Adaptive regularized scheme for remote sensing image fusion

Sizhang TANG , Chaomin SHEN , Guixu ZHANG

Front. Earth Sci. ›› 2016, Vol. 10 ›› Issue (2) : 236 -244.

PDF (1687KB)
Front. Earth Sci. ›› 2016, Vol. 10 ›› Issue (2) : 236 -244. DOI: 10.1007/s11707-015-0514-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Adaptive regularized scheme for remote sensing image fusion

Author information +
History +
PDF (1687KB)

Abstract

We propose an adaptive regularized algorithm for remote sensing image fusion based on variational methods. In the algorithm, we integrate the inputs using a “grey world” assumption to achieve visual uniformity. We propose a fusion operator that can automatically select the total variation (TV)–L1 term for edges and L2-terms for non-edges. To implement our algorithm, we use the steepest descent method to solve the corresponding Euler–Lagrange equation. Experimental results show that the proposed algorithm achieves remarkable results.

Keywords

remote sensing image fusion / adaptive regulariser / variational method / steepest descent method

Cite this article

Download citation ▾
Sizhang TANG, Chaomin SHEN, Guixu ZHANG. Adaptive regularized scheme for remote sensing image fusion. Front. Earth Sci., 2016, 10(2): 236-244 DOI:10.1007/s11707-015-0514-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agrawal D, Singhai J (2010). Multi-focus image fusion using modified pulse coupled neural network for improved image quality. IET Image Processing, 4(6): 443–451

[2]

Aubert G, Kornprobst P (2009). Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences. Berlin: Springer-Verlag

[3]

Bertalmio M, Caselles V, Provenzi E, Rizzi A (2007). Perceptual color correction through variational techniques. IEEE Trans Image Process, 16(4): 1058–1072

[4]

Brelstaff G J, Párraga A, Troscianko T, Carr D (1995). Hyper spectral camera system: acquisition and analysis. In: Satellite Remote Sensing II. International Society for Optics and Photonics: 150–159

[5]

Buchsbaum G (1980). A spatial processor model for object color perception. J Franklin Inst, 310(1): 1–26

[6]

Chai Y, Li H, Zhang X (2012). Multi-focus image fusion based on features contrast of multi-scale products in non-subsampled contourlet transform domain. Optik-International Journal for Light and Electron Optics, 123(7): 569–581

[7]

Chan T F, Esedoglu S (2005). Aspects of total variation regularized l1function approximation. SIAM J Appl Math, 65(5): 1817–1837

[8]

Chan T, Shen J, Vese L (2003). Variational PDE models in image processing. Not Am Math Soc, 50(1): 14–26

[9]

Cvejic N, Seppanen T, Godsill S (2009). A no reference image fusion metric based on the regional importance measure. IEEE Journal Of Selected Topics In Signal Processing, 3(2): 212–221

[10]

Ellmauthaler A, Pagliari C L, Da Silva E A (2013). Multi-scale image fusion using the undecimated wavelet transform with spectral factorization and nonorthogonal filter banks. IEEE Trans Image Process, 22(3): 1005–1017

[11]

El-taweel G S, Helmy A K (2013). Image fusion scheme based on modified dual pulse coupled neural network. IET Image Processing, 7(5): 407–414

[12]

Fang F, Li F, Zhang G, Shen C (2013). A variational method for multisource remote-sensing image fusion. Int J Remote Sens, 34(7): 2470–2486

[13]

Gao G R, Lu P X, Feng D Z (2013). Multi-focus image fusion based on non-sub-sampled shear-let transform. IET Image Processing, 7(6): 633–639

[14]

Hinterberger W, Scherzer O (2006). Variational methods on the space of functions of bounded hessian for convexification and de-noising. Computing, 76(1–2): 109–133

[15]

James A, Dasarathy B (2014). Medical image fusion: a survey of the state of the art. Inf Fusion, 19: 4–19

[16]

Kim Y, Lee C, Han D, Kim Y, Kim Y (2011). Improved additive-wavelet image fusion. IEEE Transactions on Geoscience and Remote Sensing Letters, 8(2): 263–267

[17]

Kluckner S, Pock T, Bischof H (2010). Exploiting redundancy for aerial image fusion using convex optimization. Proceedings of the 32nd DAGM conference on Pattern Recognition, Darmstadt, Germany

[18]

Kong W, Lei Y, Lei Y, Lu S (2011). Image fusion technique based on non-sub-sampled contour-let transform and adaptive unit-fast-linking pulse-coupled neural network. IET Image Processing, 5(2): 113– 121

[19]

Kumar M, Dass S (2009). A total variation-based algorithm for pixel-level image fusion. IEEE Trans Image Process, 18(9): 2137–2143

[20]

Li X, He M, Roux M (2010). Multi-focus image fusion based on redundant wavelet transform. IET Image Processing, 4(4): 283–293

[21]

Liu G, Shen Y (2012). Ultrasonic image fusion using compressed sensing. Electron Lett, 48(19): 1182–1184

[22]

Liu X, Zhou Y, Wang J (2014). Image fusion based on shearlet transform and regional features. AEU, Int J Electron Commun, 68(6): 471– 477

[23]

Lustig M, Donoho D, Pauly J M (2007). Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med, 58(6): 1182–1195

[24]

Lysaker M, Lundervold A, Tai X C (2003). Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans Image Process, 12(12): 1579–1590

[25]

Mahbubur Rahman S M, Omair Ahmad M, Swamy M N S (2010). Contrast-based fusion of noisy images using discrete wavelet transform. IET Image Processing, 4(5): 374–384

[26]

Nikolova M (2004). A variational approach to remove outliers and impulse noise. J Math Imaging Vis, 20(1–2): 99–120

[27]

Papafitsoros K, Schönlieb C B (2014). A combined first and second order variational approach for image reconstruction. J Math Imaging Vis, 48(2): 308–338

[28]

Petrovic V (2004). Subjective image fusion evaluation data. Imaging Science Biomedical Engineering. University of Manchester:1–9

[29]

Piella G (2009). Image fusion for enhanced visualization: a variational approach. Int J Comput Vis, 83(1): 1–11

[30]

Pock T, Zebedin L, Bischof H (2011). TGV-fusion. In: Calude C S, Rozenberg A G, Salomaa A, eds. Maurer Festschrift. LNCS, 6570: 245–258

[31]

Pouteau R, Stoll B, Chabrier S (2010). Multi-source SVM fusion for environmental monitoring in marquesas archipelago. In: Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International, 2719–2722

[32]

Rudin L I, Osher S, Fatemi E (1992). Non-linear total variation based noise removal algorithms. Physica D, 60(1): 259–268

[33]

Sapiro G (2001). Geometric Partial Differential Equations and Image Analysis. Cambridge University Press

[34]

Schowengerdt R A (2006). Remote sensing: Models and Methods for Image Processing (3rd Edition). Academic Press

[35]

Socolinsky D A (2000). A variational Approach to Image Fusion. Dissertation for PhD degree. The Johns Hopkins University, April 2000

[36]

Socolinsky D A, Wolff L B (2002). Multispectral image visualization through first-order fusion. IEEE Trans Image Process, 11(8): 923–931

[37]

Stathaki (2008). Image Fusion: Algorithms and Applications. Amsterdam: Elsevier

[38]

Tafti P D, Stalder A F, Delgado-Gonzalo R, Unser M (2011). Variational enhancement and de-noising of flow field images. 8th IEEE International symposium on biomedical imaging: from Nano to Macro: 1061–1064

[39]

Tikhonov A N (1943). On the stability of inverse problems. Dokl Akad Nauk SSSR, 39(5): 195–198

[40]

Tran M P, Peteri R, Bergounioux M (2012). De-noising 3D medical images using a second order variational model and wavelet shrinkage. In: Image Analysis and Recognition. Berlin: Springer, 138–145

[41]

Wang C, Ye Z F (2007). Perceptual contrast-based image fusion: a variational approach. Acta Automatica Sinica, 33(2): 132–137

[42]

Wang L, Li B, Tian L (2014). Multi-modal medical volumetric data fusion using 3D discrete shearlet transform and global-to-local rule. IEEE Trans Biomed Eng, 61(1): 197–206

[43]

Wang W W, Shui P L, Feng X C (2008). Variational models for fusion and de-noising of multi-focus images. IEEE Signal Process Lett, 15: 65–68

[44]

Wang Z, Ziou D, Armenakis C, Li D, Li Q (2005). A comparative analysis of image fusion methods. IEEE Trans Geosci Rem Sens, 43(6): 1391–1402

[45]

Yang B, Li S (2010). Multi-focus image fusion and restoration with sparse representation. IEEE Trans Instrum Meas, 59(4): 884–892

[46]

Yang L, Guo B, Ni W (2008). Multimodality medical image fusion based on multi-scale geometric analysis of contourlet transform. Neurocomputing, 72(1–3): 203–211

[47]

Yang Z Z, Yang Z (2013). Novel multi-focus image fusion and reconstruction framework based on compressed sensing. IET Image Processing, 7(9): 837–847

[48]

Yuan J, Miles B, Shi J, Garvin G, Tai X C and A. Fenster A (2012). Efficient convex optimization approaches to variational image fusion. UCLA Tech. Report CAM-11-86

[49]

Zhang X, Chan T F (2010). Wavelet inpainting by nonlocal total variation. Inverse Problems and Imaging, 4(1): 191–210

[50]

Zheng S, Shi W, Liu J, Zhu G, Tian J (2007). Multisource image fusion method using support value transform. IEEE Trans Image Process, 16: 1

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1687KB)

Supplementary files

FES-15514-OF-TSZ_suppl_1

1068

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/