In order to describe and compare intuitively the impact of different kinds of ground cover on temporal and spatial variation of soil moisture, an experiment was carried out by continuous observations to obtain soil potential data of different treatments. Based on the data, isogram maps were drawn by a regression isogram method. The results indicate that the isogram of treatment A (Paspalum notatum Flugge-covered) is the most complicated among the three treatments with its significant transverse levels, while the isograms of treatment B (mulching of P. notatum Flugge) and C (bare slope) are relatively simple but have clear vertical levels. The variation of soil moisture 30 cm deep in the A treatment is the largest, while that at 60 cm is the second largest and that of 90 cm is the smallest. The variation of soil moisture at all levels of B is fairly small, while that at 30 and 60 cm of C is greater than that 90 cm deep.
Direct seeding is a less expensive practice than planting and has the potential to become a viable alternative to transplanting for afforestation and regeneration purposes. As an effective and a less costly regeneration method, aerial seeding has been applied with several tree species. As early as 1956, Chinese people engaged in aerial seeding and stands with a total of 2.97×107 hm2 have been developed up to 2004. Our study tested whether the growth of planted Chinese pine (Pinus tabulaeformis Carr.) seedlings and its undergrowth development in northwest aspects differ from that of aerially sown seedlings on the northern and northwestern aspects of slopes. In 2007, we collected data such as height, diameter at breast height (DBH), clear bole height and canopy widths of trees, abundance, coverage, and frequency of shrubs and herbs from 21-year-old planted Chinese pine stands on a northwestern aspect (PNW), aerially sown stands in a northwest aspect (ANW) and aerially sown stands in a northern aspect (AN). Results showed that the relation of crown area and mean DBH was best fitted by a double inverse model for the ANW and AN forests and by a quadratic model for the PNW forest. There was no difference in the growth between ANW and AN forests, while growth was significantly higher in the PNW forest than in the ANW and AN forests. That was consistent with the Sorenson diversity indices in the shrub and herb layers, indicating that there was a large number of the same species in both aerially seeded stands, although their locations were different. Both the number of species in the undergrowth and the Shannon-Wiener index in the shrub layer were higher in the PNW stands than in the ANW and AN stands. Dominant families for all three stands were Rosaceae and Compositae in the shrub and herb layer, respectively. The dominant species for all three stands was Spiraea pubescens in the shrub layer, while the dominant species was different from each other in the three stands. The discrepancy in diversity and composition of species in the herb layer show that herbs are sensitive to shrubs in the three forests. High mortality and skewed diameter distributions reflect severe competition and too high a density in the aerially seeded forests. Thus, aerial seeding is a viable and effective regeneration technique, but management practices, such as thinning, should be applied to these forests.
The dynamic change of soil water as a function of leaf area index and the soil water deficit value, prerequisites for assuring the survival of plants, were simulated. We established a dynamic soil water model based on a theory of water balance, the characteristics of the environment, and the physiological ecology of the plants in the Ulan Buh Desert, northwestern China. We estimated the soil water carrying capacity of the vegetation in our study area of the desert. The results showed that the proportion of soil evaporation in the total amount of precipitation was greater than 60% in the wandering and semifixed sands and 44.8% in the fixed sand. When the leaf area index was less than 1.7 m2/m2, the soil water deficit was maintained at a low level, but when the leaf area index continued to increase, the soil water deficit increased rapidly as well. In consequence, we come to the conclusion that the leaf area index of the soil water carrying capacity of the vegetation is 1.7 m2/m2 in our study area.