PDF
(163KB)
Abstract
In this study heartwood from a Chinese fir [Cunninghamia lanceolata (Lamb.) Hook] plantation was treated using a high-temperature drying (HTD) method at 115°C, a low-temperature drying (LTD) method at 65°C, and freeze vacuum drying (FVD), respectively. The dynamic viscoelastic properties of dried wood specimens were investigated. The measurements were carried out at a temperature range of −120 to 250°C at four different frequencies (1, 2, 5, and 10 Hz) using dynamic mechanical analysis (DMA). We have drawn the following conclusions: 1) the storage modulus E′ and loss modulus E′′ are the highest for HTD wood and the lowest for FVD wood; 2) three relaxation processes were detected in HTD and LTD wood, attributed to the micro-Brownian motion of cell wall polymers in the non-crystalline region, the oscillations of the torso of cell wall polymers, and the motions of the methyl groups of cell wall polymers in the non-crystalline region in a decreasing order of temperatures at which they occurred; and 3) in FVD wood, four relaxation processes were observed. A newly added relaxation is attributed to the micro-Brownian motions of lignin molecules. This study suggests that both the HTD and the LTD methods restrict the micro-Brownian motion of lignin molecules somewhat by the cross-linking of chains due to their heating history.
Keywords
high-temperature drying
/
low-temperature drying
/
freeze vacuum drying
/
viscoelasticity
/
relaxation processes
/
micro-Brownian motion
Cite this article
Download citation ▾
null.
Dynamic viscoelastic behavior of wood under drying
conditions.
Front. For. China, 2009, 4(3): 374-379 DOI:10.1007/s11461-009-0042-2