RESEARCH ARTICLE

Adaptive regularized scheme for remote sensing image fusion

  • Sizhang TANG 1,2 ,
  • Chaomin SHEN 1 ,
  • Guixu ZHANG , 1
Expand
  • 1. Shanghai Key Laboratory of Multidimensional Information Processing and Department of Computer Science and Technology, East China Normal University, Shanghai 200241, China
  • 2. Department of Information and Computer Science, Shanghai Business School, Shanghai 201400, China

Received date: 15 Jul 2014

Accepted date: 25 Dec 2014

Published date: 05 Apr 2016

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We propose an adaptive regularized algorithm for remote sensing image fusion based on variational methods. In the algorithm, we integrate the inputs using a “grey world” assumption to achieve visual uniformity. We propose a fusion operator that can automatically select the total variation (TV)–L1 term for edges and L2-terms for non-edges. To implement our algorithm, we use the steepest descent method to solve the corresponding Euler–Lagrange equation. Experimental results show that the proposed algorithm achieves remarkable results.

Cite this article

Sizhang TANG , Chaomin SHEN , Guixu ZHANG . Adaptive regularized scheme for remote sensing image fusion[J]. Frontiers of Earth Science, 2016 , 10(2) : 236 -244 . DOI: 10.1007/s11707-015-0514-7

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2011CB707104) and the National Natural Science Foundation of China (Grant No. 61273298).
Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11707-015-0514-7 and is accessible for authorized users.
1
Agrawal D, Singhai J (2010). Multi-focus image fusion using modified pulse coupled neural network for improved image quality. IET Image Processing, 4(6): 443–451

DOI

2
Aubert G, Kornprobst P (2009). Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences. Berlin: Springer-Verlag

3
Bertalmio M, Caselles V, Provenzi E, Rizzi A (2007). Perceptual color correction through variational techniques. IEEE Trans Image Process, 16(4): 1058–1072

DOI

4
Brelstaff G J, Párraga A, Troscianko T, Carr D (1995). Hyper spectral camera system: acquisition and analysis. In: Satellite Remote Sensing II. International Society for Optics and Photonics: 150–159

5
Buchsbaum G (1980). A spatial processor model for object color perception. J Franklin Inst, 310(1): 1–26

DOI

6
Chai Y, Li H, Zhang X (2012). Multi-focus image fusion based on features contrast of multi-scale products in non-subsampled contourlet transform domain. Optik-International Journal for Light and Electron Optics, 123(7): 569–581

DOI

7
Chan T F, Esedoglu S (2005). Aspects of total variation regularized l1function approximation. SIAM J Appl Math, 65(5): 1817–1837

DOI

8
Chan T, Shen J, Vese L (2003). Variational PDE models in image processing. Not Am Math Soc, 50(1): 14–26

9
Cvejic N, Seppanen T, Godsill S (2009). A no reference image fusion metric based on the regional importance measure. IEEE Journal Of Selected Topics In Signal Processing, 3(2): 212–221

DOI

10
Ellmauthaler A, Pagliari C L, Da Silva E A (2013). Multi-scale image fusion using the undecimated wavelet transform with spectral factorization and nonorthogonal filter banks. IEEE Trans Image Process, 22(3): 1005–1017

DOI

11
El-taweel G S, Helmy A K (2013). Image fusion scheme based on modified dual pulse coupled neural network. IET Image Processing, 7(5): 407–414

12
Fang F, Li F, Zhang G, Shen C (2013). A variational method for multisource remote-sensing image fusion. Int J Remote Sens, 34(7): 2470–2486

DOI

13
Gao G R, Lu P X, Feng D Z (2013). Multi-focus image fusion based on non-sub-sampled shear-let transform. IET Image Processing, 7(6): 633–639

DOI

15
Hinterberger W, Scherzer O (2006). Variational methods on the space of functions of bounded hessian for convexification and de-noising. Computing, 76(1–2): 109–133

DOI

16
James A, Dasarathy B (2014). Medical image fusion: a survey of the state of the art. Inf Fusion, 19: 4–19

DOI

17
Kim Y, Lee C, Han D, Kim Y, Kim Y (2011). Improved additive-wavelet image fusion. IEEE Transactions on Geoscience and Remote Sensing Letters, 8(2): 263–267

DOI

18
Kluckner S, Pock T, Bischof H (2010). Exploiting redundancy for aerial image fusion using convex optimization. Proceedings of the 32nd DAGM conference on Pattern Recognition, Darmstadt, Germany

19
Kong W, Lei Y, Lei Y, Lu S (2011). Image fusion technique based on non-sub-sampled contour-let transform and adaptive unit-fast-linking pulse-coupled neural network. IET Image Processing, 5(2): 113– 121

DOI

20
Kumar M, Dass S (2009). A total variation-based algorithm for pixel-level image fusion. IEEE Trans Image Process, 18(9): 2137–2143

DOI

21
Li X, He M, Roux M (2010). Multi-focus image fusion based on redundant wavelet transform. IET Image Processing, 4(4): 283–293

DOI

22
Liu G, Shen Y (2012). Ultrasonic image fusion using compressed sensing. Electron Lett, 48(19): 1182–1184

DOI

24
Liu X, Zhou Y, Wang J (2014). Image fusion based on shearlet transform and regional features. AEU, Int J Electron Commun, 68(6): 471– 477

DOI

25
Lustig M, Donoho D, Pauly J M (2007). Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med, 58(6): 1182–1195

DOI

26
Lysaker M, Lundervold A, Tai X C (2003). Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans Image Process, 12(12): 1579–1590

DOI

27
Mahbubur Rahman S M, Omair Ahmad M, Swamy M N S (2010). Contrast-based fusion of noisy images using discrete wavelet transform. IET Image Processing, 4(5): 374–384

DOI

29
Nikolova M (2004). A variational approach to remove outliers and impulse noise. J Math Imaging Vis, 20(1–2): 99–120

DOI

30
Papafitsoros K, Schönlieb C B (2014). A combined first and second order variational approach for image reconstruction. J Math Imaging Vis, 48(2): 308–338

DOI

31
Petrovic V (2004). Subjective image fusion evaluation data. Imaging Science Biomedical Engineering. University of Manchester:1–9

33
Piella G (2009). Image fusion for enhanced visualization: a variational approach. Int J Comput Vis, 83(1): 1–11

DOI

35
Pock T, Zebedin L, Bischof H (2011). TGV-fusion. In: Calude C S, Rozenberg A G, Salomaa A, eds. Maurer Festschrift. LNCS, 6570: 245–258

36
Pouteau R, Stoll B, Chabrier S (2010). Multi-source SVM fusion for environmental monitoring in marquesas archipelago. In: Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International, 2719–2722

38
Rudin L I, Osher S, Fatemi E (1992). Non-linear total variation based noise removal algorithms. Physica D, 60(1): 259–268

DOI

39
Sapiro G (2001). Geometric Partial Differential Equations and Image Analysis. Cambridge University Press

40
Schowengerdt R A (2006). Remote sensing: Models and Methods for Image Processing (3rd Edition). Academic Press

41
Socolinsky D A (2000). A variational Approach to Image Fusion. Dissertation for PhD degree. The Johns Hopkins University, April 2000

42
Socolinsky D A, Wolff L B (2002). Multispectral image visualization through first-order fusion. IEEE Trans Image Process, 11(8): 923–931

DOI

43
Stathaki (2008). Image Fusion: Algorithms and Applications. Amsterdam: Elsevier

44
Tafti P D, Stalder A F, Delgado-Gonzalo R, Unser M (2011). Variational enhancement and de-noising of flow field images. 8th IEEE International symposium on biomedical imaging: from Nano to Macro: 1061–1064

45
Tikhonov A N (1943). On the stability of inverse problems. Dokl Akad Nauk SSSR, 39(5): 195–198

46
Tran M P, Peteri R, Bergounioux M (2012). De-noising 3D medical images using a second order variational model and wavelet shrinkage. In: Image Analysis and Recognition. Berlin: Springer, 138–145

48
Wang C, Ye Z F (2007). Perceptual contrast-based image fusion: a variational approach. Acta Automatica Sinica, 33(2): 132–137

DOI

48
Wang L, Li B, Tian L (2014). Multi-modal medical volumetric data fusion using 3D discrete shearlet transform and global-to-local rule. IEEE Trans Biomed Eng, 61(1): 197–206

DOI

49
Wang W W, Shui P L, Feng X C (2008). Variational models for fusion and de-noising of multi-focus images. IEEE Signal Process Lett, 15: 65–68

DOI

51
Wang Z, Ziou D, Armenakis C, Li D, Li Q (2005). A comparative analysis of image fusion methods. IEEE Trans Geosci Rem Sens, 43(6): 1391–1402

DOI

53
Yang B, Li S (2010). Multi-focus image fusion and restoration with sparse representation. IEEE Trans Instrum Meas, 59(4): 884–892

DOI

54
Yang L, Guo B, Ni W (2008). Multimodality medical image fusion based on multi-scale geometric analysis of contourlet transform. Neurocomputing, 72(1–3): 203–211

DOI

55
Yang Z Z, Yang Z (2013). Novel multi-focus image fusion and reconstruction framework based on compressed sensing. IET Image Processing, 7(9): 837–847

DOI

56
Yuan J, Miles B, Shi J, Garvin G, Tai X C and A. Fenster A (2012). Efficient convex optimization approaches to variational image fusion. UCLA Tech. Report CAM-11-86

57
Zhang X, Chan T F (2010). Wavelet inpainting by nonlocal total variation. Inverse Problems and Imaging, 4(1): 191–210

DOI

58
Zheng S, Shi W, Liu J, Zhu G, Tian J (2007). Multisource image fusion method using support value transform. IEEE Trans Image Process, 16: 1

Outlines

/