Acyl-coenzyme A: cholesterol acyltransferase family
Yali LIU, Zhanyun GUO
Acyl-coenzyme A: cholesterol acyltransferase family
The enzymes of the acyl-coenzyme A: cholesterol acyltransferase (ACAT) family are responsible for the in vivo synthesis of neutral lipids. They are potential drug targets for the intervention of atherosclerosis, hyperlipidemia, obesity, type II diabetes and even Alzheimer’s disease. ACAT family enzymes are integral endoplasmic reticulum (ER) membrane proteins and can be divided into ACAT branch and acyl-coenzyme A: diacylglycerol acyltransferase 1 (DGAT1) branch according to their substrate specificity. The ACAT branch catalyzes synthesis of cholesteryl esters using long-chain fatty acyl-coenzyme A and cholesterol as substrates, while the DGAT1 branch catalyzes synthesis of triacylglycerols using fatty acyl-coenzyme A and diacylglycerol as substrates. In this review, we mainly focus on the recent progress in the structural research of ACAT family enzymes, including their disulfide linkage, membrane topology, subunit interaction and catalysis mechanism.
lipid / acyl-coenzyme A: cholesterol acyltransferase (ACAT) / acyl-coenzyme A: diacylglycerol acyltransferase 1 (DGAT1) / acyltransferase / catalysis
[1] |
Anderson R A, Joyce C, Davis M, Reagan J W, Clark M, Shelness G S, Rudel L L (1998). Identification of a form of acyl-CoA:cholesterol acyltransferase specific to liver and intestine in nonhuman primates. J Biol Chem, 273: 26747-26754
CrossRef
Google scholar
|
[2] |
Beck B, Drevon C A (1978). Properties and subcellular distribution of acyl-CoA: cholesterol acyltransferase (ACAT) in guinea-pig liver. Scand J Gastroenterol, 13: 97-105
|
[3] |
Buhman K F, Accad M, Farese R V (2000). Mammalian acyl-CoA: cholesterol acyltransferases. Biochim Biophys Acta, 1529: 142-154
|
[4] |
Cadigan K M, Chang C C, Chang T Y (1989). Isolation of Chinese hamster ovary cell lines expressing human acyl-coenzyme A/cholesterol acyltransferase activity. J Cell Biol, 108: 2201-2210
CrossRef
Google scholar
|
[5] |
Cadigan K M, Heider J G, Chang T Y (1988). Isolation and characterization of Chinese hamster ovary cell mutants deficient in acyl-coenzyme A: cholesterol acyltransferase activity. J Biol Chem, 263: 274-282
|
[6] |
Cases S, Novak S, Zheng Y W, Myers H M, Lear S R, Sande E, Welch C B, Lusis A J, Spencer T A, Krause B R, Erickson S K, Farese R V Jr (1998a). ACAT-2, a second mammalian acyl-CoA: cholesterol acyltransferase. Its cloning, expression, and characterization. J Biol Chem, 273: 26755-26764
CrossRef
Google scholar
|
[7] |
Cases S, Smith S J, Zheng Y W, Myers H M, Lear S R, Sande E, Novak S, Collins C, Welch C B, Lusis A J, Erickson S K, Farese R V Jr (1998b). Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA, 95: 13018-13023
CrossRef
Google scholar
|
[8] |
Cases S, Stone S J, Zhou P, Yen E, Tow B, Lardizabal K D, Voelker T, Farese R V Jr (2001). Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem, 276: 38870-38876
CrossRef
Google scholar
|
[9] |
Chang C, Dong R, Miyazaki A, Sakashita N, Zhang Y, Liu J, Guo M, Li B L, Chang T Y (2006). Human acyl-CoA: cholesterol acyltransferase (ACAT) and its potential as a target for pharmaceutical intervention against atherosclerosis. Acta Biochim Biophys Sin (Shanghai), 38: 151-156
CrossRef
Google scholar
|
[10] |
Chang C C, Chen J, Thomas MA, Cheng D, Del Priore V A, Newton R S, Pape M E, Chang T Y (1995). Regulation and immunolocalization of acyl-coenzyme A: cholesterol acyltransferase in mammalian cells as studied with specific antibodies. J Biol Chem, 270: 29532-29540
CrossRef
Google scholar
|
[11] |
Chang C C, Huh H Y, Cadigan K M, Chang T Y (1993). Molecular cloning and functional expression of human acyl-coenzyme A: cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J Biol Chem, 268: 20747-20755
|
[12] |
Chang C C, Lee C Y, Chang E T, Cruz J C, Levesque M C, Chang T Y (1998). Recombinant acyl-CoA: cholesterol acyltransferase-1 (ACAT-1) purified to essential homogeneity utilizes cholesterol in mixed micelles or in vesicles in a highly cooperative manner. J Biol Chem, 273: 35132-35141
CrossRef
Google scholar
|
[13] |
Chang C C, Sakashita N, Ornvold K, Lee O, Chang E T, Dong R, Lin S, Lee C Y, Strom S C, Kashyap R, Fung J J, Farese R V Jr, Patoiseau J F, Delhon A, Chang T Y (2000). Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine. J Biol Chem, 275: 28083-28092
|
[14] |
Chang T Y, Chang C C, Cheng D (1997). Acyl-coenzyme A: cholesterol acyltransferase. Annu Rev Biochem, 66: 613-638
CrossRef
Google scholar
|
[15] |
Chang T Y, Chang C C, Lin S, Yu C, Li B L, Miyazaki A (2001a). Roles of acyl-coenzyme A:cholesterol acyltransferase-1 and-2. Curr Opin Lipidol, 12: 289-296
CrossRef
Google scholar
|
[16] |
Chang T Y, Chang C C, Lu X, Lin S (2001b). Catalysis of ACAT may be completed within the plane of the membrane: a working hypothesis. J Lipid Res, 42: 1933-1938
|
[17] |
Chen H C, Farese R V Jr (2000). DGAT and triglyceride synthesis: a new target for obesity treatment? Trends Cardiovasc Med, 10: 188-192
CrossRef
Google scholar
|
[18] |
Chen H C, Farese R V Jr (2005). Inhibition of triglyceride synthesis as a treatment strategy for obesity: lessons from DGAT1-deficient mice. Arterioscler Thromb Vasc Biol, 25: 482-486
CrossRef
Google scholar
|
[19] |
Chen H C, Jensen D R, Myers H M, Eckel R H, Farese R V Jr (2003a). Obesity resistance and enhanced glucose metabolism in mice transplanted with white adipose tissue lacking acyl CoA:diacylglycerol acyltransferase 1. J Clin Invest, 111: 1715-1722
|
[20] |
Chen H C, Ladha Z, Smith S J, Farese R V Jr (2003b). Analysis of energy expenditure at different ambient temperatures in mice lacking DGAT1. Am J Physiol Endocrinol Metab, 284: E213-218
|
[21] |
Chen H C, Smith S J, Ladha Z, Jensen D R, Ferreira L D, Pulawa L K, McGuire J G, Pitas R E, Eckel R H, Farese R V Jr (2002a). Increased insulin and leptin sensitivity in mice lacking acyl CoA: diacylglycerol acyltransferase 1. J Clin Invest, 109: 1049-1055
|
[22] |
Chen H C, Stone S J, Zhou P, Buhman K K, Farese R V Jr (2002b). Dissociation of obesity and impaired glucose disposal in mice overexpressing acyl coenzyme a: diacylglycerol acyltransferase 1 in white adipose tissue. Diabetes, 51: 3189-3195
CrossRef
Google scholar
|
[23] |
Chen N, Liu L, Zhang Y, Ginsberg H N, Yu Y H (2005). Whole-body insulin resistance in the absence of obesity in FVB mice with overexpression of Dgat1 in adipose tissue. Diabetes, 54: 3379-3386
CrossRef
Google scholar
|
[24] |
Cheng D, Chang C C, Qu X, Chang T Y (1995). Activation of acyl-coenzyme A: cholesterol acyltransferase by cholesterol or by oxysterol in a cell-free system. J Biol Chem, 270: 685-695
CrossRef
Google scholar
|
[25] |
Cheng D, Meegalla R L, He B, Cromley D A, Billheimer J T, Young P R (2001). Human acyl-CoA: diacylglycerol acyltransferase is a tetrameric protein. Biochem J, 359: 707-714
CrossRef
Google scholar
|
[26] |
Drevon C A, Norum K R (1975). Cholesterol esterification and lipids in plasma and liver from newborn and young guinea pigs raised on milk and non-milk diet. Nutr Metab, 18: 137-151
CrossRef
Google scholar
|
[27] |
Farese R V Jr (1998). Acyl CoA: cholesterol acyltransferase genes and knockout mice. Curr Opin Lipidol, 9: 119-123
CrossRef
Google scholar
|
[28] |
Fazio S, Linton M (2006). Failure of ACAT inhibition to retard atherosclerosis. N Engl J Med, 354: 1307-1309
CrossRef
Google scholar
|
[29] |
Guo Z Y, Chang C C, Chang T Y (2007). Functionality of the seventh and eighth transmembrane domains of acyl-coenzyme A: cholesterol acyltransferase 1. Biochemistry, 46: 10063-10071
CrossRef
Google scholar
|
[30] |
Guo Z Y, Chang C C, Lu X, Chen J, Li B L, Chang T Y (2005a). The disulfide linkage and the free sulfhydryl accessibility of acyl-coenzyme A: cholesterol acyltransferase 1 as studied by using mPEG5000-maleimide. Biochemistry, 44: 6537-6546
CrossRef
Google scholar
|
[31] |
Guo Z Y, Lin S, Heinen J A, Chang C C, Chang T Y (2005b). The active site His-460 of human acyl-coenzyme A: cholesterol acyltransferase 1 resides in a hitherto undisclosed transmembrane domain. J Biol Chem, 280: 37814-37826
CrossRef
Google scholar
|
[32] |
Haugen R, Norum K R (1976). Coenzyme-A-dependent esterification of cholesterol in rat intestinal mucosa. Scand J Gastroenterol, 11: 615-621
|
[33] |
Hofmann K (2000). A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem Sci, 25: 111-112
CrossRef
Google scholar
|
[34] |
Hutter-Paier B, Huttunen H J, Puglielli L, Eckman C B, Kim D Y, Hofmeister A, Moir R D, Domnitz S B, Frosch M P, Windisch M, Kovacs D M (2004). The ACAT inhibitor CP-113,818 markedly reduces amyloid pathology in a mouse model of Alzheimer's disease. Neuron, 44: 227-238
CrossRef
Google scholar
|
[35] |
Huttunen HJ, Greco C, Kovacs DM (2007). Knockdown of ACAT-1 reduces amyloidogenic processing of APP. FEBS Lett, 581: 1688-1692
CrossRef
Google scholar
|
[36] |
Joyce C W, Shelness G S, Davis M A, Lee R G, Skinner K, Anderson R A, Rudel L L (2000). ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endoplasmic reticulum membrane. Mol Biol Cell, 11: 3675-3687
|
[37] |
Katzen F, Beckwith J (2003). Role and location of the unusual redox-active cysteines in the hydrophobic domain of the transmembrane electron transporter DsbD. Proc Natl Acad Sci USA, 100: 10471-10476
CrossRef
Google scholar
|
[38] |
Khelef N, Buton X, Beatini N, Wang H, Meiner V, Chang T Y, Farese R V Jr, Maxfield F R, Tabas I (1998). Immunolocalization of acyl-coenzyme A: cholesterol O-acyltransferase in macrophages. J Biol Chem, 273: 11218-11224
CrossRef
Google scholar
|
[39] |
Kosolapov A., Deutsch C (2003). Folding of the voltage-gated K+ channel T1 recognition domain. J Biol Chem, 287: 4305-4313
CrossRef
Google scholar
|
[40] |
Lee O, Chang C C, Lee W, Chang T Y (1998). Immunodepletion experiments suggest that acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) protein plays a major catalytic role in adult human liver, adrenal gland, macrophages, and kidney, but not in intestines. J Lipid Res, 39: 1722-1727
|
[41] |
Lee R G, Willingham M C, Davis M A, Skinner K A, Rudel L L (2000). Differential expression of ACAT1 and ACAT2 among cells within liver, intestine, kidney, and adrenal of nonhuman primates. J Lipid Res, 41: 1991-2001
|
[42] |
Lin S, Cheng D, Liu M S, Chen J, Chang T Y (1999). Human acyl-CoA: cholesterol acyltransferase-1 in the endoplasmic reticulum contains seven transmembrane domains. J Biol Chem, 274: 23276-23285
CrossRef
Google scholar
|
[43] |
Lin S, Lu X, Chang C C, Chang T Y (2003). Human acyl-coenzyme A: cholesterol acyltransferase expressed in Chinese hamster ovary cells: membrane topology and active site location. Mol Biol Cell, 14: 2447-2460
CrossRef
Google scholar
|
[44] |
Liu J, Chang C C, Westover E J, Covey D F, Chang T Y (2005). Investigating the allosterism of acyl-CoA: cholesterol acyltransferase (ACAT) by using various sterols: in vitro and intact cell studies. Biochem J, 391: 389-397
CrossRef
Google scholar
|
[45] |
Lu X, Lin S, Chang C C, Chang T Y (2002). Mutant acyl-coenzyme A: cholesterol acyltransferase 1 devoid of cysteine residues remains catalytically active. J Biol Chem, 277: 711-718
CrossRef
Google scholar
|
[46] |
Lu J, Deutsch C (2001). Pegylation: a method for assessing the topology accessibility in Kv1.3. Biochemistry, 40: 13288-13301
CrossRef
Google scholar
|
[47] |
Matynia A, Anagnostaras S G, Wiltgen B J, Lacuesta M, Fanselow M S, Silva A J (2008). A high through-put reverse genetic screen identifies two genes involved in remote memory in mice. PLoS ONE, 3: e2121
CrossRef
Google scholar
|
[48] |
Meiner V L, Cases S, Myers H M, Sande E R, Bellosta S, Schambelan M, Pitas R E, McGuire J, Herz J, Farese R V Jr (1996). Disruption of the acyl-CoA: cholesterol acyltransferase gene in mice: evidence suggesting multiple cholesterol esterification enzymes in mammals. Proc Natl Acad Sci USA, 93: 14041-14046
CrossRef
Google scholar
|
[49] |
Miyazaki A, Kanome T, Watanabe T (2005). Inhibitors of acyl-coenzyme a: cholesterol acyltransferase. Curr Drug Targets Cardiovasc Haematol Disord, 5: 463-469
CrossRef
Google scholar
|
[50] |
Miyazaki A, Sakashita N, Lee O, Takahashi K, Horiuchi S, Hakamata H, Morganelli P M, Chang C C, Chang T Y (1998). Expression of ACAT-1 protein in human atherosclerotic lesions and cultured human monocytes-macrophages. Arterioscler Thromb Vasc Biol, 18: 1568-1574
|
[51] |
Nissen S E, Tuzcu E M, Brewer H B, Sipahi I, Nicholls S J, Ganz P, Schoenhagen P, Waters D D, Pepine C J, Crowe T D, Davidson M H, Deanfield J E, Wisniewski L M, Hanyok J J, Kassalow L M; ACAT Intravascular Atherosclerosis Treatment Evaluation (ACTIVATE) Investigators (2006). Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med, 354: 1253-1263 (Erratum in: N Engl J Med, 355: 638)
CrossRef
Google scholar
|
[52] |
Norum K R, Lilljeqvist A C, Drevon C A (1977). Coenzyme-A-dependent esterification of cholesterol in intestinal mucosa from guinea-pig. Influence of diet on the enzyme activity. Scand J Gastroenterol, 12: 281-288
|
[53] |
Oelkers P, Behari A, Cromley D, Billheimer J T, Sturley S L (1998). Characterization of two human genes encoding acyl coenzyme A: cholesterol acyltransferase-related enzymes. J Biol Chem, 273: 26765-26771
CrossRef
Google scholar
|
[54] |
Orland M D, Anwar K, Cromley D, Chu C H, Chen L, Billheimer J T, Hussain M M, Cheng D (2005). Acyl coenzyme A dependent retinol esterification by acyl coenzyme A: diacylglycerol acyltransferase 1. Biochim Biophys Acta, 1737: 76-82
|
[55] |
Puglielli L, Konopka G, Pack-Chung E, Ingano L A, Berezovska O, Hyman B T, Chang T Y, Tanzi R E, Kovacs D M (2001). Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol, 3: 905-912
CrossRef
Google scholar
|
[56] |
Rudel L L, Lee R G, Cockman T L (2001). Acyl coenzyme A: cholesterol acyltransferase types 1 and 2: structure and function in atherosclerosis. Curr Opin Lipidol, 12: 121-127
CrossRef
Google scholar
|
[57] |
Sakashita N, Miyazaki A, Takeya M, Horiuchi S, Chang C C, Chang T Y, Takahashi K (2000). Localization of human acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) in macrophages and in various tissues. Am J Pathol, 156: 227-236
|
[58] |
Smith S J, Cases S, Jensen D R, Chen H C, Sande E, Tow B, Sanan D A, Raber J, Eckel R H, Farese R V Jr (2000). Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet, 25: 87-90
CrossRef
Google scholar
|
[59] |
Tardif J C, Grégoire J, L'Allier P L, Anderson T J, Bertrand O, Reeves F, Title L M, Alfonso F, Schampaert E, Hassan A, McLain R, Pressler M L, Ibrahim R, Lespérance J, Blue J, Heinonen T, Rodés-Cabau J; Avasimibe and Progression of Lesions on UltraSound (A-PLUS) Investigators (2004). Effects of the acyl coenzyme A: cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation, 110: 3372-3377
CrossRef
Google scholar
|
[60] |
Turkish A R, Henneberry A L, Cromley D, Padamsee M, Oelkers P, Bazzi H, Christiano A M, Billheimer J T, Sturley S L (2005). Identification of two novel human acyl-CoA wax alcohol acyltransferases: members of the diacylglycerol acyltransferase 2 (DGAT2) gene superfamily. J Biol Chem, 280: 14755-14764
CrossRef
Google scholar
|
[61] |
Uelmen PJ, Oka K, Sullivan M, Chang C C, Chang T Y, Chan L (1995). Tissue-specific expression and cholesterol regulation of acylcoenzyme A: cholesterol acyltransferase (ACAT) in mice. Molecular cloning of mouse ACAT cDNA, chromosomal localization, and regulation of ACAT in vivo and in vitro. J Biol Chem, 270: 26192-26201
CrossRef
Google scholar
|
[62] |
Wongsiriroj N, Piantedosi R, Palczewski K, Goldberg I J, Johnston T P, Li E, Blaner W S (2008). The molecular basis of retinoid absorption: a genetic dissection. J Biol Chem, 283: 13510-13519
CrossRef
Google scholar
|
[63] |
Yang H, Bard M, Bruner DA, Gleeson A, Deckelbaum R J, Aljinovic G, Pohl T M, Rothstein R, Sturley S L (1996). Sterol esterification in yeast: a two-gene process. Science, 272: 1353-1356
CrossRef
Google scholar
|
[64] |
Yen C L, Monetti M, Burri B J, Farese R V Jr (2005). The triacylglycerol synthesis enzyme DGAT1 also catalyzes the synthesis of diacylglycerols, waxes, and retinyl esters. J Lipid Res, 46: 1502-1511
CrossRef
Google scholar
|
[65] |
Yu C, Chen J, Lin S, Liu J, Chang C C, Chang T Y (1999). Human acyl-CoA: cholesterol acyltransferase-1 is a homotetrameric enzyme in intact cells and in vitro. J Biol Chem, 274: 36139-36145
CrossRef
Google scholar
|
[66] |
Yu C, Kennedy N J, Chang C C, Rothblatt J A (1996). Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA: sterol acyltransferase. J Biol Chem, 271: 24157-24163
CrossRef
Google scholar
|
[67] |
Yu C, Zhang Y, Lu X, Chen J, Chang C C, Chang T Y (2002). Role of the N-terminal hydrophilic domain of acyl-coenzyme A: cholesterol acyltransferase 1 on the enzyme's quaternary structure and catalytic efficiency. Biochemistry, 41: 3762-3769
CrossRef
Google scholar
|
[68] |
Zhang Y, Yu C, Liu J, Spencer T A, Chang C C, Chang T Y (2003). Cholesterol is superior to 7-ketocholesterol or 7 alpha-hydroxycholesterol as an allosteric activator for acyl-coenzyme A: cholesterol acyltransferase 1. J Biol Chem, 278: 11642-11647
CrossRef
Google scholar
|
[69] |
Zhao G, Souers A J, Voorbach M, Falls H D, Droz B, Brodjian S, Lau Y Y, Iyengar R R, Gao J, Judd A S, Wagaw S H, Ravn M M, Engstrom K M, Lynch J K, Mulhern M M, Freeman J, Dayton B D, Wang X, Grihalde N, Fry D, Beno D W, Marsh K C, Su Z, Diaz G J, Collins C A, Sham H, Reilly R M, Brune M E, Kym P R (2008). Validation of diacyl glycerolacyltransferase I as a novel target for the treatment of obesity and dyslipidemia using a potent and selective small molecule inhibitor. J Med Chem, 51: 380-383
CrossRef
Google scholar
|
/
〈 | 〉 |