Unique features of myosin VI: a structural view

Wei FENG

PDF(277 KB)
PDF(277 KB)
Front. Biol. ›› 2010, Vol. 5 ›› Issue (3) : 204-210. DOI: 10.1007/s11515-010-0048-z
REVIEW
REVIEW

Unique features of myosin VI: a structural view

Author information +
History +

Abstract

Myosin VI is the only known molecular motor for the transportation of cargo vesicles from the plus end to the minus end of actin filaments. Thus, myosin VI possesses several unique features to distinguish it from other myosin family motors, such as the ability to move in a reverse direction, the unusual large walking step size, and the cargo-mediated dimerization. Recent structural studies of myosin VI have provided mechanistic insights into these unique features. On the basis of the resolved structures of myosin VI each domains (i.e., the structures of the N-terminal motor domain, the C-terminal cargo binding domain, and the region in the middle), the unique features of myosin VI will be reviewed here from a structural perspective. The structural studies of myosin VI definitely provide some answers about the unique features of myosin VI, but also raise significant questions on how myosin VI functions as a special motor both for directional cargo transport and for structural anchoring.

Keywords

molecular motor / myosin VI / cargo transport / cargo binding / walking step size

Cite this article

Download citation ▾
Wei FENG. Unique features of myosin VI: a structural view. Front Biol, 2010, 5(3): 204‒210 https://doi.org/10.1007/s11515-010-0048-z

References

[1]
Altman D, Goswami D, Hasson T, Spudich J A, Mayor S (2007). Precise positioning of myosin VI on endocytic vesicles in vivo. PLoS Biol, 5(8): e210
CrossRef Google scholar
[2]
Altman D, Sweeney H L, Spudich J A (2004). The mechanism of myosin VI translocation and its load-induced anchoring. Cell, 116(5): 737-749
CrossRef Google scholar
[3]
Aschenbrenner L, Naccache S N, Hasson T (2004). Uncoated endocytic vesicles require the unconventional myosin, Myo6, for rapid transport through actin barriers. Mol Biol Cell, 15(5): 2253-2263
CrossRef Google scholar
[4]
Au J S, Puri C, Ihrke G, Kendrick-Jones J, Buss F (2007). Myosin VI is required for sorting of AP-1B-dependent cargo to the basolateral domain in polarized MDCK cells. J Cell Biol, 177(1): 103-114
CrossRef Google scholar
[5]
Avraham K B, Hasson T, Steel K P, Kingsley D M, Russell L B, Mooseker M S, Copeland N G, Jenkins N A (1995). The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet, 11(4): 369-375
CrossRef Google scholar
[6]
Bahloul A, Chevreux G, Wells A L, Martin D, Nolt J, Yang Z, Chen L Q, Potier N, Van Dorsselaer A, Rosenfeld S, Houdusse A, Sweeney H L (2004). The unique insert in myosin VI is a structural calcium-calmodulin binding site. Proc Natl Acad Sci U S A, 101(14): 4787-4792
CrossRef Google scholar
[7]
Buss F, Arden S D, Lindsay M, Luzio J P, Kendrick-Jones J (2001). Myosin VI isoform localized to clathrin-coated vesicles with a role in clathrin-mediated endocytosis. EMBO J, 20(14): 3676-3684
CrossRef Google scholar
[8]
Buss F, Kendrick-Jones J (2008). How are the cellular functions of myosin VI regulated within the cell? Biochem Biophys Res Commun, 369(1): 165-175
CrossRef Google scholar
[9]
Buss F, Spudich G, Kendrick-Jones J (2004). Myosin VI: cellular functions and motor properties. Annu Rev Cell Dev Biol, 20: 649-676
CrossRef Google scholar
[10]
Chibalina M V, Puri C, Kendrick-Jones J, Buss F (2009). Potential roles of myosin VI in cell motility. Biochem Soc Trans, 37(Pt 5): 966-970
CrossRef Google scholar
[11]
Dance A L, Miller M, Seragaki S, Aryal P, White B, Aschenbrenner L, Hasson T (2004). Regulation of myosin-VI targeting to endocytic compartments. Traffic, 5(10): 798-813
CrossRef Google scholar
[12]
Dunn T A, Chen S, Faith D A, Hicks J L, Platz E A, Chen Y, Ewing C M, Sauvageot J, Isaacs W B, De Marzo A M, Luo J (2006). A novel role of myosin VI in human prostate cancer. Am J Pathol, 169(5): 1843-1854
CrossRef Google scholar
[13]
Foth B J, Goedecke M C, Soldati D (2006). New insights into myosin evolution and classification. Proc Natl Acad Sci U S A, 103(10): 3681-3686
CrossRef Google scholar
[14]
Geisbrecht E R, Montell D J (2002). Myosin VI is required for E-cadherin-mediated border cell migration. Nat Cell Biol, 4(8): 616-620
[15]
Hasson T, Gillespie P G, Garcia J A, MacDonald R B, Zhao Y, Yee A G, Mooseker M S, Corey D P (1997). Unconventional myosins in inner-ear sensory epithelia. J Cell Biol, 137(6): 1287-1307
CrossRef Google scholar
[16]
Hasson T, Mooseker M S (1994). Porcine myosin-VI: characterization of a new mammalian unconventional myosin. J Cell Biol, 127(2): 425-440
CrossRef Google scholar
[17]
Iwaki M, Tanaka H, Iwane A H, Katayama E, Ikebe M, Yanagida T (2006). Cargo-binding makes a wild-type single-headed myosin-VI move processively. Biophys J, 90(10): 3643-3652
CrossRef Google scholar
[18]
Kellerman K A, Miller K G (1992). An unconventional myosin heavy chain gene from Drosophila melanogaster. J Cell Biol, 119(4): 823-834
CrossRef Google scholar
[19]
Lister I, Schmitz S, Walker M, Trinick J, Buss F, Veigel C, Kendrick-Jones J (2004). A monomeric myosin VI with a large working stroke. EMBO J, 23(8): 1729-1738
CrossRef Google scholar
[20]
Maddugoda M P, Crampton M S, Shewan A M, Yap A S (2007). Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell cell contacts in mammalian epithelial cells. J Cell Biol, 178(3): 529-540
CrossRef Google scholar
[21]
Mehta A D, Rock R S, Rief M, Spudich J A, Mooseker M S, Cheney R E (1999). Myosin-V is a processive actin-based motor. Nature, 400(6744): 590-593
CrossRef Google scholar
[22]
Melchionda S, Ahituv N, Bisceglia L, Sobe T, Glaser F, Rabionet R, Arbones M L, Notarangelo A, Di Iorio E, Carella M, Zelante L, Estivill X, Avraham K B, Gasparini P (2001). MYO6, the human homologue of the gene responsible for deafness in Snell’s waltzer mice, is mutated in autosomal dominant nonsyndromic hearing loss. Am J Hum Genet, 69(3): 635-640
CrossRef Google scholar
[23]
Ménétrey J, Bahloul A, Wells A L, Yengo C M, Morris C A, Sweeney H L, Houdusse A (2005). The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature, 435(7043): 779-785
CrossRef Google scholar
[24]
Ménétrey J, Llinas P, Mukherjea M, Sweeney H L, Houdusse A (2007). The structural basis for the large powerstroke of myosin VI. Cell, 131(2): 300-308
CrossRef Google scholar
[25]
Mermall V, McNally J G, Miller K G (1994). Transport of cytoplasmic particles catalysed by an unconventional myosin in living Drosophila embryos. Nature, 369(6481): 560-562
CrossRef Google scholar
[26]
Morris S M, Arden S D, Roberts R C, Kendrick-Jones J, Cooper J A, Luzio J P, Buss F (2002). Myosin VI binds to and localises with Dab2, potentially linking receptor-mediated endocytosis and the actin cytoskeleton. Traffic, 3(5): 331-341
CrossRef Google scholar
[27]
Mukherjea M, Llinas P, Kim H, Travaglia M, Safer D, Ménétrey J, Franzini-Armstrong C, Selvin P R, Houdusse A, Sweeney H L (2009). Myosin VI dimerization triggers an unfolding of a three-helix bundle in order to extend its reach. Mol Cell, 35(3): 305-315
CrossRef Google scholar
[28]
Nishikawa S, Homma K, Komori Y, Iwaki M, Wazawa T, Hikikoshi Iwane A, Saito J, Ikebe R, Katayama E, Yanagida T, Ikebe M (2002). Class VI myosin moves processively along actin filaments backward with large steps. Biochem Biophys Res Commun, 290(1): 311-317
CrossRef Google scholar
[29]
O’Connell C B, Tyska M J, Mooseker M S (2007). Myosin at work: motor adaptations for a variety of cellular functions. Biochim Biophys Acta, 1773(5): 615-630
CrossRef Google scholar
[30]
Park H, Ramamurthy B, Travaglia M, Safer D, Chen L Q, Franzini-Armstrong C, Selvin P R, Sweeney H L (2006). Full-length myosin VI dimerizes and moves processively along actin filaments upon monomer clustering. Mol Cell, 21(3): 331-336
CrossRef Google scholar
[31]
Phichith D, Travaglia M, Yang Z, Liu X, Zong A B, Safer D, Sweeney H L (2009). Cargo binding induces dimerization of myosin VI. Proc Natl Acad Sci U S A, 106(41): 17320-17324
CrossRef Google scholar
[32]
Rock R S, Ramamurthy B, Dunn A R, Beccafico S, Rami B R, Morris C, Spink B J, Franzini-Armstrong C, Spudich J A, Sweeney H L (2005). A flexible domain is essential for the large step size and processivity of myosin VI. Mol Cell, 17(4): 603-609
CrossRef Google scholar
[33]
Rock R S, Rice S E, Wells A L, Purcell T J, Spudich J A, Sweeney H L (2001). Myosin VI is a processive motor with a large step size. Proc Natl Acad Sci U S A, 98(24): 13655-13659
CrossRef Google scholar
[34]
Sahlender D A, Roberts R C, Arden S D, Spudich G, Taylor M J, Luzio J P, Kendrick-Jones J, Buss F (2005). Optineurin links myosin VI to the Golgi complex and is involved in Golgi organization and exocytosis. J Cell Biol, 169(2): 285-295
CrossRef Google scholar
[35]
Seiler C, Ben-David O, Sidi S, Hendrich O, Rusch A, Burnside B, Avraham K B, Nicolson T (2004). Myosin VI is required for structural integrity of the apical surface of sensory hair cells in zebrafish. Dev Biol, 272(2): 328-338
CrossRef Google scholar
[36]
Sellers J R (2000). Myosins: a diverse superfamily. Biochim Biophys Acta, 1496(1): 3-22
CrossRef Google scholar
[37]
Spink B J, Sivaramakrishnan S, Lipfert J, Doniach S, Spudich J A (2008). Long single α-helical tail domains bridge the gap between structure and function of myosin VI. Nat Struct Mol Biol, 15(6): 591-597
CrossRef Google scholar
[38]
Spudich J A (2001). The myosin swinging cross-bridge model. Nat Rev Mol Cell Biol, 2(5): 387-392
CrossRef Google scholar
[39]
Spudich J A, Sivaramakrishnan S (2010). Myosin VI: an innovative motor that challenged the swinging lever arm hypothesis. Nat Rev Mol Cell Biol, 11(2): 128-137
CrossRef Google scholar
[40]
Sweeney H L, Houdusse A (2007). What can myosin VI do in cells? Curr Opin Cell Biol, 19(1): 57-66
CrossRef Google scholar
[41]
Vreugde S, Ferrai C, Miluzio A, Hauben E, Marchisio P C, Crippa M P, Bussi M, Biffo S (2006). Nuclear myosin VI enhances RNA polymerase II-dependent transcription. Mol Cell, 23(5): 749-755
CrossRef Google scholar
[42]
Walker M L, Burgess S A, Sellers J R, Wang F, Hammer J A 3rd, Trinick J, Knight P J (2000). Two-headed binding of a processive myosin to F-actin. Nature, 405(6788): 804-807
CrossRef Google scholar
[43]
Warner C L, Stewart A, Luzio J P, Steel K P, Libby R T, Kendrick-Jones J, Buss F (2003). Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell’s waltzer mice. EMBO J, 22(3): 569-579
CrossRef Google scholar
[44]
Wells A L, Lin A W, Chen L Q, Safer D, Cain S M, Hasson T, Carragher B O, Milligan R A, Sweeney H L (1999). Myosin VI is an actin-based motor that moves backwards. Nature, 401(6752): 505-508
CrossRef Google scholar
[45]
Yoshida H, Cheng W, Hung J, Montell D, Geisbrecht E, Rosen D, Liu J, Naora H (2004). Lessons from border cell migration in the Drosophila ovary: A role for myosin VI in dissemination of human ovarian cancer. Proc Natl Acad Sci U S A, 101(21): 8144-8149
CrossRef Google scholar
[46]
Yu C, Feng W, Wei Z, Miyanoiri Y, Wen W, Zhao Y, Zhang M (2009). Myosin VI undergoes cargo-mediated dimerization. Cell, 138(3): 537-548
CrossRef Google scholar

Acknowledgements:

We would like to apologize for not being able to cite many original papers from colleagues due to space constraints. We thank Dr. Conan WANG for critical reading of the manuscript. W. F. is supported by the One Hundred Person Project and the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-YW-R-154).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(277 KB)

Accesses

Citations

Detail

Sections
Recommended

/