
Assessing the air quality, public health, and equity implications of an Advanced Clean Trucks policy for Illinois
Victoria A. LANG, Sara F. CAMILLERI, Neda DEYLAMI, Maria H. HARRIS, Larissa KOEHLER, Brian URBASZEWSKI, Anastasia MONTGOMERY, Daniel E. HORTON
Assessing the air quality, public health, and equity implications of an Advanced Clean Trucks policy for Illinois
Policies designed to reduce transportation emissions are known to be co-beneficial due to reductions in planet-warming greenhouse gases like carbon dioxide (CO2) and health-harmful air pollutants, such as nitrogen dioxide (NO2). The growing recognition of persistent racial and ethnic disparities in air pollution exposure and associated health impacts has increased demand for policy interventions aimed at systematically reducing such inequities. Here, we use a regulatory-grade air quality model focused on the Chicago region to find that medium- and heavy-duty vehicle (MHDV) tailpipe emissions account for ~22% of the area’s ambient NO2 concentrations. Exposure to MHDV-tailpipe NO2 in our domain is associated with 1330 (95% confidence interval (CI): 330, 2000) annual premature deaths and 1580 (95% CI: −310, 3870) new cases of pediatric asthma, disproportionately affecting census tracts with higher percentages of residents of color. Given the inequitable impacts of MHDV NO2 exposure, we also use our model to assess the air quality, health, and equity outcomes if a policy scenario based on California’s Advanced Clean Trucks (ACT) regulation were instantaneously adopted in Illinois. We find that ACT adoption would lead to ~48% of on-road MHDVs having zero tailpipe emissions by 2050; an instantaneous transition to this policy would reduce annual mean population-weighted NO2 concentrations by 0.98 ppb (parts per billion) (−8.4%), resulting in reductions of 500 (95% CI: −120, −750) premature deaths and 600 (95% CI: 120, −1440) fewer new pediatric asthma cases annually – with the largest health benefits observed in neighborhoods with higher percentages of residents of color. Our study highlights the benefits of implementing policy interventions focused on zero-emission MHDVs to address air pollution exposure and health impact disparities.
zero-emission vehicles / transportation / air pollution / public health / environmental justice
Tab.1 Sensitivity simulations comparing baseline, 100% MHDV scenario, and ACT adoption in Illinois, highlighting modifications to emissions and spatial distribution of off-network idling (ONI) emissions |
Item | Scenario | ||
---|---|---|---|
Baseline | 100% MHDV | ACT Adoption in IL | |
Emission changes | No modifications | 100% of tailpipe emissions from MHDVs removed | Tailpipe emission reductions per class: Class 2b&3: 46.5% Buses: 65% Vocational: 62% Tractor-trailers: 35% |
Spatial distribution of ONI emissions | 75% of ONI MHDV emissions assigned to grid cells containing warehouses | Same as baseline | Same as baseline |
Fig.2 (a) Estimated percent of on-road zero-emission MHDVs and (b) total number of on-road zero-emission MHDVs in the Greater Chicago region as a result of modeled Advanced Clean Trucks policy adoption in Illinois beginning with model year 2027 and projected through 2050. The legend includes examples of vehicles within each class. |
Fig.3 WRF-CMAQ simulated change in annualized mean (August and October 2018, January and April 2019) NO2 concentrations for (a) baseline, (b) NO2 reduction when MHDV emissions are eliminated (100% zero-emission MHDV scenario minus baseline), (c) NO2 reduction under an Illinois Advanced Clean Trucks (ACT) policy scenario (ACT minus baseline), and (d) percent of MHDV attributable NO2 reduced by an ACT policy scenario within Illinois over the Greater Chicago region (Cook, DuPage, Kane, Kendall, Lake, McHenry, and Will Counties). |
Fig.4 WRF-CMAQ simulated change in annualized mean (August and October 2018, January and April 2019) MDA8 O3 concentrations for (a) baseline, (b) difference in MDA8 O3 between 100% zero-emission MHDV scenario and baseline (100% zero-emission MHDV - baseline), (c) difference in MDA8 O3 between Illinois Advanced Clean Trucks policy scenario and baseline (ACT - baseline) over the Greater Chicago region (Cook, DuPage, Kane, Kendall, Lake, McHenry, and Will Counties). |
Fig.5 WRF-CMAQ simulated annualized mean (August and October 2018, January and April 2019) volatile organic compounds (VOC) to NOx ratios for (a) baseline, (b) 100% zero-emission MHDV scenario and, (c) an Illinois Advance Clean Trucks policy scenario over the Greater Chicago region (Cook, DuPage, Kane, Kendall, Lake, McHenry, and Will Counties). |
Tab.2 Attributable annual premature deaths (per 100,000 for 30 years and older) from exposure to NO2 and MDA8 O3 concentrations and new cases of pediatric asthma due to NO2 exposure from (first row) MHDV-attributable pollutant concentrations, (second row) reductions in MHDV pollution concentrations as a result of an Illinois ACT policy adoption scenario, (third row) percent change in MHDV health impacts from ACT policy adoption scenario compared to baseline over the Greater Chicago region (Cook, DuPage, Kane, Kendall, Lake, McHenry, and Will Counties) |
Items | Attributable mortality NO2 | Attributable mortality MDA8 O3 | Pediatric asthma (New Cases) |
---|---|---|---|
MHDVs total contribution | 1330 (CI: 330, 2000) | −110 (CI: −50, −210) | 1580 (CI: 3870, 310) |
ACT policy reductions | −500 (CI: −120, −750) | +40 (CI: 22, 90) | −600 (CI: 120, −1440) |
Percent reduction | −37.6% | +36.3% | −38.0% |
[1] |
Achakulwisut P, Brauer M, Hystad P, Anenberg S C (2019). Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: estimates from global datasets.Lancet Planet Health, 3(4): e166–e178
CrossRef
Google scholar
|
[2] |
Anenberg S C, Miller J, Henze D K, Minjares R, Achakulwisut P (2019). The global burden of transportation tailpipe emissions on air pollution-related mortality in 2010 and 2015.Environ Res Lett, 14(9): 094012
CrossRef
Google scholar
|
[3] |
Anenberg S C, Mohegh A, Goldberg D L, Kerr G H, Brauer M, Burkart K, Hystad P, Larkin A, Wozniak S, Lamsal L (2022). Long-term trends in urban NO2 concentrations and associated paediatric asthma incidence: estimates from global datasets.Lancet Planet Health, 6(1): e49–e58
CrossRef
Google scholar
|
[4] |
Antonczak B, Thompson T M, DePaola M W, Rowangould G (2023). 2020 Near-roadway population census, traffic exposure and equity in the United States.Transp Res Part D Transp Environ, 125: 103965
CrossRef
Google scholar
|
[5] |
Apte J S, Messier K P, Gani S, Brauer M, Kirchstetter T W, Lunden M M, Marshall J D, Portier C J, Vermeulen R C H, Hamburg S P (2017). High-resolution air pollution mapping with Google street view cars: exploiting big data.Environ Sci Technol, 51(12): 6999–7008
CrossRef
Google scholar
|
[6] |
Ashok A, Barrett S R H (2016). Adjoint-based computation of U. S. nationwide ozone exposure isopleths.Atmos Environ, 133: 68–80
CrossRef
Google scholar
|
[7] |
Bickford E, Holloway T, Karambelas A, Johnston M, Adams T, Janssen M, Moberg C (2014). Emissions and air quality impacts of truck-to-rail freight modal shifts in the midwestern United States.Environ Sci Technol, 48(1): 446–454
CrossRef
Google scholar
|
[8] |
Byun D, Schere K L (2006). Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system.Appl Mech Rev, 59(2): 51–77
CrossRef
Google scholar
|
[9] |
Camilleri S F, Montgomery A, Visa M A, Schnell J L, Adelman Z E, Janssen M, Grubert E A, Anenberg S C, Horton D E (2023b). Air quality, health and equity implications of electrifying heavy-duty vehicles.Nat Sustain, 6(12): 1643–1653
CrossRef
Google scholar
|
[10] |
CamilleriS F, KerrG H, AnenbergS C, Horton D E (2023a). All-cause NO2 -attributable mortality burden and associated racial and ethnic disparities in the United States. Environ Sci Technol Lett, acs.estlett.3c00500
|
[11] |
CARB (2021). CARB passes “smog check” regulation for heavy duty trucks and buses. Available at California Air Resources Board website
|
[12] |
Center for Neighborhood Technology (2024). Chicago Truck Data Portal. Available at Track Count Data website
|
[13] |
Chambliss S E, Pinon C P R, Messier K P, LaFranchi B, Upperman C R, Lunden M M, Robinson A L, Marshall J D, Apte J S (2021). Local- and regional-scale racial and ethnic disparities in air pollution determined by long-term mobile monitoring.Proc Natl Acad Sci USA, 118(37): e2109249118
CrossRef
Google scholar
|
[14] |
Cidell J (2010). Concentration and decentralization: the new geography of freight distribution in US metropolitan areas.J Transp Geogr, 18(3): 363–371
CrossRef
Google scholar
|
[15] |
Clark L P, Harris M H, Apte J S, Marshall J D (2022). National and intraurban air pollution exposure disparity estimates in the United States: impact of data-aggregation spatial scale.Environ Sci Technol Lett, 9(9): 786–791
CrossRef
Google scholar
|
[16] |
Climate and Equitable Jobs Act (2021). Available at Illinois Government website
|
[17] |
CMAP (2017). Chicago Metropolitan Agency for Planning: Data: The Freight System. Available at Illinois Government website
|
[18] |
Das P K, Bhat M Y, Sajith S (2023). Life cycle assessment of electric vehicles: a systematic review of literature.Environ Sci Pollut Res Int, 31(1): 73–89
CrossRef
Google scholar
|
[19] |
Davidson K, Fann N, Zawacki M, Fulcher C, Baker K R (2020). The recent and future health burden of the U. S. mobile sector apportioned by source.Environ Res Lett, 15(7): 075009
CrossRef
Google scholar
|
[20] |
Demetillo M A G, Harkins C, McDonald B C, Chodrow P S, Sun K, Pusede S E (2021). Space‐based observational constraints on NO2 air pollution inequality from diesel traffic in major US cities.Geophysical Research Letters, 48: e2021GL094333
CrossRef
Google scholar
|
[21] |
Dennis R, Fox T, Fuentes M, Gilliland A, Hanna S, Hogrefe C, Irwin J, Rao S T, Scheffe R, Schere K, Steyn D, Venkatram A (2010). A framework for evaluating regional-scale numerical photochemical modeling systems.Environ Fluid Mech, 10(4): 471–489
CrossRef
Google scholar
|
[22] |
deSouza P N, Anenberg S, Fann N, McKenzie L M, Chan E, Roy A, Jimenez J L, Raich W, Roman H, Kinney P L (2024). Evaluating the sensitivity of mortality attributable to pollution to modeling Choices: a case study for Colorado.Environ Int, 185: 108416
CrossRef
Google scholar
|
[23] |
Environmental Defense Fund (2021). Medium- & Heavy-Duty Vehicles: Market structure, Environmental Impact, and EV Readin. Available at Environmental Defense Fund website
|
[24] |
Environmental Defense Fund (2024). Illinois Warehouse Boom: Tracing the growth of mega-warehouses and their health impacts. Available at WTTW website
|
[25] |
EythA, Vukovich J, FarkasC, GodfreyJ (2022). Technical Support Document (TSD): Preparation of Emissions Inventories for the 2016v2 North American Emissions Modeling Platform. US Environmental Protection Agency, Office of Air Quality Planning and Standards
|
[26] |
Gai Y, Minet L, Posen I D, Smargiassi A, Tétreault L F, Hatzopoulou M (2020). Health and climate benefits of electric vehicle deployment in the Greater Toronto and Hamilton Area.Environ Pollut, 265: 114983
CrossRef
Google scholar
|
[27] |
Goldberg D L, Tao M, Kerr G H, Ma S, Tong D Q, Fiore A M, Dickens A F, Adelman Z E, Anenberg S C (2024). Evaluating the spatial patterns of U. S. urban NOx emissions using TROPOMI NO2.Remote Sens Environ, 300: 113917
CrossRef
Google scholar
|
[28] |
He H, Liang X Z, Lei H, Wuebbles D J (2016). Future U. S. ozone projections dependence on regional emissions, climate change, long-range transport and differences in modeling design.Atmos Environ, 128: 124–133
CrossRef
Google scholar
|
[29] |
HEI (2022). Systematic Review and Meta-analysis of Selected Health Effects of Long-Term Exposure to Traffic-Related Air Pollution. Special Report 23
|
[30] |
Hsu C W, Fingerman K (2021). Public electric vehicle charger access disparities across race and income in California.Transp Policy, 100: 59–67
CrossRef
Google scholar
|
[31] |
Huangfu P, Atkinson R (2020). Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: a systematic review and meta-analysis.Environ Int, 144: 105998
CrossRef
Google scholar
|
[32] |
Isaksen I S A, Granier C, Myhre G, Berntsen T K, Dalsøren S B, Gauss M, Klimont Z, Benestad R, Bousquet P, Collins W, Cox T, Eyring V, Fowler D, Fuzzi S, Jöckel P, Laj P, Lohmann U, Maione M, Monks P, Prevot A S H, Raes F, Richter A, Rognerud B, Schulz M, Shindell D, Stevenson D S, Storelvmo T, Wang W C, van Weele M, Wild M, Wuebbles D (2009). Atmospheric composition change: climate–chemistry interactions.Atmos Environ, 43(33): 5138–5192
CrossRef
Google scholar
|
[33] |
JordahlK, den Bossche J V, FleischmannM, McBrideJ, Wasserman J, GerardJ, Badaracco A G, Snow A D, Tratner J, Perry M, Farmer C, Hjelle G A, Cochran M, Gillies S, Culbertson L, Bartos M, Caria G, Eubank N, Sangarshanan, Rey S, Maxalbert, Bilogur A, Ward B, Ren C, Arribas-Bel D, Flavin, Wasser L, Wolf L J, Journois M, Abonte (2021). geopandas/geopandas: v0.9.0.
|
[34] |
Kerr G H, Goldberg D L, Anenberg S C (2021). COVID-19 pandemic reveals persistent disparities in nitrogen dioxide pollution.Proc Natl Acad Sci USA, 118(30): e2022409118
CrossRef
Google scholar
|
[35] |
Kerr G H, Goldberg D L, Harris M H, Henderson B H, Hystad P, Roy A, Anenberg S C (2023). Ethnoracial disparities in nitrogen dioxide pollution in the United States: comparing data sets from satellites, models, and monitors.Environ Sci Technol, 57: 19532–19544
CrossRef
Google scholar
|
[36] |
Kerr G H, Meyer M, Goldberg D L, Miller J, Anenberg S C (2024a). Air pollution impacts from warehousing in the United States uncovered with satellite data.Nat Commun, 15(1): 6006
CrossRef
Google scholar
|
[37] |
Kerr G H, Van Donkelaar A, Martin R V, Brauer M, Bukart K, Wozniak S, Goldberg D L, Anenberg S C (2024b). Increasing racial and ethnic disparities in ambient air pollution-attributable morbidity and mortality in the United States.Environ Health Perspect, 132(3): 037002
CrossRef
Google scholar
|
[38] |
Khreis H, Kelly C, Tate J, Parslow R, Lucas K, Nieuwenhuijsen M (2017). Exposure to traffic-related air pollution and risk of development of childhood asthma: a systematic review and meta-analysis.Environ Int, 100: 1–31
CrossRef
Google scholar
|
[39] |
Koolik L H, Alvarado Á, Budahn A, Plummer L, Marshall J D, Apte J S (2024). PM2.5 exposure disparities persist despite strict vehicle emissions controls in California.Science Advances, 10(37): eadn8544
CrossRef
Google scholar
|
[40] |
LADCO (2022). Attainment Demonstration Modeling for the 2015 Ozone National Ambient Air Quality Standard Technical Support Document. Available at Lake Michigan Air Directors Consortium website
|
[41] |
Lane H M, Morello-Frosch R, Marshall J D, Apte J S (2022). Historical redlining is associated with present-day air pollution disparities in U. S. Cities.Environ Sci Technol Lett, 9(4): 345–350
CrossRef
Google scholar
|
[42] |
Lang V A, Camilleri S F, Thompson T M, Harris M H, Harkins C, Tong D Q, Janssen M, Adelman Z E, Horton D E (2025). Intercomparison of modeled urban-scale vehicle NOx and PM2.5 emissions−implications for equity assessments. Environmental Science & Technology
|
[43] |
Levy I, Mihele C, Lu G, Narayan J, Hilker N, Brook J R (2014). Elucidating multipollutant exposure across a complex metropolitan area by systematic deployment of a mobile laboratory.Atmos Chem Phys, 14(14): 7173–7193
CrossRef
Google scholar
|
[44] |
Li N, Chen J, Tsai I, He Q, Chi S, Lin Y, Fu T (2016). Potential impacts of electric vehicles on air quality in Taiwan. Science of The Total Environment, 566-567: 919-928
|
[45] |
Liang X, Zhang S, Wu Y, Xing J, He X, Zhang K M, Wang S, Hao J (2019). Air quality and health benefits from fleet electrification in China.Nat Sustain, 2(10): 962–971
CrossRef
Google scholar
|
[46] |
LippertJ (2024). Neighborhoods near congested I-55 freight corridors count truck traffic, push for changes. Available at Chicagotribune. Com website
|
[47] |
MansonS, Schroeder J, Van RiperD, KuglerT, Ruggles S (2023). IPUMS National Historical Geographic Information System: Version 17.0 [5-Year Data [2015–2019, Block Groups & Larger Areas]]
|
[48] |
Mohegh A, Goldberg D, Achakulwisut P, Anenberg S C (2021). Sensitivity of estimated NO2 -attributable pediatric asthma incidence to grid resolution and urbanicity.Environ Res Lett, 16(1): 014019
CrossRef
Google scholar
|
[49] |
Montgomery A, Daepp M I G, Abdin M I, Choudhury P, Malvar S, Counts S, Horton D E (2023a). Intraurban NO2 hotspot detection across multiple air quality products.Environ Res Lett, 18(10): 104010
CrossRef
Google scholar
|
[50] |
Montgomery A, Schnell J L, Adelman Z, Janssen M, Horton D E (2023b). Simulation of neighborhood‐scale air quality with two‐way coupled WRF‐CMAQ over Southern Lake Michigan‐Chicago Region.JGR Atmospheres, 128: e2022JD037942
CrossRef
Google scholar
|
[51] |
Mousavinezhad S, Choi Y, Khorshidian N, Ghahremanloo M, Momeni M (2024). Air quality and health co-benefits of vehicle electrification and emission controls in the most populated United States urban hubs: insights from New York, Los Angeles, Chicago, and Houston.Sci Total Environ, 912: 169577
CrossRef
Google scholar
|
[52] |
Murray C J L, Aravkin A Y, Zheng P, Abbafati C, Abbas K M, Abbasi-Kangevari M, Abd-Allah F, Abdelalim A, Abdollahi M, Abdollahpour I, Abegaz K H, Abolhassani H, Aboyans V, Abreu L G, Abrigo M R M, Abualhasan A, Abu-Raddad L J, Abushouk A I, Adabi M, Adekanmbi V, Adeoye A M, Adetokunboh O O, Adham D, Advani S M, Agarwal G, Aghamir S M K, Agrawal A, Ahmad T, Ahmadi K, Ahmadi M, Ahmadieh H, Ahmed M B, Akalu T Y, Akinyemi R O, Akinyemiju T, Akombi B, Akunna C J, Alahdab F, Al-Aly Z, Alam K, Alam S, Alam T, Alanezi F M, Alanzi T M, Alemu B, Alhabib K F, Ali M, Ali S, Alicandro G, Alinia C, Alipour V, Alizade H, Aljunid S M, Alla F, Allebeck P, Almasi- Hashiani A, Al-Mekhlafi H M, Alonso J, Altirkawi K A, Amini- Rarani M, Amiri F, Amugsi D A, Ancuceanu R, Anderlini D, Anderson J A, Andrei C L, Andrei T, Angus C, Anjomshoa M, Ansari F, Ansari-Moghaddam A, Antonazzo I C, Antonio C A T, Antony C M, Antriyandarti E, Anvari D, Anwer R, Appiah S C Y, Arabloo J, Arab-Zozani M, Ariani F, Armoon B, Ärnlöv J, Arzani A, Asadi-Aliabadi M, Asadi-Pooya A A, Ashbaugh C, Assmus M, Atafar Z, Atnafu D D, Atout M M W, Ausloos F, Ausloos M, Ayala Quintanilla B P, Ayano G, Ayanore M A, Azari S, Azarian G, Azene Z N, Badawi A, Badiye A D, Bahrami M A, Bakhshaei M H, Bakhtiari A, Bakkannavar S M, Baldasseroni A, Ball K, Ballew S H, Balzi D, Banach M, Banerjee S K, Bante A B, Baraki A G, Barker-Collo S L, Bärnighausen T W, Barrero L H, Barthelemy C M, Barua L, Basu S, Baune B T, Bayati M, Becker J S, Bedi N, Beghi E, Béjot Y, Bell M L, Bennitt F B, Bensenor I M, Berhe K, Berman A E, Bhagavathula A S, Bhageerathy R, Bhala N, Bhandari D, Bhattacharyya K, Bhutta Z A, Bijani A, Bikbov B, Bin Sayeed M S, Biondi A, Birihane B M, Bisignano C, Biswas R K, Bitew H, Bohlouli S, Bohluli M, Boon-Dooley A S, Borges G, Borzì A M, Borzouei S, Bosetti C, Boufous S, Braithwaite D, Breitborde N J K, Breitner S, Brenner H, Briant P S, Briko A N, Briko N I, Britton G B, Bryazka D, Bumgarner B R, Burkart K, Burnett R T, Burugina Nagaraja S, Butt Z A, Caetano dos Santos F L, Cahill L E, Cámera L L A A, Campos-Nonato I R, Cárdenas R, Carreras G, Carrero J J, Carvalho F, Castaldelli-Maia J M, Castañeda-Orjuela C A, Castelpietra G, Castro F, Causey K, Cederroth C R, Cercy K M, Cerin E, Chandan J S, Chang K L, Charlson F J, Chattu V K, Chaturvedi S, Cherbuin N, Chimed-Ochir O, Cho D Y, Choi J Y J, Christensen H, Chu D T, Chung M T, Chung S C, Cicuttini F M, Ciobanu L G, Cirillo M, Classen T K D, Cohen A J, Compton K, Cooper O R, Costa V M, Cousin E, Cowden R G, Cross D H, Cruz J A, Dahlawi S M A, Damasceno A A M, Damiani G, Dandona L, Dandona R, Dangel W J, Danielsson A K, Dargan P I, Darwesh A M, Daryani A, Das J K, Das Gupta R, das Neves J, Dávila- Cervantes C A, Davitoiu D V, De Leo D, Degenhardt L, DeLang M, Dellavalle R P, Demeke F M, Demoz G T, Demsie D G, Denova-Gutiérrez E, Dervenis N, Dhungana G P, Dianatinasab M, Dias da Silva D, Diaz D, Dibaji Forooshani Z S, Djalalinia S, Do H T, Dokova K, Dorostkar F, Doshmangir L, Driscoll T R, Duncan B B, Duraes A R, Eagan A W, Edvardsson D, El Nahas N, El Sayed I, El Tantawi M, Elbarazi I, Elgendy I Y, El-Jaafary S I, Elyazar I R F, Emmons-Bell S, Erskine H E, Eskandarieh S, Esmaeilnejad S, Esteghamati A, Estep K, Etemadi A, Etisso A E, Fanzo J, Farahmand M, Fareed M, Faridnia R, Farioli A, Faro A, Faruque M, Farzadfar F, Fattahi N, Fazlzadeh M, Feigin V L, Feldman R, Fereshtehnejad S M, Fernandes E, Ferrara G, Ferrari A J, Ferreira M L, Filip I, Fischer F, Fisher J L, Flor L S, Foigt N A, Folayan M O, Fomenkov A A, Force L M, Foroutan M, Franklin R C, Freitas M, Fu W, Fukumoto T, Furtado J M, Gad M M, Gakidou E, Gallus S, Garcia-Basteiro A L, Gardner W M, Geberemariyam B S, Gebreslassie A A A A, Geremew A, Gershberg Hayoon A, Gething P W, Ghadimi M, Ghadiri K, Ghaffarifar F, Ghafourifard M, Ghamari F, Ghashghaee A, Ghiasvand H, Ghith N, Gholamian A, Ghosh R, Gill P S, Ginindza T G G, Giussani G, Gnedovskaya E V, Goharinezhad S, Gopalani S V, Gorini G, Goudarzi H, Goulart A C, Greaves F, Grivna M, Grosso G, Gubari M I M, Gugnani H C, Guimarães R A, Guled R A, Guo G, Guo Y, Gupta R, Gupta T, Haddock B, Hafezi-Nejad N, Hafiz A, Haj-Mirzaian A, Haj- Mirzaian A, Hall B J, Halvaei I, Hamadeh R R, Hamidi S, Hammer M S, Hankey G J, Haririan H, Haro J M, Hasaballah A I, Hasan M M, Hasanpoor E, Hashi A, Hassanipour S, Hassankhani H, Havmoeller R J, Hay S I, Hayat K, Heidari G, Heidari-Soureshjani R, Henrikson H J, Herbert M E, Herteliu C, Heydarpour F, Hird T R, Hoek H W, Holla R, Hoogar P, Hosgood H D, Hossain N, Hosseini M, Hosseinzadeh M, Hostiuc M, Hostiuc S, Househ M, Hsairi M, Hsieh V C, Hu G, Hu K, Huda T M, Humayun A, Huynh C K, Hwang B F, Iannucci V C, Ibitoye S E, Ikeda N, Ikuta K S, Ilesanmi O S, Ilic I M, Ilic M D, Inbaraj L R, Ippolito H, Iqbal U, Irvani S S N, Irvine C M S, Islam M M, Islam S M S, Iso H, Ivers R Q, Iwu C C D, Iwu C J, Iyamu I O, Jaafari J, Jacobsen K H, Jafari H, Jafarinia M, Jahani M A, Jakovljevic M, Jalilian F, James S L, Janjani H, Javaheri T, Javidnia J, Jeemon P, Jenabi E, Jha R P, Jha V, Ji J S, Johansson L, John O, John-Akinola Y O, Johnson C O, Jonas J B, Joukar F, Jozwiak J J, Jürisson M, Kabir A, Kabir Z, Kalani H, Kalani R, Kalankesh L R, Kalhor R, Kanchan T, Kapoor N, Karami Matin B, Karch A, Karim M A, Kassa G M, Katikireddi S V, Kayode G A, Kazemi Karyani A, Keiyoro P N, Keller C, Kemmer L, Kendrick P J, Khalid N, Khammarnia M, Khan E A, Khan M, Khatab K, Khater M M, Khatib M N, Khayamzadeh M, Khazaei S, Kieling C, Kim Y J, Kimokoti R W, Kisa A, Kisa S, Kivimäki M, Knibbs L D, Knudsen A K S, Kocarnik J M, Kochhar S, Kopec J A, Korshunov V A, Koul P A, Koyanagi A, Kraemer M U G, Krishan K, Krohn K J, Kromhout H, Kuate Defo B, Kumar G A, Kumar V, Kurmi O P, Kusuma D, La Vecchia C, Lacey B, Lal D K, Lalloo R, Lallukka T, Lami F H, Landires I, Lang J J, Langan S M, Larsson A O, Lasrado S, Lauriola P, Lazarus J V, Lee P H, Lee S W H, LeGrand K E, Leigh J, Leonardi M, Lescinsky H, Leung J, Levi M, Li S, Lim L L, Linn S, Liu S, Liu S, Liu Y, Lo J, Lopez A D, Lopez J C F, Lopukhov P D, Lorkowski S, Lotufo P A, Lu A, Lugo A, Maddison E R, Mahasha P W, Mahdavi M M, Mahmoudi M, Majeed A, Maleki A, Maleki S, Malekzadeh R, Malta D C, Mamun A A, Manda A L, Manguerra H, Mansour-Ghanaei F, Mansouri B, Mansournia M A, Mantilla Herrera A M, Maravilla J C, Marks A, Martin R V, Martini S, Martins-Melo F R, Masaka A, Masoumi S Z, Mathur M R, Matsushita K, Maulik P K, McAlinden C, McGrath J J, McKee M, Mehndiratta M M, Mehri F, Mehta K M, Memish Z A, Mendoza W, Menezes R G, Mengesha E W, Mereke A, Mereta S T, Meretoja A, Meretoja T J, Mestrovic T, Miazgowski B, Miazgowski T, Michalek I M, Miller T R, Mills E J, Mini G K, Miri M, Mirica A, Mirrakhimov E M, Mirzaei H, Mirzaei M, Mirzaei R, Mirzaei-Alavijeh M, Misganaw A T, Mithra P, Moazen B, Mohammad D K, Mohammad Y, Mohammad Gholi Mezerji N, Mohammadian-Hafshejani A, Mohammadifard N, Mohammadpourhodki R, Mohammed A S, Mohammed H, Mohammed J A, Mohammed S, Mokdad A H, Molokhia M, Monasta L, Mooney M D, Moradi G, Moradi M, Moradi-Lakeh M, Moradzadeh R, Moraga P, Morawska L, Morgado-da-Costa J, Morrison S D, Mosapour A, Mosser J F, Mouodi S, Mousavi S M, Mousavi Khaneghah A, Mueller U O, Mukhopadhyay S, Mullany E C, Musa K I, Muthupandian S, Nabhan A F, Naderi M, Nagarajan A J, Nagel G, Naghavi M, Naghshtabrizi B, Naimzada M D, Najafi F, Nangia V, Nansseu J R, Naserbakht M, Nayak V C, Negoi I, Ngunjiri J W, Nguyen C T, Nguyen H L T, Nguyen M, Nigatu Y T, Nikbakhsh R, Nixon M R, Nnaji C A, Nomura S, Norrving B, Noubiap J J, Nowak C, Nunez-Samudio V, Oţoiu A, Oancea B, Odell C M, Ogbo F A, Oh I H, Okunga E W, Oladnabi M, Olagunju A T, Olusanya B O, Olusanya J O, Omer M O, Ong K L, Onwujekwe O E, Orpana H M, Ortiz A, Osarenotor O, Osei F B, Ostroff S M, Otstavnov N, Otstavnov S S, Øverland S, Owolabi M O, P A M, Padubidri J R, Palladino R, Panda-Jonas S, Pandey A, Parry C D H, Pasovic M, Pasupula D K, Patel S K, Pathak M, Patten S B, Patton G C, Pazoki Toroudi H, Peden A E, Pennini A, Pepito V C F, Peprah E K, Pereira D M, Pesudovs K, Pham H Q, Phillips M R, Piccinelli C, Pilz T M, Piradov M A, Pirsaheb M, Plass D, Polinder S, Polkinghorne K R, Pond C D, Postma M J, Pourjafar H, Pourmalek F, Poznańska A, Prada S I, Prakash V, Pribadi D R A, Pupillo E, Quazi Syed Z, Rabiee M, Rabiee N, Radfar A, Rafiee A, Raggi A, Rahman M A, Rajabpour-Sanati A, Rajati F, Rakovac I, Ram P, Ramezanzadeh K, Ranabhat C L, Rao P C, Rao S J, Rashedi V, Rathi P, Rawaf D L, Rawaf S, Rawal L, Rawassizadeh R, Rawat R, Razo C, Redford S B, Reiner R C Jr, Reitsma M B, Remuzzi G, Renjith V, Renzaho A M N, Resnikoff S, Rezaei N, Rezaei N, Rezapour A, Rhinehart P A, Riahi S M, Ribeiro D C, Ribeiro D, Rickard J, Rivera J A, Roberts N L S, Rodríguez-Ramírez S, Roever L, Ronfani L, Room R, Roshandel G, Roth G A, Rothenbacher D, Rubagotti E, Rwegerera G M, Sabour S, Sachdev P S, Saddik B, Sadeghi E, Sadeghi M, Saeedi R, Saeedi Moghaddam S, Safari Y, Safi S, Safiri S, Sagar R, Sahebkar A, Sajadi S M, Salam N, Salamati P, Salem H, Salem M R R, Salimzadeh H, Salman O M, Salomon J A, Samad Z, Samadi Kafil H, Sambala E Z, Samy A M, Sanabria J, Sánchez-Pimienta T G, Santomauro D F, Santos I S, Santos J V, Santric-Milicevic M M, Saraswathy S Y I, Sarmiento-Suárez R, Sarrafzadegan N, Sartorius B, Sarveazad A, Sathian B, Sathish T, Sattin D, Saxena S, Schaeffer L E, Schiavolin S, Schlaich M P, Schmidt M I, Schutte A E, Schwebel D C, Schwendicke F, Senbeta A M, Senthilkumaran S, Sepanlou S G, Serdar B, Serre M L, Shadid J, Shafaat O, Shahabi S, Shaheen A A, Shaikh M A, Shalash A S, Shams-Beyranvand M, Shamsizadeh M, Sharafi K, Sheikh A, Sheikhtaheri A, Shibuya K, Shield K D, Shigematsu M, Shin J I, Shin M J, Shiri R, Shirkoohi R, Shuval K, Siabani S, Sierpinski R, Sigfusdottir I D, Sigurvinsdottir R, Silva J P, Simpson K E, Singh J A, Singh P, Skiadaresi E, Skou S T, Skryabin V Y, Smith E U R, Soheili A, Soltani S, Soofi M, Sorensen R J D, Soriano J B, Sorrie M B, Soshnikov S, Soyiri I N, Spencer C N, Spotin A, Sreeramareddy C T, Srinivasan V, Stanaway J D, Stein C, Stein D J, Steiner C, Stockfelt L, Stokes M A, Straif K, Stubbs J L, Sufiyan M B, Suleria H A R, Suliankatchi Abdulkader R, Sulo G, Sultan I, Szumowski Ł, Tabarés-Seisdedos R, Tabb K M, Tabuchi T, Taherkhani A, Tajdini M, Takahashi K, Takala J S, Tamiru A T, Taveira N, Tehrani- Banihashemi A, Temsah M H, Tesema G A, Tessema Z T, Thurston G D, Titova M V, Tohidinik H R, Tonelli M, Topor-Madry R, Topouzis F, Torre A E, Touvier M, Tovani-Palone M R R, Tran B X, Travillian R, Tsatsakis A, Tudor Car L, Tyrovolas S, Uddin R, Umeokonkwo C D, Unnikrishnan B, Upadhyay E, Vacante M, Valdez P R, van Donkelaar A, Vasankari T J, Vasseghian Y, Veisani Y, Venketasubramanian N, Violante F S, Vlassov V, Vollset S E, Vos T, Vukovic R, Waheed Y, Wallin M T, Wang Y, Wang Y P, Watson A, Wei J, Wei M Y W, Weintraub R G, Weiss J, Werdecker A, West J J, Westerman R, Whisnant J L, Whiteford H A, Wiens K E, Wolfe C D A, Wozniak S S, Wu A M, Wu J, Wulf Hanson S, Xu G, Xu R, Yadgir S, Yahyazadeh Jabbari S H, Yamagishi K, Yaminfirooz M, Yano Y, Yaya S, Yazdi-Feyzabadi V, Yeheyis T Y, Yilgwan C S, Yilma M T, Yip P, Yonemoto N, Younis M Z, Younker T P, Yousefi B, Yousefi Z, Yousefinezhadi T, Yousuf A Y, Yu C, Yusefzadeh H, Zahirian Moghadam T, Zamani M, Zamanian M, Zandian H, Zastrozhin M S, Zhang Y, Zhang Z J, Zhao J T, Zhao X J G, Zhao Y, Zhou M, Ziapour A, Zimsen S R M, Brauer M, Afshin A, Lim S S (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 396(10258): 1223–1249
CrossRef
Google scholar
|
[53] |
Pan S, Roy A, Choi Y, Eslami E, Thomas S, Jiang X, Gao H O (2019). Potential impacts of electric vehicles on air quality and health endpoints in the Greater Houston Area in 2040.Atmos Environ, 207: 38–51
CrossRef
Google scholar
|
[54] |
Peng L, Liu F, Zhou M, Li M, Zhang Q, Mauzerall D L (2021). Alternative-energy-vehicles deployment delivers climate, air quality, and health co-benefits when coupled with decarbonizing power generation in China.One Earth, 4(8): 1127–1140
CrossRef
Google scholar
|
[55] |
Peters D R, Schnell J L, Kinney P L, Naik V, Horton D E (2020). Public health and climate benefits and trade-offs of U. S. vehicle electrification.GeoHealth, 4: e2020GH000275
CrossRef
Google scholar
|
[56] |
Polonik P, Ricke K, Reese S, Burney J (2023). Air quality equity in US climate policy.Proc Natl Acad Sci USA, 120(26): e2217124120
CrossRef
Google scholar
|
[57] |
RaichW, FantC, JacksonM, Roman H (2020). Memorandum Supporting Near-Source Health Benefits Analyses Using Fine-Scale Incidence Rates. Industrial Economics, Inc.
|
[58] |
Rennert K, Errickson F, Prest B C, Rennels L, Newell R G, Pizer W, Kingdon C, Wingenroth J, Cooke R, Parthum B, Smith D, Cromar K, Diaz D, Moore F C, Müller U K, Plevin R J, Raftery A E, Ševčíková H, Sheets H, Stock J H, Tan T, Watson M, Wong T E, Anthoff D (2022). Comprehensive evidence implies a higher social cost of CO2.Nature, 610(7933): 687–692
CrossRef
Google scholar
|
[59] |
RoboE, Seamonds D, FreemanM, SahaA, MacNair D (2022). Illinois Clean Trucks Program. Available at NRDC website
|
[60] |
Schnell J L, Naik V, Horowitz L W, Paulot F, Ginoux P, Zhao M, Horton D E (2019). Air quality impacts from the electrification of light-duty passenger vehicles in the United States.Atmos Environ, 208: 95–102
CrossRef
Google scholar
|
[61] |
Schnell J L, Peters D R, Wong D C, Lu X, Guo H, Zhang H, Kinney P L, Horton D E (2021). Potential for electric vehicle adoption to mitigate extreme air quality events in China.Earths Futur, 9(2): e2020EF001788
CrossRef
Google scholar
|
[62] |
SeinfeldJ H, PandisS N (2016). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York: John Wiley & Sons
|
[63] |
Shindell D, Ru M, Zhang Y, Seltzer K, Faluvegi G, Nazarenko L, Schmidt G A, Parsons L, Challapalli A, Yang L, Glick A (2021). Temporal and spatial distribution of health, labor, and crop benefits of climate change mitigation in the United States.Proc Natl Acad Sci USA, 118(46): e2104061118
CrossRef
Google scholar
|
[64] |
SkamarockW C, KlempJ B, DudhiaJ, Gill D O, BarkerD M, DudaM G, Huang X Y, Wang W, Powers J G (2008). A Description of the Advanced Research WRF Version 3. doi: 10.5065/D68S4MVH
|
[65] |
Skipper T N, Lawal A S, Hu Y, Russell A G (2023). Air quality impacts of electric vehicle adoption in California.Atmos Environ, 294: 119492
CrossRef
Google scholar
|
[66] |
Southerland V A, Anenberg S C, Harris M, Apte J, Hystad P, Van Donkelaar A, Martin R V, Beyers M, Roy A (2021). Assessing the distribution of air pollution health risks within cities: a neighborhood-scale analysis leveraging high-resolution data sets in the bay area, California.Environ Health Perspect, 129(3): 037006
CrossRef
Google scholar
|
[67] |
The White House (2023). Clean Energy Tax Provisions in the Inflation Reduction Act. Available at Whitehouse website
|
[68] |
Thind M P S, Tessum C W, Marshall J D (2023). Environmental health, racial/ethnic health disparity, and climate impacts of inter-regional freight transport in the United States.Environ Sci Technol, 57(2): 884–895
CrossRef
Google scholar
|
[69] |
Torbatian S, Saleh M, Xu J, Minet L, Gamage S M, Yazgi D, Yamanouchi S, Roorda M J, Hatzopoulou M (2024). Societal co-benefits of zero-emission vehicles in the freight industry.Environ Sci Technol, 58(18): 7814–7825
CrossRef
Google scholar
|
[70] |
Turner M C, Jerrett M, Pope C A III, Krewski D, Gapstur S M, Diver W R, Beckerman B S, Marshall J D, Su J, Crouse D L, Burnett R T (2016). Long-term ozone exposure and mortality in a large prospective study.Am J Respir Crit Care Med, 193(10): 1134–1142
CrossRef
Google scholar
|
[71] |
U.S. Environmental Protection Agency (2017). 2017 National Emissions Inventory (NEI) Data. Available at United States Environmental Protection Agency website
|
[72] |
U.S. Environmental Protection Agency (2018). Review of the Primary National Ambient Air Quality Standards for Oxides of Nitrogen. Available at Federal Register website
|
[73] |
U.S. Environmental Protection Agency (2021a). EPA Announces the “Clean Trucks Plan”. Available at United States Environmental Protection Agency website
|
[74] |
U.S. Environmental Protection Agency (2021b). Overview of EPA’s MOtor Vehicle Emission Simulator (MOVES3). Available at United States Environmental Protection Agency website
|
[75] |
Visa M A, Camilleri S F, Montgomery A, Schnell J L, Janssen M, Adelman Z E, Anenberg S C, Grubert E A, Horton D E (2023). Neighborhood-scale air quality, public health, and equity implications of multi-modal vehicle electrification.Environ Res: Infrastruct Sustain, 3(3): 035007
CrossRef
Google scholar
|
[76] |
Viscusi W K, Masterman C J (2017). Income elasticities and global values of a statistical life.J Benefit Cost Anal, 8(2): 226–250
CrossRef
Google scholar
|
[77] |
Wang W, Li X, Cheng Y, Parrish D D, Ni R, Tan Z, Liu Y, Lu S, Wu Y, Chen S, Lu K, Hu M, Zeng L, Shao M, Huang C, Tian X, Leung K M, Chen L, Fan M, Zhang Q, Rohrer F, Wahner A, Pöschl U, Su H, Zhang Y (2024). Ozone pollution mitigation strategy informed by long-term trends of atmospheric oxidation capacity.Nat Geosci, 17(1): 20–25
CrossRef
Google scholar
|
[78] |
Wang Y, Apte J S, Hill J D, Ivey C E, Johnson D, Min E, Morello-Frosch R, Patterson R, Robinson A L, Tessum C W, Marshall J D (2023). Air quality policy should quantify effects on disparities.Science, 381(6655): 272–274
CrossRef
Google scholar
|
[79] |
Wolff G T, Kahlbaum D F, Heuss J M (2013). The vanishing ozone weekday/weekend effect.J Air Waste Manag Assoc, 63(3): 292–299
CrossRef
Google scholar
|
[80] |
Wong D C, Pleim J, Mathur R, Binkowski F, Otte T, Gilliam R, Pouliot G, Xiu A, Young J O, Kang D (2012). WRF-CMAQ two-way coupled system with aerosol feedback: software development and preliminary results.Geosci Model Dev, 5(2): 299–312
CrossRef
Google scholar
|
[81] |
World Health Organization (2021). WHO global air quality guidelines. Available at WHO IRIS website
|
[82] |
WWJ (2023). For Good Jobs and Clean Air. Available at Warehouse Workers for Justice website
|
[83] |
Yu Q, He B Y, Ma J, Zhu Y (2023). California’s zero-emission vehicle adoption brings air quality benefits yet equity gaps persist.Nat Commun, 14(1): 7798
CrossRef
Google scholar
|
[84] |
ZhangH, ChenG, HuJ, ChenS H, WiedinmyerC, Kleeman M, YingQ (2014). Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States. Sci Total Environ, 473–474: 275–285
|
/
〈 |
|
〉 |