Pineal Res, 38(1): 1-9
CrossRef
Google scholar
|
[46] |
León J, Acuña-Castroviejo D, Sainz R M, Mayo J C, Tan D X, Reiter R J (2004). Melatonin and mitochondrial function. Life Sci, 75(7): 765-790
CrossRef
Google scholar
|
[47] |
Macías M, Escames G, Leon J, Coto A, Sbihi Y, Osuna A, Acuña-Castroviejo D (2003). Calreticulin-melatonin. An unexpected relationship. Eur J Biochem, 270(5): 832-840
CrossRef
Google scholar
|
[48] |
Martín M, Macías M, Escames G, León J, Acuña-Castroviejo D (2000a). Melatonin but not vitamins C and E maintains glutathione homeostasis in t-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J, 14(12): 1677-1679
|
[49] |
Martín M, Macías M, Escames G, Reiter R J, Agapito M T, Ortiz G G, Acuña-Castroviejo D (2000b). Melatonin-induced increased activity of the respiratory chain complexes I and IV can prevent mitochondrial damage induced by ruthenium red in vivo. J Pineal Res, 28(4): 242-248
CrossRef
Google scholar
|
[50] |
Martín M, Macías M, León J, Escames G, Khaldy H, Acuña-Castroviejo D (2002). Melatonin increases the activity of the oxidative phosphorylation enzymes and the production of ATP in rat brain and liver mitochondria. Int J Biochem Cell Biol, 34(4): 348-357
CrossRef
Google scholar
|
[51] |
Matsubara E, Bryant-Thomas T, Pacheco Quinto J, Henry T L, Poeggeler B, Herbert D, Cruz-Sanchez F, Chyan Y J, Smith M A, Perry G, Shoji M, Abe K, Leone A, Grundke-Ikbal I, Wilson G L, Ghiso J, Williams C, Refolo L M, Pappolla M A, Chain D G, Neria E (2003). Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer’s disease. J Neurochem, 85(5): 1101-1108
CrossRef
Google scholar
|
[52] |
Mecocci P, MacGarvey U, Kaufman A E, Koontz D, Shoffner J M, Wallace D C, Beal M F (1993). Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol, 34(4): 609-616
CrossRef
Google scholar
|
[53] |
Menendez-Pelaez A, Reiter R J (1993). Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. J Pineal Res, 15(2): 59-69
CrossRef
Google scholar
|
[54] |
Milczarek R, Klimek J, Zelewski L (2000). Melatonin inhibits NADPH-dependent lipid peroxidation in human placental mitochondria. Horm Metab Res, 32(2): 84-85
CrossRef
Google scholar
|
[55] |
Morioka N, Okatani Y, Wakatsuki A (1999). Melatonin protects against age-related DNA damage in the brains of female senescence-accelerated mice. J Pineal Res, 27(4): 202-209
CrossRef
Google scholar
|
[56] |
Nosjean O, Ferro M, Coge F, Beauverger P, Henlin J M, Lefoulon F, Fauchere J L, Delagrange P, Canet E, Boutin J A (2000). Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem, 275(40): 31311-31317
CrossRef
Google scholar
|
[57] |
Okatani Y, Wakatsuki A, Reiter R J (2002a). Melatonin protects hepatic mitochondrial respiratory chain activity in senescence-accelerated mice. J Pineal Res, 32(3): 143-148
CrossRef
Google scholar
|
[58] |
Okatani Y, Wakatsuki A, Reiter R J, Miyahara Y (2002b). Hepatic mitochondrial dysfunction in senescence-accelerated mice: correction by long-term, orally administered physiological levels of melatonin. J Pineal Res, 33(3): 127-133
CrossRef
Google scholar
|
[59] |
Okatani Y, Wakatsuki A, Reiter R J, Miyahara Y (2003). Acutely administered melatonin restores hepatic mitochondrial physiology in old mice. Int J Biochem Cell Biol, 35(3): 367-375
CrossRef
Google scholar
|
[60] |
Olcese J M, Cao C, Mori T, Mamcarz M B, Maxwell A, Runfeldt M J, Wang L, Zhang C, Lin X, Zhang G, Arendash G W (2009). Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J Pineal Res, 47(1): 82-96
CrossRef
Google scholar
|
[61] |
Pang S F, Tsang C W, Hong G X, Yip P C, Tang P L, Brown G M (1990). Fluctuation of blood melatonin concentrations with age: result of changes in pineal melatonin secretion, body growth, and aging. J Pineal Res, 8(2): 179-192
CrossRef
Google scholar
|
[62] |
Pappolla M A, Chyan Y J, Poeggeler B, Frangione B, Wilson G, Ghiso J, Reiter R J (2000). An assessment of the antioxidant and the antiamyloidogenic properties of melatonin: implications for Alzheimer’s disease. J Neural Transm, 107(2): 203-231
CrossRef
Google scholar
|
[63] |
Paradies G, Petrosillo G, Paradies V, Reiter R J, Ruggiero F M (2010). Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res, 48(4): 297-310
CrossRef
Google scholar
|
[64] |
Petrosillo G, Di Venosa N, Pistolese M, Casanova G, Tiravanti E, Colantuono G, Federici A, Paradies G, Ruggiero F M (2006). Protective effect of melatonin against mitochondrial dysfunction associated with cardiac ischemia- reperfusion: role of cardiolipin. FASEB J, 20(2): 269-276
CrossRef
Google scholar
|
[65] |
Petrosillo G, Fattoretti P, Matera M, Ruggiero F M, Bertoni-Freddari C, Paradies G (2008). Melatonin prevents age-related mitochondrial dysfunction in rat brain via cardiolipin protection. Rejuvenation Res, 11(5): 935-943
CrossRef
Google scholar
|
[66] |
Petrosillo G, Moro N, Paradies V, Ruggiero F M, Paradies G (2010). Increased susceptibility to Ca(2+)-induced permeability transition and to cytochrome c release in rat heart mitochondria with aging: effect of melatonin. J Pineal Res, 48(4): 340-346
CrossRef
Google scholar
|
[67] |
Poeggeler B (2005). Melatonin, aging, and age-related diseases: perspectives for prevention, intervention, and therapy. Endocrine, 27(2): 201-212
CrossRef
Google scholar
|
[68] |
Reiter R J (1991). Melatonin: the chemical expression of darkness. Mol Cell Endocrinol, 79(1-3): C153-C158
|
[69] |
Reiter R J (1992). The ageing pineal gland and its physiological consequences. Bioessays, 14(3): 169-175
CrossRef
Google scholar
|
[70] |
Reiter R J (1998). Oxidative damage in the central nervous system: protection by melatonin. Prog Neurobiol, 56(3): 359-384
CrossRef
Google scholar
|
[71] |
Reiter R J, Craft C M, Johnson J E Jr, King T S, Richardson B A, Vaughan G M, Vaughan M K (1981). Age-associated reduction in nocturnal pineal melatonin levels in female rats. Endocrinology, 109(4): 1295-1297
CrossRef
Google scholar
|
[72] |
Reiter R J, Richardson B A, Johnson L Y, Ferguson B N, Dinh D T (1980). Pineal melatonin rhythm: reduction in aging Syrian hamsters. Science, 210(4476): 1372-1373
CrossRef
Google scholar
|
[73] |
Reiter R J, Tan D X (2002). Melatonin: an antioxidant in edible plants. Ann N Y Acad Sci, 957: 341-344
CrossRef
Google scholar
|
[74] |
Reiter R J, Tan D X (2003). What constitutes a physiological concentration of melatonin? J Pineal Res, 34(1): 79-80
CrossRef
Google scholar
|
[75] |
Reiter R J, Tan D X, Manchester L C, El-Sawi M R (2002). Melatonin reduces oxidant damage and promotes mitochondrial respiration: implications for aging. Ann N Y Acad Sci, 959: 238-250
CrossRef
Google scholar
|
[76] |
Reiter R J, Tan D X, Pappolla M A (2004). Melatonin relieves the neural oxidative burden that contributes to dementias. Ann N Y Acad Sci, 1035: 179-196
CrossRef
Google scholar
|
[77] |
Reyes-Toso C F, Rebagliati I R, Ricci C R, Linares L M, Albornoz L E, Cardinali D P, Zaninovich A (2006). Effect of melatonin treatment on oxygen consumption by rat liver mitochondria. Amino Acids, 31(3): 299-302
CrossRef
Google scholar
|
[78] |
Reyes-Toso C F, Ricci C R, de Mignone I R, Reyes P, Linares L M, Albornoz L E, Cardinali D P, Zaninovich A (2003). In vitro effect of melatonin on oxygen consumption in liver mitochondria of rats. Neuro Endocrinol Lett, 24(5): 341-344
|
[79] |
Rodríguez M I, Carretero M, Escames G, López L C, Maldonado M D, Tan D X, Reiter R J, Acuña-Castroviejo D (2007a). Chronic melatonin treatment prevents age-dependent cardiac mitochondrial dysfunction in senescence-accelerated mice. Free Radic Res, 41(1): 15-24
CrossRef
Google scholar
|
[80] |
Rodríguez M I, Escames G, López L C, García J A, Ortiz F, López A, Acuña-Castroviejo D (2007b). Melatonin administration prevents cardiac and diaphragmatic mitochondrial oxidative damage in senescence-accelerated mice. J Endocrinol, 194(3): 637-643
CrossRef
Google scholar
|
[81] |
Rodríguez M I, Escames G, López L C, López A, García J A, Ortiz F, Acuña-Castroviejo D (2007c). Chronic melatonin treatment reduces the age-dependent inflammatory process in senescence-accelerated mice. J Pineal Res, 42(3): 272-279
CrossRef
Google scholar
|
[82] |
Rodríguez M I, Escames G, López L C, López A, García J A, Ortiz F, Sánchez V, Romeu M, Acuña-Castroviejo D (2008). Improved mitochondrial function and increased life span after chronic melatonin treatment in senescent prone mice. Exp Gerontol, 43(8): 749-756
CrossRef
Google scholar
|
[83] |
Rosales-Corral S, Reiter R J, Tan D X, Ortiz G G, Lopez-Armas G (2010). Functional aspects of redox control during neuroinflammation. Antioxid Redox Signal, 13(2): 193-247
CrossRef
Google scholar
|
[84] |
Samantaray S, Das A, Thakore N P, Matzelle D D, Reiter R J, Ray S K, Banik N L (2009). Therapeutic potential of melatonin in traumatic central nervous system injury. J Pineal Res, 47(2): 134-142
CrossRef
Google scholar
|
[85] |
Sánchez-Hidalgo M, Guerrero Montávez J M, Carrascosa-Salmoral Mdel P, Naranjo Gutierrez Mdel C, Lardone P J, de la Lastra Romero C A (2009). Decreased MT1 and MT2 melatonin receptor expression in extrapineal tissues of the rat during physiological aging. J Pineal Res, 46(1): 29-35
CrossRef
Google scholar
|
[86] |
Schaefer M, Hardeland R (2009). The melatonin metabolite N-acetyl-5-methoxykynuramine is a potent singlet oxygen scavenger. J Pineal Res, 46(1): 49-52
CrossRef
Google scholar
|
[87] |
Semak I, Naumova M, Korik E, Terekhovich V, Wortsman J, Slominski A (2005). A novel metabolic pathway of melatonin: oxidation by cytochrome C. Biochemistry, 44(26): 9300-9307
CrossRef
Google scholar
|
[88] |
Sewerynek E, Wiktorska J, Lewinski A (1999). Effects of melatonin on the oxidative stress induced by thyrotoxicosis in rats. Neuro Endocrinol Lett, 20(3-4): 157-161
|
[89] |
Skulachev V P (2006). Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis, 11(4): 473-485
CrossRef
Google scholar
|
[90] |
Sobreira C, Davidson M, King M P, Miranda A F (1996). Dihydrorhodamine 123 identifies impaired mitochondrial respiratory chain function in cultured cells harboring mitochondrial DNA mutations. J Histochem Cytochem, 44(6): 571-579
|
[91] |
Srinivasan V, Pandi-Perumal S R, Maestroni G J, Esquifino A I, Hardeland R, Cardinali D P (2005). Role of melatonin in neurodegenerative diseases. Neurotox Res, 7(4): 293-318
CrossRef
Google scholar
|
[92] |
Tan D X, Chen L D, Poeggeler B, Manchester L, Reiter R J (1993). Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr J, 1: 57-60
|
[93] |
Tan D X, Hardeland R, Manchester L C, Poeggeler B, Lopez-Burillo S, Mayo J C, Sainz R M, Reiter R J (2003). Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical. J Pineal Res, 34(4): 249-259
CrossRef
Google scholar
|
[94] |
Tan D X, Manchester L C, Reiter R J, Plummer B F, Limson J, Weintraub S T, Qi W (2000a). Melatonin directly scavenges hydrogen peroxide: a potentially new metabolic pathway of melatonin biotransformation. Free Radic Biol Med, 29(11): 1177-1185
CrossRef
Google scholar
|
[95] |
Tan D X, Manchester L C, Reiter R J, Qi W B, Karbownik M, Calvo J R (2000b). Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept, 9(3-4): 137-159
|
[96] |
Tan D X, Manchester L C, Terron M P, Flores L J, Reiter R J (2007). One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res, 42(1): 28-42
CrossRef
Google scholar
|
[97] |
Tomás-Zapico C, Coto-Montes A (2005). A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res, 39(2): 99-104
CrossRef
Google scholar
|
[98] |
Wang E, Wong A, Cortopassi G (1997). The rate of mitochondrial mutagenesis is faster in mice than humans. Mutat Res, 377(2): 157-166
CrossRef
Google scholar
|
[99] |
Wei Y H, Ma Y S, Lee H C, Lee C F, Lu C Y (2001). Mitochondrial theory of aging matures—roles of mtDNA mutation and oxidative stress in human aging. Zhonghua Yi Xue Za Zhi (Taipei), 64(5): 259-270
|
[100] |
Wei Y H, Wu S B, Ma Y S, Lee H C (2009). Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging. Chang Gung Med J, 32(2): 113-132
|
[101] |
Witt-Enderby P A, Bennett J, Jarzynka M J, Firestine S, Melan M A (2003). Melatonin receptors and their regulation: biochemical and structural mechanisms. Life Sci, 72(20): 2183-2198
CrossRef
Google scholar
|
[102] |
Wolkove N, Elkholy O, Baltzan M, Palayew M (2007). Sleep and aging: 1. Sleep disorders commonly found in older people. CMAJ, 176(9): 1299-1304
|
[103] |
Wu Y H, Swaab D F (2005). The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res, 38(3): 145-152
CrossRef
Google scholar
|
[104] |
Wu Y H, Zhou J N, van Heerikhuize J, Jockers R, Swaab D F (2007). Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol Aging, 28(8): 1239-1247
CrossRef
Google scholar
|
[105] |
Yamamoto H A, Mohanan P V (2002). Melatonin attenuates brain mitochondria DNA damage induced by potassium cyanide in vivo and in vitro. Toxicology, 179(1-2): 29-36
CrossRef
Google scholar
|
[106] |
Yamamoto H A, Mohanan P V (2003). Ganglioside GT1B and melatonin inhibit brain mitochondrial DNA damage and seizures induced by kainic acid in mice. Brain Res, 964(1): 100-106
CrossRef
Google scholar
|
/
〈 | 〉 |