Interannual variability and trends of gross primary production and transpiration in savannas and grasslands from 2000 to 2021

Cheng MENG, Xiangming XIAO, Li PAN, Baihong PAN, Russell L. SCOTT, Pradeep WAGLE, Chenchen ZHANG, Yuan YAO, Yuanwei QIN

Front. Earth Sci. ››

PDF(8862 KB)
Front. Earth Sci. All Journals
PDF(8862 KB)
Front. Earth Sci. ›› DOI: 10.1007/s11707-024-1136-8
RESEARCH ARTICLE

Interannual variability and trends of gross primary production and transpiration in savannas and grasslands from 2000 to 2021

Author information +
History +

Abstract

Carbon and water fluxes of savannas and grasslands have large seasonal dynamics and inter-annual variation. In this study, we selected five savanna and grassland sites, each of them having 10+ years (11−21 years) of eddy covariance (EC) data, and a total of 85 site-years at these five sites which offers a unique opportunity for data analyses and model evaluation. We ran a long-term simulation (2000−2021) of the vegetation photosynthesis model (VPM, v3.0) and vegetation transpiration model (VTM, v2.0) to investigate the seasonal dynamics, interannual variation, and decadal trends of modeled gross primary production (GPPVPM) and transpiration (TVTM) at these sites. The seasonal dynamics of daily GPPVPM and TVTM track well with the seasonal dynamics of EC-based GPP (GPPEC, R2: 0.76−0.93) and evapotranspiration (ETEC, R2: 0.69−0.92). The inter-annual variation of annual GPPVPM tracked well that of annual GPPEC, with the linear regression slopes for GPPEC versus GPPVPM-EC ranging from 0.89 to 1.11. The simulation results of GPPVPM and TVTM using two different climate data sets (in situ climate data and European Center for Medium-Range Weather Forecasts Reanalysis v5 data set (ERA5)) were similar, suggesting that ERA5 data can be used for VPM/VTM simulations at large spatial scales. From 2000 to 2021, annual GPPVPM and TVTM had no significant inter-annual trends at one savanna and three grassland sites but increased significantly at one savanna site. The results demonstrate the potential of using VPM (v3.0) and VTM (v2.0) to predict the seasonal dynamics and inter-annual variation of GPP and T in savannas and grasslands.

Graphical abstract

Keywords

vegetation photosynthesis model / vegetation transpiration model / ERA5 / MODIS / carbon fluxes

Cite this article

Download citation ▾
Cheng MENG, Xiangming XIAO, Li PAN, Baihong PAN, Russell L. SCOTT, Pradeep WAGLE, Chenchen ZHANG, Yuan YAO, Yuanwei QIN. Interannual variability and trends of gross primary production and transpiration in savannas and grasslands from 2000 to 2021. Front. Earth Sci., https://doi.org/10.1007/s11707-024-1136-8
This is a preview of subscription content, contact us for subscripton.

References

[1]
Alfieri J G, Xiao X, Niyogi D, Pielke R A Sr, Chen F, LeMone M A (2009). Satellite-based modeling of transpiration from the grasslands in the Southern Great Plains, USA.Global Planet Change, 67(1−2): 78–86
CrossRef Google scholar
[2]
Baldocchi D (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere – The state and future of the eddy covariance method.Glob Change Biol, 20(12): 3600–3609
CrossRef Google scholar
[3]
Baldocchi D, Ma S, Verfaillie J (2021). On the inter- and intra-annual variability of ecosystem evapotranspiration and water use efficiency of an oak savanna and annual grassland subjected to booms and busts in rainfall.Glob Change Biol, 27(2): 359–375
CrossRef Google scholar
[4]
Biederman J A, Scott R L, Bell T W, Bowling D R, Dore S, Garatuza-Payan J, Kolb T E, Krishnan P, Krofcheck D J, Litvak M E, Maurer G E, Meyers T P, Oechel W C, Papuga S A, Ponce-Campos G E, Rodriguez J C, Smith W K, Vargas R, Watts C J, Yepez E A, Goulden M L (2017). CO2 exchange and evapotranspiration across dryland ecosystems of southwestern North America.Glob Change Biol, 23(10): 4204–4221
CrossRef Google scholar
[5]
Chang Q, Xiao X, Doughty R, Wu X, Jiao W, Qin Y (2021). Assessing variability of optimum air temperature for photosynthesis across site-years, sites and biomes and their effects on photosynthesis estimation.Agric For Meteorol, 298–299: 108277
CrossRef Google scholar
[6]
Chang Q, Xiao X, Wu X, Doughty R, Jiao W, Bajgain R, Qin Y, Wang J (2020). Estimating site-specific optimum air temperature and assessing its effect on the photosynthesis of grasslands in mid- to high-latitudes.Environ Res Lett, 15(3): 034064
CrossRef Google scholar
[7]
Cooley S S, Fisher J B, Goldsmith G R (2022). Convergence in water use efficiency within plant functional types across contrasting climates.Nat Plants, 8(4): 341–345
CrossRef Google scholar
[8]
Dong J, Xiao X, Wagle P, Zhang G, Zhou Y, Jin C, Torn M S, Meyers T P, Suyker A E, Wang J, Yan H, Biradar C, Moore B III (2015). Comparison of four EVI-based models for estimating gross primary production of maize and soybean croplands and tallgrass prairie under severe drought.Remote Sens Environ, 162: 154–168
CrossRef Google scholar
[9]
Dye D G (2004). Spectral composition and quanta-to-energy ratio of diffuse photosynthetically active radiation under diverse cloud conditions.J Geophys Res, 109(D10): 2003JD004251
CrossRef Google scholar
[10]
Gentine P, Green J K, Guérin M, Humphrey V, Seneviratne S I, Zhang Y, Zhou S (2019). Coupling between the terrestrial carbon and water cycles—a review.Environ Res Lett, 14(8): 083003
CrossRef Google scholar
[11]
Goetz S J, Prince S D, Goward S N, Thawley M M, Small J (1999). Satellite remote sensing of primary production: an improved production efficiency modeling approach.Ecol Modell, 122(3): 239–255
CrossRef Google scholar
[12]
He H, Liu M, Xiao X, Ren X, Zhang L, Sun X, Yang Y, Li Y, Zhao L, Shi P, Du M, Ma Y, Ma M, Zhang Y, Yu G (2014). Large-scale estimation and uncertainty analysis of gross primary production in Tibetan alpine grasslands.J Geophys Res Biogeosci, 119(3): 466–486
CrossRef Google scholar
[13]
Huete A R, Liu H Q, Batchily K, van Leeuwen W (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS.Remote Sens Environ, 59(3): 440–451
CrossRef Google scholar
[14]
Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices.Remote Sens Environ, 83(1−2): 195–213
CrossRef Google scholar
[15]
Jiang C, Ryu Y (2016). Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS).Remote Sens Environ, 186: 528–547
CrossRef Google scholar
[16]
Kemp D R, Guodong H, Xiangyang H, Michalk D L, Fujiang H, Jianping W, Yingjun Z (2013). Innovative grassland management systems for environmental and livelihood benefits.Proc Natl Acad Sci USA, 110(21): 8369–8374
CrossRef Google scholar
[17]
Kendall M G (1948). Rank Correlation Methods.Griffin, Oxford: England
[18]
Konapala G, Mishra A K, Wada Y, Mann M E (2020). Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation.Nat Commun, 11(1): 3044
CrossRef Google scholar
[19]
Li X, Gentine P, Lin C, Zhou S, Sun Z, Zheng Y, Liu J, Zheng C (2019). A simple and objective method to partition evapotranspiration into transpiration and evaporation at eddy-covariance sites.Agric For Meteorol, 265: 171–182
CrossRef Google scholar
[20]
Luo X, Zhou H, Satriawan T W, Tian J, Zhao R, Keenan T F, Griffith D M, Sitch S, Smith N G, Still C J (2024). Mapping the global distribution of C4 vegetation using observations and optimality theory.Nat Commun, 15(1): 1219
CrossRef Google scholar
[21]
Ma S, Baldocchi D, Wolf S, Verfaillie J (2016). Slow ecosystem responses conditionally regulate annual carbon balance over 15 years in Californian oak-grass savanna.Agric For Meteorol, 228–229: 252–264
CrossRef Google scholar
[22]
Ma S, Eichelmann E, Wolf S, Rey-Sanchez C, Baldocchi D D (2020). Transpiration and evaporation in a Californian oak-grass savanna: field measurements and partitioning model results.Agric For Meteorol, 295: 108204
CrossRef Google scholar
[23]
Mann H B (1945). Nonparametric tests against trend.Econometrica, 13(3): 245–259
CrossRef Google scholar
[24]
Nelson J A, Pérez-Priego O, Zhou S, Poyatos R, Zhang Y, Blanken P D, Gimeno T E, Wohlfahrt G, Desai A R, Gioli B, Limousin J M, Bonal D, Paul-Limoges E, Scott R L, Varlagin A, Fuchs K, Montagnani L, Wolf S, Delpierre N, Berveiller D, Gharun M, Belelli Marchesini L, Gianelle D, Šigut L, Mammarella I, Siebicke L, Andrew Black T, Knohl A, Hörtnagl L, Magliulo V, Besnard S, Weber U, Carvalhais N, Migliavacca M, Reichstein M, Jung M (2020). Ecosystem transpiration and evaporation: insights from three water flux partitioning methods across FLUXNET sites.Glob Change Biol, 26(12): 6916–6930
CrossRef Google scholar
[25]
Nobel P S (2020) Physicochemical and Environmental Plant Physiology (5th Ed). New York: Academic Press
[26]
O’Mara F P (2012). The role of grasslands in food security and climate change.Ann Bot (Lond), 110(6): 1263–1270
CrossRef Google scholar
[27]
Pan L, Xiao X, Pan B, Meng C, Staebler R M, Zhang C, Qin Y (2024). Interannual variations and trends of gross primary production and transpiration of four mature deciduous broadleaf forest sites during 2000–2020.Remote Sens Environ, 304: 114042
CrossRef Google scholar
[28]
Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah Y W, Poindexter C, Chen J, Elbashandy A, Humphrey M, Isaac P, Polidori D, Reichstein M, Ribeca A, van Ingen C, Vuichard N, Zhang L, Amiro B, Ammann C, Arain M A, Ardö J, Arkebauer T, Arndt S K, Arriga N, Aubinet M, Aurela M, Baldocchi D, Barr A, Beamesderfer E, Marchesini L B, Bergeron O, Beringer J, Bernhofer C, Berveiller D, Billesbach D, Black T A, Blanken P D, Bohrer G, Boike J, Bolstad P V, Bonal D, Bonnefond J M, Bowling D R, Bracho R, Brodeur J, Brümmer C, Buchmann N, Burban B, Burns S P, Buysse P, Cale P, Cavagna M, Cellier P, Chen S, Chini I, Christensen T R, Cleverly J, Collalti A, Consalvo C, Cook B D, Cook D, Coursolle C, Cremonese E, Curtis P S, D’Andrea E, da Rocha H, Dai X, Davis K J, Cinti B D, Grandcourt A, Ligne A D, De Oliveira R C, Delpierre N, Desai A R, Di Bella C M, Tommasi P, Dolman H, Domingo F, Dong G, Dore S, Duce P, Dufrêne E, Dunn A, Dušek J, Eamus D, Eichelmann U, ElKhidir H A M, Eugster W, Ewenz C M, Ewers B, Famulari D, Fares S, Feigenwinter I, Feitz A, Fensholt R, Filippa G, Fischer M, Frank J, Galvagno M, Gharun M, Gianelle D, Gielen B, Gioli B, Gitelson A, Goded I, Goeckede M, Goldstein A H, Gough C M, Goulden M L, Graf A, Griebel A, Gruening C, Grünwald T, Hammerle A, Han S, Han X, Hansen B U, Hanson C, Hatakka J, He Y, Hehn M, Heinesch B, Hinko-Najera N, Hörtnagl L, Hutley L, Ibrom A, Ikawa H, Jackowicz-Korczynski M, Janouš D, Jans W, Jassal R, Jiang S, Kato T, Khomik M, Klatt J, Knohl A, Knox S, Kobayashi H, Koerber G, Kolle O, Kosugi Y, Kotani A, Kowalski A, Kruijt B, Kurbatova J, Kutsch W L, Kwon H, Launiainen S, Laurila T, Law B, Leuning R, Li Y, Liddell M, Limousin J M, Lion M, Liska A J, Lohila A, López-Ballesteros A, López-Blanco E, Loubet B, Loustau D, Lucas-Moffat A, Lüers J, Ma S, Macfarlane C, Magliulo V, Maier R, Mammarella I, Manca G, Marcolla B, Margolis H A, Marras S, Massman W, Mastepanov M, Matamala R, Matthes J H, Mazzenga F, McCaughey H, McHugh I, McMillan A M S, Merbold L, Meyer W, Meyers T, Miller S D, Minerbi S, Moderow U, Monson R K, Montagnani L, Moore C E, Moors E, Moreaux V, Moureaux C, Munger J W, Nakai T, Neirynck J, Nesic Z, Nicolini G, Noormets A, Northwood M, Nosetto M, Nouvellon Y, Novick K, Oechel W, Olesen J E, Ourcival J M, Papuga S A, Parmentier F J, Paul-Limoges E, Pavelka M, Peichl M, Pendall E, Phillips R P, Pilegaard K, Pirk N, Posse G, Powell T, Prasse H, Prober S M, Rambal S, Rannik Ü, Raz-Yaseef N, Rebmann C, Reed D, Dios V R, Restrepo-Coupe N, Reverter B R, Roland M, Sabbatini S, Sachs T, Saleska S R, Sánchez-Cañete E P, Sanchez-Mejia Z M, Schmid H P, Schmidt M, Schneider K, Schrader F, Schroder I, Scott R L, Sedlák P, Serrano-Ortíz P, Shao C, Shi P, Shironya I, Siebicke L, Šigut L, Silberstein R, Sirca C, Spano D, Steinbrecher R, Stevens R M, Sturtevant C, Suyker A, Tagesson T, Takanashi S, Tang Y, Tapper N, Thom J, Tomassucci M, Tuovinen J P, Urbanski S, Valentini R, van der Molen M, van Gorsel E, van Huissteden K, Varlagin A, Verfaillie J, Vesala T, Vincke C, Vitale D, Vygodskaya N, Walker J P, Walter-Shea E, Wang H, Weber R, Westermann S, Wille C, Wofsy S, Wohlfahrt G, Wolf S, Woodgate W, Li Y, Zampedri R, Zhang J, Zhou G, Zona D, Agarwal D, Biraud S, Torn M, Papale D (2020). ., 7(1): 225
CrossRef Google scholar
[29]
Peng S, Piao S, Shen Z, Ciais P, Sun Z, Chen S, Bacour C, Peylin P, Chen A (2013). Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: a modeling analysis.Agric For Meteorol, 178–179: 46–55
CrossRef Google scholar
[30]
Running S W, Zhao M (2019). Daily GPP and Annual NPP (MOD17A2H/A3H) and Year-end Gap- Filled (MOD17A2HGF/A3HGF) Products NASA Earth Observing System MODIS Land Algorithm (For Collection 6). In: The Numerical Terradynamic Simulation Group, Missoula, MT, USA
[31]
Ryu Y, Jiang C, Kobayashi H, Detto M (2018). MODIS-derived global land products of shortwave radiation and diffuse and total photosynthetically active radiation at 5km resolution from 2000.Remote Sens Environ, 204: 812–825
CrossRef Google scholar
[32]
Scott R L, Biederman J A (2017). Partitioning evapotranspiration using long-term carbon dioxide and water vapor fluxes.Geophys Res Lett, 44(13): 6833–6840
CrossRef Google scholar
[33]
Scott R L, Biederman J A, Hamerlynck E P, Barron-Gafford G A (2015). The carbon balance pivot point of southwestern U. S. semiarid ecosystems: insights from the 21st century drought.J Geophys Res Biogeosci, 120(12): 2612–2624
CrossRef Google scholar
[34]
Scott R L, Johnston M R, Knowles J F, MacBean N, Mahmud K, Roby M C, Dannenberg M P (2023). Interannual variability of spring and summer monsoon growing season carbon exchange at a semiarid savanna over nearly two decades.Agric For Meteorol, 339: 109584
CrossRef Google scholar
[35]
Sen P K (1968). Estimates of the regression coefficient based on Kendall’s Tau.J Am Stat Assoc, 63(324): 1379–1389
CrossRef Google scholar
[36]
Shen H, Li X, Cheng Q, Zeng C, Yang G, Li H, Zhang L (2015). Missing information reconstruction of remote sensing data: a technical review.IEEE Geosci Remote Sens Mag, 3(3): 61–85
CrossRef Google scholar
[37]
Sjöström M, Zhao M, Archibald S, Arneth A, Cappelaere B, Falk U, de Grandcourt A, Hanan N, Kergoat L, Kutsch W, Merbold L, Mougin E, Nickless A, Nouvellon Y, Scholes R J, Veenendaal E M, Ardö J (2013). Evaluation of MODIS gross primary productivity for Africa using eddy covariance data.Remote Sens Environ, 131: 275–286
CrossRef Google scholar
[38]
Still C J, Berry J A, Collatz G J, DeFries R S (2003). Global distribution of C3 and C4 vegetation: carbon cycle implications.Global Biogeochemical Cycles 17, 6–1–6–14
CrossRef Google scholar
[39]
Stoy P C, El-Madany T S, Fisher J B, Gentine P, Gerken T, Good S P, Klosterhalfen A, Liu S, Miralles D G, Perez-Priego O, Rigden A J, Skaggs T H, Wohlfahrt G, Anderson R G, Coenders-Gerrits A M J, Jung M, Maes W H, Mammarella I, Mauder M, Migliavacca M, Nelson J A, Poyatos R, Reichstein M, Scott R L, Wolf S (2019). Reviews and syntheses: turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities.Biogeosciences, 16(19): 3747–3775
CrossRef Google scholar
[40]
Swain D L, Langenbrunner B, Neelin J D, Hall A (2018). Increasing precipitation volatility in twenty-first-century California.Nat Clim Chang, 8(5): 427–433
CrossRef Google scholar
[41]
Tucker C J (1979). Red and photographic infrared linear combinations for monitoring vegetation.Remote Sens Environ, 8(2): 127–150
CrossRef Google scholar
[42]
Turner D P, Ritts W D, Cohen W B, Gower S T, Zhao M, Running S W, Wofsy S C, Urbanski S, Dunn A L, Munger J W (2003). Scaling Gross Primary Production (GPP) over boreal and deciduous forest landscapes in support of MODIS GPP product validation.Remote Sens Environ, 88(3): 256–270
CrossRef Google scholar
[43]
Wagle P, Kakani V G (2014). Environmental control of daytime net ecosystem exchange of carbon dioxide in switchgrass.Agric Ecosyst Environ, 186: 170–177
CrossRef Google scholar
[44]
Wagle P, Xiao X, Scott R L, Kolb T E, Cook D R, Brunsell N, Baldocchi D D, Basara J, Matamala R, Zhou Y, Bajgain R (2015a). Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States.Agric For Meteorol, 214–215: 293–305
CrossRef Google scholar
[45]
Wagle P, Xiao X, Suyker A E (2015b). Estimation and analysis of gross primary production of soybean under various management practices and drought conditions.ISPRS J Photogramm Remote Sens, 99: 70–83
CrossRef Google scholar
[46]
Wagle P, Xiao X, Torn M S, Cook D R, Matamala R, Fischer M L, Jin C, Dong J, Biradar C (2014). Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought.Remote Sens Environ, 152: 1–14
CrossRef Google scholar
[47]
Wang X, Xiao X, Zou Z, Chen B, Ma J, Dong J, Doughty R B, Zhong Q, Qin Y, Dai S, Li X, Zhao B, Li B (2020). Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine.Remote Sens Environ, 238: 110987
CrossRef Google scholar
[48]
Winslow J C, Hunt E R Jr, Piper S C (2003). The influence of seasonal water availability on global C3 versus C4 grassland biomass and its implications for climate change research.Ecol Modell, 163(1−2): 153–173
CrossRef Google scholar
[49]
Xiao X (2006). Light absorption by leaf chlorophyll and maximum light use efficiency.IEEE Trans Geosci Remote Sens, 44(7): 1933–1935
CrossRef Google scholar
[50]
Xiao X, Biradar C M, Czarnecki C, Alabi T, Keller M (2009). A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia.Remote Sens (Basel), 1(3): 355–374
CrossRef Google scholar
[51]
Xiao X, Hollinger D, Aber J, Goltz M, Davidson E A, Zhang Q, Moore B III (2004a). Satellite-based modeling of gross primary production in an evergreen needleleaf forest.Remote Sens Environ, 89(4): 519–534
CrossRef Google scholar
[52]
Xiao X, Zhang Q, Braswell B, Urbanski S, Boles S, Wofsy S, Moore B, Ojima D (2004b). Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data.Remote Sens Environ, 91(2): 256–270
CrossRef Google scholar
[53]
Xin F, Xiao X, Zhao B, Miyata A, Baldocchi D, Knox S, Kang M, Shim K, Min S, Chen B, Li X, Wang J, Dong J, Biradar C (2017). Modeling gross primary production of paddy rice cropland through analyses of data from CO2 eddy flux tower sites and MODIS images.Remote Sens Environ, 190: 42–55
CrossRef Google scholar
[54]
Xu L, Baldocchi D D (2004). Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California.Agric For Meteorol, 123(1−2): 79–96
CrossRef Google scholar
[55]
Yan H, Fu Y, Xiao X, Huang H Q, He H, Ediger L (2009). Modeling gross primary productivity for winter wheat–maize double cropping system using MODIS time series and CO2 eddy flux tower data.Agric Ecosyst Environ, 129(4): 391–400
CrossRef Google scholar
[56]
Zhang Y, Xiao X, Wu X, Zhou S, Zhang G, Qin Y, Dong J (2017). A global moderate resolution dataset of gross primary production of vegetation for 2000–2016.Sci Data, 4(1): 170165
CrossRef Google scholar
[57]
Zhao M, Heinsch F A, Nemani R R, Running S W (2005). Improvements of the MODIS terrestrial gross and net primary production global data set.Remote Sens Environ, 95(2): 164–176
CrossRef Google scholar
[58]
Zheng Y, Shen R, Wang Y, Li X, Liu S, Liang S, Chen J M, Ju W, Zhang L, Yuan W (2020). Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017.Earth Syst Sci Data, 12(4): 2725–2746
CrossRef Google scholar
[59]
Zhou S, Yu B, Zhang Y, Huang Y, Wang G (2016). Partitioning evapotranspiration based on the concept of underlying water use efficiency.Water Resour Res, 52(2): 1160–1175
CrossRef Google scholar
[60]
Zhu X, Pei Y, Zheng Z, Dong J, Zhang Y, Wang J, Chen L, Doughty R B, Zhang G, Xiao X (2018). Underestimates of grassland gross primary production in MODIS standard products.Remote Sens (Basel), 10(11): 1771
CrossRef Google scholar

Electronic Supplementary Material

is available in the online version of this article at https://doi.org/10.1007/s11707-024-1136-8 and is accessible for authorized users.

Acknowledgments

This study was supported by research grant from the US National Science Foundation (OIA-1946093). We thank Dr. Dennis Baldocchi at the University of California, Berkeley for his suggestions and eddy flux tower sites data in the manuscript. We thank three anonymous reviewers for their time and effort in the review of our earlier version of this manuscript. Data collection at these AmeriFlux sites is supported in part by the US Department of Energy’s Office of Science. Data for these AmeriFlux sites can be downloaded from FLUXNET2015 website.

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(8862 KB)

Supplementary files

FES-24136-OF-MC_suppl_1 (699 KB)

Accesses

Citations

Detail

Sections
Recommended

/