RESEARCH ARTICLE

Vegetation pattern in Shell Ridge Island in China’s Yellow River Delta

  • Yanyun ZHAO 1,2 ,
  • Xiangming HU 3 ,
  • Jingtao LIU 2 ,
  • Zhaohua LU , 1,2 ,
  • Jiangbao XIA 2 ,
  • Jiayi TIAN 2 ,
  • Junsheng MA 4
Expand
  • 1. Institute of Restoration Ecology, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China
  • 2. Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou 256603, China
  • 3. Department of Resources & Environmental Engineering, Binzhou University, Binzhou 256603, China
  • 4. Administrative Bureau of Binzhou Shell Dyke Island and Wetland National Reserve, Binzhou 251900, China

Received date: 14 Mar 2014

Accepted date: 29 Sep 2014

Published date: 20 Jul 2015

Copyright

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In general, coastal habitat conditions are extremely harsh, with the ecological equilibrium inextricably related to the plant community. Understanding the natural vegetation features of a coastal zone with little human disturbance could provide a reference for future vegetation restoration and ecosystem maintenance services. In this study, the vegetation patterns of Wangzi Shell Ridge Island in the Yellow River Delta were investigated. A total of 35 taxa of vascular plants were documented, representing 15 families and 33 genera (of which most were mono-specific). Surveys identified only one to eight taxa in each plot. From sea to land, the vegetation showed a typical zonal distribution pattern. There was a correlation between the landform and important factors that influenced the plants including soil factors and distance from the sea. Thus, the taxa distribution and vegetation had a significant correlation with landform. The dune crest, backdune and interdune lowlands were areas with weak storm surges and were the important locations for the taxa to be become established. Plants along the high-tide line formed important defenses from large waves and high winds. The significant protection provided a suitable living environment for many organisms with high medicinal value. Special attention and protection could be provided to this area by reducing the use of the beach road and enclosing the complete section from sea to land with a protective fence. In addition, vegetation protection and restoration on Shell Ridge Island would aid in the formulation and implementation of reintroduction strategies for similar vegetation in similar habitats.

Cite this article

Yanyun ZHAO , Xiangming HU , Jingtao LIU , Zhaohua LU , Jiangbao XIA , Jiayi TIAN , Junsheng MA . Vegetation pattern in Shell Ridge Island in China’s Yellow River Delta[J]. Frontiers of Earth Science, 2015 , 9(3) : 567 -577 . DOI: 10.1007/s11707-015-0496-5

Acknowledgements

We are grateful for the financial support from the Eleventh Five-year Plan for Supporting Science and Technology of China (No.2010BAC68B01);National Natural Science foundation of China (Grant No. 41201023); the twelfth Five-year Plan for Supporting Science and Technology of China (No.2011BAC02B01-05); Natural Science Foundation of Shandong Province (No.ZR2013CL001); Project of Shandong Province Development Program (No.J13LE57). We appreciate our colleague’s help in language revision and anonymous reviewers for rigorous and fair comments. We sincerely thank Wudi Shell Ridge and Wetland Nature Reserve for providing survey site and assistance.

Appendix A Vascular plant list of Shell Ridge Island in Yellow River Delta

ClassFamilyGeneraSpecies
MONOCOTYLEDONEAE1. GRAMINEAE(1) Phragmites1) Phragmites australis (Pau)
(2) Aeluropus2) Aeluropus sinensis (Asi)
(3) Zoysia3) Zoysia macrostachya (Zma)
(4) Triarrhena4) Triarrhena sacchariflora (Tsa)
(5) Bothriochloa5) Bothriochloa ischaemum (Bis)
(6) Setaria6) Setaria viridis (Svi)
(7) Deyeuxia7) Deyeuxia arundinacea (Dar)
2. LILIACEAE(8) Asparagus8) Asparagus dauricus (Ada)
DICOTYLEDONEAE3. CHENOPODIACEAE(9) Chenopodium9) Chenopodium glaucum (Cgi)
(10) Atriplex10) Atriplex centralasiatica (Ace)
(11) Kochia11) Kochia scoparia (Ksc)
(12) Suaeda12) Suaeda heteropera (She)
13) Suaeda Salsa (Ssa)
(13) Salsola14) Salsola collina (Sco)
4. CONVOLVULACEAE(14) Calystegia15) Calystegia soldanella (Cso)
(15) Cuscuta16) Cuscuta chinensis (Cch)
5. RHAMNACEAE(16) Ziziphus17) Ziziphus jujube (Zju)
6. VITACEAE(17) Cayratia18) Cayratia japonica (Cja)
7. LEGUMINOSAE(18) Melilotus19) Melilotus officinalis (Mof)
(19) Astragalus20) Astragalus adsurgens (Aad)
(20) Glycine21) Glycine soja Sieb (Gsi)
(21) Medicago22) Medicago sativa (Msa)
8. GERANIACEAE(22) Erodium23) Erodium stephanianum (Est)
9. TAMARICACEAE(23) Tamarix24) Tamarix chinensis (Tch)
10. PLUMBAGINACEAE(24) Limonium25) Limonium bicolor (Lbi)
11. ASCLEPIADACEAE(25) Metaplexis26) Metaplexis japonica (Mja)
(26) Periploca27) Periploca sepium (Pse)
12. BORAGINACEAE(27) Messerschmidia28) Messerschmidia sibirica (Msi)
13. COMPOSITAE(28) Artemisia29) Artemisia mongolica (Amo)
30) Artemisia carvifolia (Aca)
(29) Aster31) Aster tataricus (Ata)
(30) Scorzonera32) Scorzonera mongolica (Smo)
(31) Xanthium33) Xanthium sibiricum (Xsi)
14. RUBIACEAE(32) Rubia34) Rubia cordifolia (Rco)
15. ZYGOPHYLLACEAE(33) Nitraria35) Nitraria schoberi (Nsc)

Appendix B Plant species composition in Shell Ridge Island in Yellow River Delta

Family nameGenus NumberSpecies numberPercent of total species number /%Family nameGenus NumberSpecies numberPercent of total species number /%
Gramineae7720Vitaceae112.69
Chenopodiaceae5617.14Geraniaceae112.69
Compositae4514.29Tamaricaceae112.69
Leguminosae4411.43Plumbaginaceae112.69
Convolvulaceae225.71Boraginaceae112.69
Asclepiadaceae225.71Rubiaceae112.69
Liliaceae112.69Zygophyllaceae112.69
Rhamnaceae112.69
1
Acosta A, Carranza M L, Izzi C F (2009). Are there habitats that contribute best to plant species diversity in coastal dunes? Biodivers Conserv, 18(4): 1087–1098

DOI

2
Augustinus P G E F (1989). Cheniers and chenier plains: a general introduction. Mar Geol, 90(4): 219–229

DOI

3
Bao S D (2000). Soil agrochemical analysis. Beijing: China agriculture press, 30–34

4
Cao C X, Zhao J, Gong P, Ma G R, Bao D M, Tian K, Tian R, Niu Z G, Zhang H, Xu M, Gao M X, Zheng S, Chen W, He Q S, Li X W (2012). Wetland changes and droughts in southwestern China. Geomatics, Natural Hazards and Risk, 3(1): 79–95

DOI

5
Carboni M, Santoro R, Acosta A T R (2010). Are some communities of the coastal dune zonation more susceptible to alien plant invasion? J Plant Ecolo, 3(2): 139–147

DOI

6
Chen H, Zheng Y, Li F (1992). Flora of Shandong Province (Vol. 1). Qingdao: Publishing House of Qingdao, 1–1210

7
Chen H, Zheng Y, Li F (1997). Flora of Shandong Province (Vol. 2). Qingdao: Publishing House of Qingdao, 1–1451

8
Chen Q, Ma J, Liu J, Zhao C, Liu W (2013). Characteristics of greenhouse gas emission in the Yellow River Delta wetland. Int Biodeterior Biodegradation, 85: 646–651

DOI

9
Chinese State Report on Biodiversity Editorial Committee (1998). Chinese state report on biodiversity. Beijing: Chinese Environmental Science Press

10
Cogoni D, Fenu G, Concas E, Bacchetta G (2013). The effectiveness of plant conservation measures: the Dianthus morisianus reintroduction. Oryx, 47(2): 203–206

DOI

11
Cui B S, Yang Q C, Zhang K J, Zhao X S, You Z Y (2010). Responses of salt cedar (Tamarix chinensis) to water table depth and soil salinity in the Yellow River Delta, China. Plant Ecol, 209(2): 279–290

DOI

12
Deng L, Sweeney S, Shangguan Z (2014). Long-term effects of natural enclosure: carbon stocks, sequestration rates and potential for grassland ecosystems in the Loess Plateau. Clean- Soil, Air. Water, 42(5): 617–625

13
Diekmann M, Jandt U, Alard D, Bleeker A, Corcket E, Gowing D J G, Stevens C J, Duprè C (2014). Long-term changes in calcareous grassland vegetation in North-western Germany − No decline in species richness, but a shift in species composition. Biol Conserv, 172: 170–179

DOI

14
Dougherty A J, Dickson M E (2012). Sea level and storm control on the evolution of a chenier plain, Firth of Thames, New Zealand. Mar Geol, 307−310: 58–72

DOI

15
Draut A E, Kineke G C, Velasco D W, Allison M A, Prime R J (2005). Influence of the Atchafalaya River on recent evolution of the chenier-plain inner continental shelf, northern Gulf of Mexico. Cont Shelf Res, 25(1): 91–112

DOI

16
Du T, Huang H, Wang Z, Liu Y (2009).Evolution of the shell ridge islands in the northern Yellow River Delta. Marine Geology & Quaternary Geology, 29(3): 23–29

17
Fang J, Wang X, Shen Z, Tang Z, He J, Yu D, Jiang Y (2009). Methods and protocols for plant community inventory. Biodiversity Science, 17(6): 533–548

18
Fenu G, Carboni M, Acosta A T R, Bacchetta G (2013a). Environmental factors influencing coastal vegetation pattern: New insights from the Mediterranean Basin. Folia Geobot, 48(4): 493–508

DOI

19
Fenu G, Cogoni D, Ferrara C, Pinna M S, Bacchetta G (2012).Relationships between coastal sand dune properties and plant community distribution: The case of Is Arenas (Sardinia). Plant Biosyst, 146(3): 586–602

20
Fenu G, Cogoni D, Ulian T, Bacchetta G (2013b). The impact of human trampling on a threatened coastal Mediterranean plant: The case of Anchusa littorea Moris (Boraginaceae). Flora, 208(2): 104–110

DOI

21
Forey E, Chapelet B, Vitasse Y, Tilquin M, Touzard B, Michalet R (2008). The relative importance of disturbance and environmental stress at local and regional scales in French coastal sand dunes. J Veg Sci, 19(4): 493–502

DOI

22
Froyd C A, Coffey E E D, van der Knaap W O, van Leeuwen J F N, Tye A, Willis K J (2014). The ecological consequences of megafaunal loss: giant tortoises and wetland biodiversity. Ecol Lett, 17(2): 144–154

DOI

23
Gabrey S W, Afton A D (2001).Plant community composition and biomass in Gulf Coast Chenier Plain marshes: responses to winter burning and structural marsh management. Environ Manage, 27(2): 281–293

DOI

24
Gardner W H (1996). Water content. In: Sparks D L, ed. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. SSSA, Book Series no. 5. Madison, WI, USA, 493–544

25
Ghazanfar S A, Keppel G, Khan S (2001). Coastal vegetation of small islands near Viti Levu and Ovalau, Fiji. NZ J Bot, 39(4): 587–600

DOI

26
Gosselink J G (1979). An ecological characterization study of the Chenier Plain coastal ecosystem of Louisiana and Texas, 3 vols. FWS/OBS-78/9 through 78/11.US Fish and Wildlife Service, Slidell, Louisiana

27
Grace J B, Pugesek B H (1997). A structural equation model of plant species richness and its application to a coastal wetland. Am Nat, 149(3): 436–460

DOI

28
Gu F (1999). Endangered plants in the Yellow River Delta: an Overview. Journal of Binzhou Education College, 1−2: 35 (in Chinese)

29
Guan B, Yu J, Cao D, Li Y, Han G, Mao P (2013). The ecological restoration of heavily degraded saline wetland in the Yellow River Delta. Clean − Soil, Air. Water, 41(7): 690–696

30
Ha T T T, van Dijk H, Bush S R (2012). Mangrove conservation or shrimp farmer's livelihood? The devolution of forest management and benefit sharing in the Mekong Delta, Vietnam. Ocean Coast Manage, 69: 185–193

DOI

31
Hill M O, Šmilauer P (2005). TWINSPAN for Windows version 2.3. Centre for Ecology and Hydrology and University of South Bohemia, Huntingdon and Ceske Budejovice.

32
Hughes J M R (2001).Review: wetland biodiversity. Divers Distrib, 7(4): 204–205

33
Jia Y (1996). The correlation among relative sea-level change, Huanghe river changing channel and the chenier development. Journal Of Tianjin Normal University (Natural Science Edition), 16(4): 58–61 (in Chinese)

34
Kuo S (1996). Phosphorus. In: Sparks DL, ed. Methods of Soil Analysis. Part 3. Chemical Methods. SSSA, Book Series no. 5. Madison, WI, 869–919

35
Mahdavi P, Akhani H, van der Maarel E (2013). Taxa diversity and life-form patterns in steppe vegetation along a 3000 m altitudinal gradient in the Alborz Mountains, Iran. Folia Geobot, 48(1): 7–22

DOI

36
Maun M A (2009). The biology of coastal sand dunes. Oxford: Oxford University Press

37
Mefford B M M (1999). PC-ORD. Multivariate analysis of ecological data.Version 5. 0 MjM Soft ware. Gleneden Beach, Oregon, USA

38
Monserrat A L, Celsi C E, Fontana S L (2012). Coastal dune vegetation of the southern Pampas (Buenos Aires, Argentina) and its value for conservation. J Coast Res, 28(1): 23–35

DOI

39
Otvos E G (2000). Beach ridges- definitions and significance. Geomorphology, 32(1−2): 83–108

DOI

40
Pan H, Tian J, Gu F (2001). Seashell islands near the Yellow River Delta and protection of their plant diversity. Marine Environmental Science, 20(3): 54–59

41
Pollock M M, Naiman R J, Hanley T A (1998). Plant species richness in riparian wetlands—A test of biodiversity theory. Ecology, 79: 94–105

42
Psuty N P, Silveira T M (2010). Global climate change: an opportunity for coastal dunes?? J Coast Conserv, 14(2): 153–160

DOI

43
Ren H, Jian S, Chen Y, Liu H, Zhang Q, Liu N, Xu Y, Luo J (2014). Distribution, status, and conservation of Camellia changii Ye (Theaceae), a critically endangered plant endemic to southern China. Oryx, 48(3): 358–360

DOI

44
Saito Y, Xue C (2001). Relationship between progradation of Yellow River Delta and formation of Shell Ridge. Marine Geology Letters, 9: 5–6

45
Saunders M J, Kansiime F, Jones M B (2014). Reviewing the carbon cycle dynamics and carbon sequestration potential of Cyperus papyrus L. wetlands in tropical Africa. Wetlands Ecol Manage, 22(2): 143–155

DOI

46
Shao L, Chen G Q, Hayat T, Alsaedi A (2014). Systems ecological accounting for wastewater treatment engineering: method, indicator and application. Ecol Indic, 47: 32–42

DOI

47
Shen Q, Qin J, Cao L (2011). Quantitative classification and ordination of shrub-grass vegetation on Hangzhou’s Xixi Wetland. Journal of Zhejiang International Studies University, 7(4): 92–100

48
Stanley K E, Murphy P G, Prince H H, Burton T M (2005). Long-term ecological consequences of anthropogenic disturbance on saginaw bay coastal wet meadow vegetation. J Great Lakes Res, 31: 147–159

DOI

49
Sun Z, Song H, Sun W, Sun J (2014). Effects of continual burial by sediment on morphological traits and dry mass allocation of Suaeda salsa seedlings in the Yellow River estuary: an experimental study. Ecol Eng, 68: 176–183

DOI

50
Sutherland W J (1999). Manual of Ecology Survey Methods. Beijing: Scientific and Technical Documents Press

51
Tian J, Xia J, Sun J, Liu Q, Zhang H, Zhao Y, Xie W, Zhang C, Fu R, Xie T, Li J, Li T (2011). Ecological protection and restoration of shell ridge in Yellow River Delta. Beijing: Chemical Industry Press, 87–96

52
Tian J, Xie W, Sun J (2009). Current status of vulnerable ecosystem of shell islands and protection measures in Yellow River Delta. Environmental Science and Management, 34(8): 138–143

53
Wang H, van Strydonck M (1997). Chronology of holocene cheniers and oyster reefs on the coast of Bohai Bay, China. Quat Res, 47(2): 192–205

DOI

54
Wang H, Zhang J, Zhang Y, Li J, Li F, Van Strydonck M, Hendrix V (2000). Chronology of the chenier and shore line changes since the last 1ka, on western coast of Bohai Bay. Marine Geology &Quaternary Geology, 20(2): 7–14

55
Wang P, Chen G Q, Jiang C B, Alsaedi A, Wu Z, Zeng L (2015). Transport in a three-zone wetland: flow velocity profile and environmental dispersion. Commun Nonlinear Sci Numer Simul, 20(1): 136–153

DOI

56
Wang P, Wu Z, Chen G Q, Cui B S (2013). Environmental dispersion in a three-layer wetland flow with free-surface. Commun Nonlinear Sci Numer Simul, 18(12): 3382–3406

DOI

57
Wang Q, Yuan G B, Zhang S, Liu Z S, Wang W D, Liu Z J, Zhuang Z Y (2007). Shelly ridge accumulation and sea-land interaction on the west coast of the Bohai Bay. Quaternary Sciences, 27(5): 775–784

58
Wang Y Z, Liu Y X, Wei C L (2006). Endangered plant species and protection measures in Yellow River Delta. Shandong Agricultural Sciences, 4: 84–86

59
Wiedemann A M, Pickart A J (2004). Temperate zone coastal dunes. In: Martínez M L, Wilson B, Sykes M T (1999). Is zonation on coastal sand dunes determined primarily by sand burial or salt spray? A test in New Zealand dunes. Ecol Lett, 2(4): 233–236

60
Wu Z, Zeng L, Chen G Q, Li Z, Shao L, Wang P, Jiang Z (2012). Environmental dispersion in a tidal flow through a depth-dominated wetland. Commun Nonlinear Sci Numer Simul, 17(12): 5007–5025

DOI

61
Xia J B, Zhang G C, Zhang S Y, Sun J K, Zhao Y Y, Shao H B, Liu J T (2014). Photosynthetic and water use characteristics in three natural secondary shrubs on Shell Islands, Shandong, China. Plant Biosyst, 148(1): 109–117

DOI

62
Xie W J, Zhao Y Y, Zhang Z D, Liu Q, Xia J B, Sun J K, Tian J Y, Sun T Q (2012). Shell sand properties and vegetative distribution on shell ridges of the Southwestern Coast of Bohai Bay. Environmental Earth Sciences, 67(5): 1357–1362

DOI

63
Xu Z, Jiang X, Chen Z, Wu D (2001). Study on the ant communities of the vertical band on east slope of the Gaoligongshan Mountains Nature Reserve. For Res, 14(2): 115–124

64
Yu J, Wang X, Ning K, Li Y, Wu H, Fu Y, Zhou D, Guan B, Lin Q (2012). Effects of salinity and water depth on germination of Phragmites australis in coastal wetland of the Yellow River Delta. Clean − Soil, Air. Water, 40(10): 1154–1158

65
Zeng L, Chen G Q, Wu Z, Li Z, Wu Y H, Ji P (2012). Flow distribution and environmental dispersivity in a tidal wetland channel of rectangular cross-section. Commun Nonlinear Sci Numer Simul, 17(11): 4192–4209

DOI

66
Zhang W T (2002). Statistical analysis of software SPSS11. Beijing: Beijing Hope Electronic Press, 2–14

Outlines

/