Improved annual forest cover maps in Oklahoma from analyses of PALSAR-2, Landsat, and LiDAR data sets during 2015–2021

Yuan YAO, Xiangming XIAO, Yuanwei QIN, Jie WANG, Chenchen ZHANG, Gregory S. NEWMAN, Li PAN, Cheng MENG, Baihong PAN, Chenglong YIN

Front. Earth Sci. ››

PDF(7880 KB)
Front. Earth Sci. All Journals
PDF(7880 KB)
Front. Earth Sci. ›› DOI: 10.1007/s11707-025-1151-4
RESEARCH ARTICLE

Improved annual forest cover maps in Oklahoma from analyses of PALSAR-2, Landsat, and LiDAR data sets during 2015–2021

Author information +
History +

Abstract

Accurate forest cover maps are the basis for estimating forest biomass and are crucial for climate regulation and biodiversity conservation, especially in sub-humid and semi-arid regions such as Oklahoma, USA. To date, there is very limited data and knowledge of the spatial pattern and temporal dynamics of forest cover in Oklahoma, and current forest cover maps have large uncertainties. In this study, multi-sensor datasets, including the Phased Arrayed L-band Synthetic Aperture Radar (PALSAR-2), Landsat, and spaceborne Light Detection and Ranging (LiDAR), were combined to generate annual forest cover maps for the years 2015 to 2021. Specifically, both PALSAR-derived HV, HH-HV, and HH/HV and Landsat-derived Normalized Difference Vegetation Index (NDVI) were used together to generate annual maps of forest cover and three forest types (evergreen, deciduous, and mixed forest) at 30-m spatial resolution for each year. The canopy height and canopy coverage samples from the Global Ecosystem Dynamics Investigation (GEDI) and the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) were used to assess forest cover maps. We also compared the spatial distribution and forested area of several forest products. Our results show that using the forest definition (canopy height > 5 m, canopy coverage > 10% over an area of 0.5 ha) of the Food and Agriculture Organization of the United Nations (FAO), the accuracy of resultant PALSAR/Landsat forest cover map for 2019 were 77.4% (GEDI) and 95.6% (ICESat-2). The estimated forested area (51,916 km2) was moderately higher (7.2%) than the forested area from the USDA Forest Inventory and Analysis (FIA) statistics dataset (48,202 km2) in 2017. Between 2016 and 2020, Oklahoma’s forested area increased slightly by 1.9%. The PALSAR/Landsat forest maps are more accurate in western Oklahoma compared to other satellite-based forest products. The resultant annual maps of forest cover and three different forest types over Oklahoma can be used to support statewide forest management and conservation.

Graphical abstract

Keywords

forest cover / evergreen forest / knowledge-based / phenology-based / land cover change

Cite this article

Download citation ▾
Yuan YAO, Xiangming XIAO, Yuanwei QIN, Jie WANG, Chenchen ZHANG, Gregory S. NEWMAN, Li PAN, Cheng MENG, Baihong PAN, Chenglong YIN. Improved annual forest cover maps in Oklahoma from analyses of PALSAR-2, Landsat, and LiDAR data sets during 2015–2021. Front. Earth Sci., https://doi.org/10.1007/s11707-025-1151-4
This is a preview of subscription content, contact us for subscripton.

References

[1]
Adhikari A, Masters R E, Mainali K P, Zou C B, Joshi O, Will R E (2021). Management and climate variability effects on understory productivity of forest and savanna ecosystems in Oklahoma, USA.Ecosphere, 12(6): e03576
CrossRef Google scholar
[2]
Ahmad A, Gilani H, Ahmad S R (2021). Forest aboveground biomass estimation and mapping through high-resolution optical satellite imagery—A literature review.Forests, 12(7): 914
CrossRef Google scholar
[3]
Chen B, Xiao X, Ye H, Ma J, Doughty R, Li X, Zhao B, Wu Z, Sun R, Dong J, Qin Y, Xie G (2018). Mapping forest and their spatial–temporal changes from 2007 to 2015 in tropical hainan island by integrating ALOS/ALOS-2 L-Band SAR and landsat optical images.IEEE J Sel Top Appl Earth Obs Remote Sens, 11(3): 852–867
CrossRef Google scholar
[4]
DiamondD D, Elliott L F (20152015. Oklahoma ecological systems mapping interpretive booklet: methods, short type descriptions, and summary results. Oklahoma Department of Wildlife Conservation, Norman
[5]
DooleyK (20172017. Forests of Oklahoma, 2015. Resource Update FS–126. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station
[6]
DubayahR, HoftonM, BlairJ, Armston J, TangH, LuthckeS (2021a2021a. GEDI L2A Elevation and Height Metrics Data Global Footprint Level V002.
[7]
DubayahR, TangH, ArmstonJ, Luthcke S, HoftonM, BlairJ (2021b2021b. GEDI L2B Canopy Cover and Vertical Profile Metrics Data Global Footprint Level V002.
[8]
Duncanson L, Neuenschwander A, Hancock S, Thomas N, Fatoyinbo T, Simard M, Silva C A, Armston J, Luthcke S B, Hofton M, Kellner J R, Dubayah R (2020). Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California.Remote Sens Environ, 242: 111779
CrossRef Google scholar
[9]
El Moussawi I, Ho Tong Minh D, Baghdadi N, Abdallah C, Jomaah J, Strauss O, Lavalle M, Ngo Y N (2019). Monitoring tropical forest structure using sar tomography at L- and P-band.Remote Sens (Basel), 11(16): 1934
CrossRef Google scholar
[10]
Felipe-Lucia M R, Soliveres S, Penone C, Fischer M, Ammer C, Boch S, Boeddinghaus R S, Bonkowski M, Buscot F, Fiore-Donno A M, Frank K, Goldmann K, Gossner M M, Hölzel N, Jochum M, Kandeler E, Klaus V H, Kleinebecker T, Leimer S, Manning P, Oelmann Y, Saiz H, Schall P, Schloter M, Schöning I, Schrumpf M, Solly E F, Stempfhuber B, Weisser W W, Wilcke W, Wubet T, Allan E (2020). Land-use intensity alters networks between biodiversity, ecosystem functions, and services.Proc Natl Acad Sci USA, 117(45): 28140–28149
CrossRef Google scholar
[11]
García P R, Scaccia L, Salvati L (2023). An accuracy assessment of three forest cover databases in Colombia.Environ Ecol Stat, 30(3): 443–475
CrossRef Google scholar
[12]
Gong P, Wang J, Yu L, Zhao Y, Zhao Y, Liang L, Niu Z, Huang X, Fu H, Liu S, Li C, Li X, Fu W, Liu C, Xu Y, Wang X, Cheng Q, Hu L, Yao W, Zhang H, Zhu P, Zhao Z, Zhang H, Zheng Y, Ji L, Zhang Y, Chen H, Yan A, Guo J, Yu L, Wang L, Liu X, Shi T, Zhu M, Chen Y, Yang G, Tang P, Xu B, Giri C, Clinton N, Zhu Z, Chen J, Chen J (2013). Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data.Int J Remote Sens, 34(7): 2607–2654
CrossRef Google scholar
[13]
Homer C, Dewitz J, Jin S, Xian G, Costello C, Danielson P, Gass L, Funk M, Wickham J, Stehman S, Auch R, Riitters K (2020). Conterminous United States land cover change patterns 2001–2016 from the 2016 national land cover database.ISPRS J Photogramm Remote Sens, 162: 184–199
CrossRef Google scholar
[14]
Hoover C M, Bush R, Palmer M, Treasure E (2020). Using forest inventory and analysis data to support national forest management: regional case studies.J For, 118(3): 313–323
CrossRef Google scholar
[15]
Kaur R, Joshi O, Will R E (2020). The ecological and economic determinants of eastern redcedar (Juniperus virginiana) encroachment in grassland and forested ecosystems: a case study from Oklahoma.J Environ Manage, 254: 109815
CrossRef Google scholar
[16]
Kulkarni S C, Rege P P (2020). Pixel level fusion techniques for SAR and optical images: a review.Inf Fusion, 59: 13–29
CrossRef Google scholar
[17]
Liu A, Cheng X, Chen Z (2021). Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals.Remote Sens Environ, 264: 112571
CrossRef Google scholar
[18]
Lu J, Huang C, Tao X, Gong W, Schleeweis K (2022). Annual forest disturbance intensity mapped using Landsat time series and field inventory data for the conterminous United States (1986–2015).Remote Sens Environ, 275: 113003
CrossRef Google scholar
[19]
Luo L, Wang X, Guo H, Lasaponara R, Zong X, Masini N, Wang G, Shi P, Khatteli H, Chen F, Tariq S, Shao J, Bachagha N, Yang R, Yao Y (2019). Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: a review of the century (1907–2017).Remote Sens Environ, 232: 111280
CrossRef Google scholar
[20]
Ma C, Qian Y, Li K, Dou X, Shen H, Tang H, Qiu S, Zhang L, Jia Y, Ou-Yang G (2023). Temperature and emissivity retrieval from hyperspectral thermal infrared data using dictionary-based sparse representation for emissivity.IEEE Trans Geosci Remote Sens, 61: 5002016
CrossRef Google scholar
[21]
Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, Jasinski M, Kwok R, Magruder L, Lubin D, Luthcke S, Morison J, Nelson R, Neuenschwander A, Palm S, Popescu S, Shum C K, Schutz B E, Smith B, Yang Y, Zwally J (2017). The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): science requirements, concept, and implementation.Remote Sens Environ, 190: 260–273
CrossRef Google scholar
[22]
Neuenschwander A, Pitts K (2019). The ATL08 land and vegetation product for the ICESat-2 Mission.Remote Sens Environ, 221: 247–259
CrossRef Google scholar
[23]
Patterson P L, Healey S P, Ståhl G, Saarela S, Holm S, Andersen H E, Dubayah R O, Duncanson L, Hancock S, Armston J, Kellner J R, Cohen W B, Yang Z (2019). Statistical properties of hybrid estimators proposed for GEDI—NASA’s global ecosystem dynamics investigation.Environ Res Lett, 14(6): 065007
CrossRef Google scholar
[24]
Potapov P, Li X, Hernandez-Serna A, Tyukavina A, Hansen M C, Kommareddy A, Pickens A, Turubanova S, Tang H, Silva C E, Armston J, Dubayah R, Blair J B, Hofton M (2021). Mapping global forest canopy height through integration of GEDI and Landsat data.Remote Sens Environ, 253: 112165
CrossRef Google scholar
[25]
Qin Y, Xiao X, Dong J, Zhang G, Roy P S, Joshi P K, Gilani H, Murthy M S R, Jin C, Wang J, Zhang Y, Chen B, Menarguez M A, Biradar C M, Bajgain R, Li X, Dai S, Hou Y, Xin F, Moore B III (2016a). Mapping forests in monsoon Asia with ALOS PALSAR 50-m mosaic images and MODIS imagery in 2010.Sci Rep, 6(1): 20880
CrossRef Google scholar
[26]
Qin Y, Xiao X, Dong J, Zhang G, Shimada M, Liu J, Li C, Kou W, Moore B III (2015). Forest cover maps of China in 2010 from multiple approaches and data sources: PALSAR, Landsat, MODIS, FRA, and NFI.ISPRS J Photogramm Remote Sens, 109: 1–16
CrossRef Google scholar
[27]
Qin Y, Xiao X, Dong J, Zhang Y, Wu X, Shimabukuro Y, Arai E, Biradar C, Wang J, Zou Z, Liu F, Shi Z, Doughty R, Moore B III (2019). Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017.Nat Sustain, 2(8): 764–772
CrossRef Google scholar
[28]
Qin Y, Xiao X, Dong J, Zhou Y, Wang J, Doughty R B, Chen Y, Zou Z, Moore B III (2017). Annual dynamics of forest areas in South America during 2007–2010 at 50-m spatial resolution.Remote Sens Environ, 201: 73–87
CrossRef Google scholar
[29]
Qin Y, Xiao X, Wang J, Dong J, Ewing K, Hoagland B, Hough D J, Fagin T D, Zou Z, Geissler G L, Xian G Z, Loveland T R (2016b). Mapping annual forest cover in sub-humid and semi-arid regions through analysis of Landsat and PALSAR Imagery.Remote Sens (Basel), 8(11): 933
CrossRef Google scholar
[30]
Qin Y, Xiao X, Wigneron J P, Ciais P, Canadell J G, Brandt M, Li X, Fan L, Wu X, Tang H, Dubayah R, Doughty R, Crowell S, Zheng B, Moore B III (2022). Large loss and rapid recovery of vegetation cover and aboveground biomass over forest areas in Australia during 2019–2020.Remote Sens Environ, 278: 113087
CrossRef Google scholar
[31]
Quegan S, Le Toan T, Yu J J, Ribbes F, Floury N (2000). Multitemporal ERS SAR analysis applied to forest mapping.IEEE Trans Geosci Remote Sens, 38(2): 741–753
CrossRef Google scholar
[32]
Reiche J, Hamunyela E, Verbesselt J, Hoekman D, Herold M (2018). Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2.Remote Sens Environ, 204: 147–161
CrossRef Google scholar
[33]
Sexton J O, Song X P, Feng M, Noojipady P, Anand A, Huang C, Kim D H, Collins K M, Channan S, DiMiceli C, Townshend J R (2013). Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error.Int J Digit Earth, 6(5): 427–448
CrossRef Google scholar
[34]
Shakya A, Biswas M, Pal M (2022). Fusion and classification of multi-temporal SAR and optical imagery using convolutional neural network.Int J Image Data Fusion, 13(2): 113–135
CrossRef Google scholar
[35]
Sheldon S, Xiao X, Biradar C (2012). Mapping evergreen forests in the Brazilian Amazon using MODIS and PALSAR 500-m mosaic imagery.ISPRS J Photogramm Remote Sens, 74: 34–40
CrossRef Google scholar
[36]
Shimada M, Itoh T, Motooka T, Watanabe M, Shiraishi T, Thapa R, Lucas R (2014). New global forest/non-forest maps from ALOS PALSAR data (2007–2010).Remote Sens Environ, 155: 13–31
CrossRef Google scholar
[37]
Stehman S V, Foody G M (2019). Key issues in rigorous accuracy assessment of land cover products.Remote Sens Environ, 231: 111199
CrossRef Google scholar
[38]
Tinkham W T, Mahoney P R, Hudak A T, Domke G M, Falkowski M J, Woodall C W, Smith A M S (2018). Applications of the United States forest inventory and analysis dataset: a review and future directions.Can J For Res, 48(11): 1251–1268
CrossRef Google scholar
[39]
Tran T V, de Beurs K M, Julian J P (2016). Monitoring forest disturbances in Southeast Oklahoma using Landsat and MODIS images.Int J Appl Earth Obs Geoinf, 44: 42–52
CrossRef Google scholar
[40]
Wang J, Xiao X, Qin Y, Dong J, Geissler G, Zhang G, Cejda N, Alikhani B, Doughty R B (2017). Mapping the dynamics of eastern redcedar encroachment into grasslands during 1984–2010 through PALSAR and time series Landsat images.Remote Sens Environ, 190: 233–246
CrossRef Google scholar
[41]
Wang J, Xiao X, Qin Y, Dong J, Zhang G, Yang X, Wu X, Biradar C, Hu Y (2024). Annual forest maps in the contiguous United States during 2015-2017 from analyses of PALSAR-2 and Landsat images.Earth System Science Data, 16(10): 4619–4639
CrossRef Google scholar
[42]
Wang J, Xiao X, Qin Y, Doughty R B, Dong J, Zou Z (2018). Characterizing the encroachment of juniper forests into sub-humid and semi-arid prairies from 1984 to 2010 using PALSAR and Landsat data.Remote Sens Environ, 205: 166–179
CrossRef Google scholar
[43]
Xiao X, Biradar C M, Czarnecki C, Alabi T, Keller M (2009). A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia.Remote Sens (Basel), 1(3): 355–374
CrossRef Google scholar
[44]
Xiao X, Dorovskoy P, Biradar C, Bridge E (2011). A library of georeferenced photos from the field.Eos (Wash DC), 92(49): 453–454
CrossRef Google scholar
[45]
Xu Y, Lu Z, Bürgmann R, Hensley S, Fielding E, Kim J (2023). P-band SAR for ground deformation surveying: advantages and challenges.Remote Sens Environ, 287: 113474
CrossRef Google scholar
[46]
Yang J, Will R, Zhai L, Zou C (2024). Future climate change shifts the ranges of major encroaching woody plant species in the southern great plains, USA.Earth’s Future, 12: e2024EF004520
CrossRef Google scholar
[47]
Yu Q, Ryan M G, Ji W, Prihodko L, Anchang J Y, Kahiu N, Nazir A, Dai J, Hanan N P (2024). Assessing canopy height measurements from ICESat-2 and GEDI orbiting LiDAR across six different biomes with G-LiHT LiDAR.Environ Res: Ecology, 3(2): 025001
CrossRef Google scholar
[48]
Zhang D, Wang H, Wang X, Lü Z (2020). Accuracy assessment of the global forest watch tree cover 2000 in China.Int J Appl Earth Obs Geoinf, 87: 102033
CrossRef Google scholar
[49]
Zhu X, Nie S, Wang C, Xi X, Lao J, Li D (2022). Consistency analysis of forest height retrievals between GEDI and ICESat-2.Remote Sens Environ, 281: 113244
CrossRef Google scholar
[50]
Zou C B, Qiao L, Wilcox B P (2016). Woodland expansion in central Oklahoma will significantly reduce streamflows – a modelling analysis.Ecohydrology, 9(5): 807–816
CrossRef Google scholar

Acknowledgments

This study was supported in part by research grants from the US National Science Foundation (OIA-1946093, OIA-1920946).

Electronic Supplementary

Material is available in the online version of this article at http://dx.doi.org/10.1007/s11707-025-1151-4 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(7880 KB)

Supplementary files

FES-25151-OF-YY_suppl_1 (26 KB)

33

Accesses

0

Citations

Detail

Sections
Recommended

/