Detecting dynamic changes in mangrove forests in the Dandou Sea, Beibu Gulf

Tianliang WU, Wenhong PANG, Riming WANG, Hu HUANG, Shaohan SHEN, Chunmei HUANG, Baoqing HU

Front. Earth Sci. ››

PDF(10897 KB)
PDF(10897 KB)
Front. Earth Sci. ›› DOI: 10.1007/s11707-024-1125-y
RESEARCH ARTICLE

Detecting dynamic changes in mangrove forests in the Dandou Sea, Beibu Gulf

Author information +
History +

Abstract

Mangrove forests are significant ecosystems worldwide and play a crucial role in maintaining the biodiversity of intertidal zones in tropical and subtropical regions. However, most mangroves have experienced large-scale losses due to anthropogenic activities and natural stress from environmental factors. Here, the dynamic changes in mangroves in the Dandou Sea (DDS) of the Beibu Gulf between 1987 and 2021 were analyzed via multispectral satellite remote sensing data from the Google Earth Engine Platform. The results indicated that the area of mangroves in the DDS increased from 225.90 ha in 1987 to 451.76 ha in 2021. Throughout this period, the overall mangrove area in the DDS, as well as in its western and central parts, underwent a rapid growth phase from 1987 to 1996, followed by a slow growth phase from 1997 to 2011, and eventually entered a stagnation phase from 2013 to 2021. Moreover, due to the biological invasion caused by Spartina alterniflora, the mangrove forests in this area tended toward fragmentation. Moreover, S. alterniflora suppressed the spread of mangrove forests, accounting for up to 41.69% of the total loss. In a similar vein, the local high-intensity economic activities within the tidal flat accounted for 32.55% of the mangrove loss. Additionally, the expansion of aquaculture ponds and construction land directly accounted for 9.45% and 7.91% of the mangrove loss, respectively. Furthermore, the establishment of mangrove nature reserves played a positive role in the restoration and expansion of mangroves in the DDS. Our results also demonstrated that sea level rise had little impact on mangrove retreat.

Graphical abstract

Keywords

mangrove forests / human activities / sea level rise / Dandou Sea / Google Earth Engine

Cite this article

Download citation ▾
Tianliang WU, Wenhong PANG, Riming WANG, Hu HUANG, Shaohan SHEN, Chunmei HUANG, Baoqing HU. Detecting dynamic changes in mangrove forests in the Dandou Sea, Beibu Gulf. Front. Earth Sci., https://doi.org/10.1007/s11707-024-1125-y

References

[1]
Abdul Azeez S, Gnanappazham L, Muraleedharan K R, Revichandran C, Sebin J, Seena G, Jubin T (2022). Multi-decadal changes of mangrove forest and its response to the tidal dynamics of thane creek, Mumbai.J Sea Res, 180: 102162
CrossRef Google scholar
[2]
Afonso F, Palma C, Brito A C, Chainho P, de Lima R, Heumüller J A, Ribeiro F, Félix P M (2023). Metal and semimetal loadings in sediments and water from mangrove ecosystems: a preliminary assessment of anthropogenic enrichment in São Tomé island (central Africa).Chemosphere, 334: 138973
CrossRef Google scholar
[3]
Amani M, Ghorbanian A, Ahmadi S A, Kakooei M, Moghimi A, Mirmazloumi S M, Moghaddam S H A, Mahdavi S, Ghahremanloo M, Parsian S, Wu Q, Brisco B (2020). Google earth engine cloud computing platform for remote sensing big data applications: a comprehensive review.IEEE J Sel Top Appl Earth Obs Remote Sens, 13: 5326–5350
CrossRef Google scholar
[4]
Asbridge E, Lucas R, Rogers K, Accad A (2018). The extent of mangrove change and potential for recovery following severe Tropical Cyclone Yasi, Hinchinbrook Island, Queensland, Australia.Ecol Evol, 8(21): 10416–10434
CrossRef Google scholar
[5]
Baloloy A B, Blanco A C, Sta. Ana R R C S, Nadaoka K (2020). Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping.ISPRS J Photogramm Remote Sens, 166: 95–117
CrossRef Google scholar
[6]
Bimrah K, Dasgupta R, Hashimoto S, Saizen I, Dhyani S (2022). Ecosystem services of mangroves: A systematic review and synthesis of contemporary scientific literature.Sustainability (Basel), 14(19): 12051
CrossRef Google scholar
[7]
Bunting P, Rosenqvist A, Hilarides L, Lucas R M, Thomas N, Tadono T, Worthington T A, Spalding M, Murray N J, Rebelo L M (2022). Global mangrove extent change 1996–2020: global mangrove watch version 3.0.Remote Sens (Basel), 14(15): 3657
CrossRef Google scholar
[8]
Chen Q, Ma K M (2015). Research overview and trend on biological invasion in mangrove forests.Acta Phytoecol Sin, 39(3): 283–299
CrossRef Google scholar
[9]
Darby S E, Hackney C R, Leyland J, Kummu M, Lauri H, Parsons D R, Best J L, Nicholas A P, Aalto R (2016). Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity.Nature, 539(7628): 276–279
CrossRef Google scholar
[10]
De Almeida L T, Olímpio J L S, Pantalena A F, De Almeida B S, De Oliveira Soares M (2016). Evaluating ten years of management effectiveness in a mangrove protected area.Ocean Coast Manage, 125: 29–37
CrossRef Google scholar
[11]
Deng Z F, Xie X L, Wang Z S, An S Q (2010). Effects of substrate and water level on the growth of invasive species Spartina alterniflora.Chinese J Eco, 29(02): 256–260
[12]
Donato D C, Kauffman J B, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011). Mangroves among the most carbon-rich forests in the tropics.Nat Geosci, 4(5): 293–297
CrossRef Google scholar
[13]
Du C, Khan S, Ke Y, Zhou D (2023). Assessment of spatiotemporal dynamics of mangrove in five typical mangrove reserve wetlands in Asia, Africa and Oceania.Diversity (Basel), 15(2): 148
CrossRef Google scholar
[14]
Duke N C, Meynecke J O, Dittmann S, Ellison A M, Anger K, Berger U, Cannicci S, Diele K, Ewel K C, Field C D, Koedam N, Lee S Y, Marchand C, Nordhaus I, Dahdouh-Guebas F (2007). A world without mangroves.Science, 317(5834): 41–42
CrossRef Google scholar
[15]
Feller I C, Lovelock C E, Berger U, McKee K L, Joye S B, Ball M C (2010). Biocomplexity in mangrove ecosystems.Annu Rev Mar Sci, 2(1): 395–417
CrossRef Google scholar
[16]
Feng Z, Tan G, Xia J, Shu C, Chen P, Wu M, Wu X (2020). Dynamics of mangrove forests in Shenzhen Bay in response to natural and anthropogenic factors from 1988 to 2017.J Hydrol (Amst), 591: 125271
CrossRef Google scholar
[17]
Gao G F, Li P F, Shen Z J, Qin Y Y, Zhang X M, Ghoto K, Zhu X Y, Zheng H L (2018). Exotic Spartina alterniflora invasion increases CH4 while reduces CO2 emissions from mangrove wetland soils in southeastern China.Sci Rep, 8(1): 9243
CrossRef Google scholar
[18]
Getzner M, Islam M S (2020). Ecosystem services of mangrove forests: Results of a meta-analysis of economic values.Int J Environ Res Public Health, 17(16): 5830
CrossRef Google scholar
[19]
Gilani H, Naz H I, Arshad M, Nazim K, Akram U, Abrar A, Asif M (2021). Evaluating mangrove conservation and sustainability through spatiotemporal (1990–2020) mangrove cover change analysis in Pakistan.Estuar Coast Shelf Sci, 249: 107128
CrossRef Google scholar
[20]
Giri C, Pengra B, Zhu Z, Singh A, Tieszen L L (2007). Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000.Estuar Coast Shelf Sci, 73(1−2): 91–100
CrossRef Google scholar
[21]
Gitau P N, Duvail S, Verschuren D (2023). Evaluating the combined impacts of hydrological change, coastal dynamics and human activity on mangrove cover and health in the Tana River delta, Kenya.Regional Studies in Marine Science, 61: 102898
CrossRef Google scholar
[22]
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017). Google Earth Engine: planetary-scale geospatial analysis for everyone.Remote Sens Environ, 202: 18–27
CrossRef Google scholar
[23]
Hauser L T, Nguyen Vu G, Nguyen B A, Dade E, Nguyen H M, Nguyen T T Q, Le T Q, Vu L H, Tong A T H, Pham H V (2017). Uncovering the spatio-temporal dynamics of land cover change and fragmentation of mangroves in the Ca Mau peninsula, Vietnam using multi-temporal SPOT satellite imagery (2004–2013).Appl Geogr, 86: 197–207
CrossRef Google scholar
[24]
He Q F, Fan H Q, Mo Z C, Wang X, Shen W H (2012). Impacts of digging Phascolosoma esculenta on the growth of mangrove Avicennia marina seedlings: a simulation study.Chinese J App Eco, 23(04): 947–952
[25]
Huang X, Yuan J J, Wang X P, Yue K K, Zhang Q (2022). Dynamics of mangrove change: insights from 30-year observations of Maowei Sea.J Mar Sci, 40(03): 132–141
[26]
Jayanthi M, Samynathan M, Thirumurthy S, Duraismay M, Kabiraj S, Vijayakumar S, Panigrahi A, Kumaran M, Muralidhar M (2022). Is aquaculture development responsible for mangrove conversion in India?-A geospatial study to assess the influence of natural and anthropogenic factors on mangroves in the last three decades.Aquaculture, 561: 738696
CrossRef Google scholar
[27]
Jia M, Wang Z, Zhang Y, Ren C, Song K (2015). Landsat-based estimation of mangrove forest loss and restoration in Guangxi province, China, influenced by human and natural factors.IEEE J Sel Top Appl Earth Obs Remote Sens, 8(1): 311–323
CrossRef Google scholar
[28]
Jiang X H, Xie L J, Ye S Y, Zhou P, Pei L X, Chen H, Zhao L H (2022). Responses of photosynthetic charactristics of Phragmites australis and Spartina alterniflora to the simulated warming in Jiangsu coastal wetlands.Acta Ecol Sin, 42(19): 7760–7772
[29]
Kirwan M L, Megonigal J P (2013). Tidal wetland stability in the face of human impacts and sea-level rise.Nature, 504(7478): 53–60
CrossRef Google scholar
[30]
Krauss K W, From A S, Doyle T W, Doyle T J, Barry M J (2011). Sea-level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Islands region of Florida, USA.J Coast Conserv, 15(4): 629–638
CrossRef Google scholar
[31]
Le Minor M, Bartzke G, Zimmer M, Gillis L, Helfer V, Huhn K (2019). Numerical modelling of hydraulics and sediment dynamics around mangrove seedlings: Implications for mangrove establishment and reforestation.Estuar Coast Shelf Sci, 217: 81–95
CrossRef Google scholar
[32]
Lee S Y, Hamilton S, Barbier E B, Primavera J, Lewis R R III (2019). Better restoration policies are needed to conserve mangrove ecosystems.Nat Ecol Evol, 3(6): 870–872
CrossRef Google scholar
[33]
Li S, Dai Z, Ge Z, Xie H, Huang H (2014). Research on the changes of the ecological environment disasters along the northern Beibu Gulf.J Catastroph, 29(4): 43–47
[34]
Liu H Y, Zhou Y, Guo Z R, Dai L J, Wang C, Wang G, Li Y F (2021). A conceptual ecological model for large-scale salt marsh restoration: a case study of Yancheng.Chinese J Eco, 40(01): 278–291
[35]
Liu M, Mao D, Wang Z, Li L, Man W, Jia M, Ren C, Zhang Y (2018). Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: new observations from Landsat OLI images.Remote Sens (Basel), 10(12): 1933
CrossRef Google scholar
[36]
Liu T, Tao Y, Liu Y (2017). Mangrove swamp expansion controlled by climate since 1988: a case study in the Nanliu River Estuary, Guangxi, Southwest China.Acta Oceanol Sin, 36(12): 11–17
CrossRef Google scholar
[37]
Long C, Dai Z, Wang R, Lou Y, Zhou X, Li S, Nie Y (2022). Dynamic changes in mangroves of the largest delta in northern Beibu Gulf, China: reasons and causes.For Ecol Manage, 504: 119855
CrossRef Google scholar
[38]
Long C, Dai Z, Zhou X, Mei X, Mai Van C (2021). Mapping mangrove forests in the Red River Delta, Vietnam.For Ecol Manage, 483: 118910
CrossRef Google scholar
[39]
Long J, Giri C, Primavera J, Trivedi M (2016). Damage and recovery assessment of the Philippines’ mangroves following Super Typhoon Haiyan.Mar Pollut Bull, 109(2): 734–743
CrossRef Google scholar
[40]
López-Medellín X, Ezcurra E, González-Abraham C, Hak J, Santiago L S, Sickman J O (2011). Oceanographic anomalies and sea‐level rise drive mangroves inland in the Pacific coast of Mexico.J Veg Sci, 22(1): 143–151
CrossRef Google scholar
[41]
Lovelock C E, Feller I C, Reef R, Hickey S, Ball M C (2017). Mangrove dieback during fluctuating sea levels.Sci Rep, 7(1): 1680
CrossRef Google scholar
[42]
Lu C, Li L, Wang Z, Su Y, Su Y, Huang Y, Jia M, Mao D (2022). The national nature reserves in China: are they effective in conserving mangroves.Ecol Indic, 142: 109265
CrossRef Google scholar
[43]
Lu C, Liu J, Jia M, Liu M, Man W, Fu W, Zhong L, Lin X, Su Y, Gao Y (2018). Dynamic analysis of mangrove forests based on an optimal segmentation scale model and multi-seasonal images in Quanzhou Bay, China.Remote Sens (Basel), 10(12): 2020
CrossRef Google scholar
[44]
Macedo H S, Vivacqua M, Rodrigues H C L, Gerhardinger L C (2013). Governing wide coastal-marine protected territories: a governance analysis of the Baleia Franca Environmental Protection Area in South Brazil.Mar Policy, 41: 118–125
CrossRef Google scholar
[45]
McGarigalK, MarksB J (1995). Spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1–122
[46]
Monga E, Mangora M M, Trettin C C (2022). Impact of mangrove planting on forest biomass carbon and other structural attributes in the Rufiji Delta, Tanzania.Glob Ecol Conserv, 35: e02100
CrossRef Google scholar
[47]
Morocho R, González I, Ferreira T O, Otero X L (2022). Mangrove forests in Ecuador: a two-decade analysis.Forests, 13(5): 656
CrossRef Google scholar
[48]
Morrissette H K, Baez S K, Beers L, Bood N, Martinez N D, Novelo K, Andrews G, Balan L, Beers C S, Betancourt S A, Blanco R, Bowden E, Burns-Perez V, Carcamo M, Chevez L, Crooks S, Feller I C, Galvez G, Garbutt K, Gongora R, Grijalva E, Lefcheck J, Mahung A, Mattis C, McKoy T, McLaughlin D, Meza J, Pott E, Ramirez G, Ramnarace V, Rash A, Rosado S, Santos H, Santoya L, Sosa W, Ugarte G, Viamil J, Young A, Young J, Canty S W (2023). Belize Blue Carbon: establishing a national carbon stock estimate for mangrove ecosystems.Sci Total Environ, 870: 161829
CrossRef Google scholar
[49]
MouN X, LiuW B, WangH Y, Dai H L (2012). ArcGIS 10 Tutorial: from Beginner to Master. Beijing: Surveying and Mapping Press, 311–318
[50]
Murillo-Sandoval P J, Fatoyinbo L, Simard M (2022). Mangroves cover change trajectories 1984–2020: the gradual decrease of mangroves in Colombia.Front Mar Sci, 9: 892946
CrossRef Google scholar
[51]
Nguyen H T T, Hardy G E, Le T V, Nguyen H Q, Nguyen H H, Nguyen T V, Dell B (2021). Mangrove forest landcover changes in coastal Vietnam: a case study from 1973 to 2020 in Thanh Hoa and Nghe An provinces.Forests, 12(5): 637
CrossRef Google scholar
[52]
Ofori S A, Kodikara S K, Jayatissa L P, Madarasinghe S K, Nijamdeen T M, Dahdouh-Guebas F (2023). What is the ecological footprint of aquaculture after 5 decades of competition between mangrove conservation and shrimp farm development.Aquat Conserv, 33(1): 15–28
CrossRef Google scholar
[53]
Osorio-Olvera L, Rioja-Nieto R, Torres-Irineo E, Guerra-Martínez F (2023). Natural Protected Areas effect on the cover change rate of mangrove forests in the Yucatan Peninsula, Mexico.Wetlands, 43(5): 52
CrossRef Google scholar
[54]
Pan L H, Shi X F, Tao Y C, Fan H Q, Mo Z C (2016). Distribution and expansion of Spartina alterniflora in coastal tidal zone, Guangxi.Wetland Sci, 14(4): 464–470
[55]
Phan M H, Stive M J (2022). Managing mangroves and coastal land cover in the Mekong Delta.Ocean Coast Manage, 219: 106013
CrossRef Google scholar
[56]
Polidoro B A, Carpenter K E, Collins L, Duke N C, Ellison A M, Ellison J C, Farnsworth E J, Fernando E S, Kathiresan K, Koedam N E, Livingstone S R, Miyagi T, Moore G E, Ngoc Nam V, Ong J E, Primavera J H, Salmo S G III, Sanciangco J C, Sukardjo S, Wang Y, Yong J W H (2010). The loss of species: mangrove extinction risk and geographic areas of global concern.PLoS One, 5(4): e10095
CrossRef Google scholar
[57]
Qi Y, Liu D, Huang X, Pu X (2019). Topographical mapping of a bare tidal flat outside a mangrove area based on the waterline method and an iterative hydrodynamic model: a case study of Yingluo Bay, South China.Mar Geod, 42(3): 263–285
CrossRef Google scholar
[58]
Reef R, Feller I C, Lovelock C E (2010). Nutrition of mangroves.Tree Physiol, 30(9): 1148–1160
CrossRef Google scholar
[59]
Rouse J W, Haas R H, Schell J A, Deering D W (1974). Monitoring vegetation systems in the Great Plains with ERTS.NASA Spec Publ, 351(1): 309
[60]
Rull V (2023). Rise and fall of Caribbean mangroves.Sci Total Environ, 885: 163851
CrossRef Google scholar
[61]
Shen H K, Zhao B Y, Chen M Y, Huang R Y, Yu K F, Liang W (2022). Changes of the area of Spartina alterniflora and mangroves in Guangxi Shankou Mangrove National Nature Reserve from 1995 to 2019.Chinese J App Eco, 33(2): 397–404
[62]
Shi M, Li H, Jia M (2023). Spatio-temporal variations in mangrove forests in the Shankou Mangrove Nature Reserve based on the GEE cloud platform and Landsat data.Remote Sens Nat Resour, 35(2): 61–69
[63]
Simard M, Fatoyinbo L, Smetanka C, Rivera-Monroy V H, Castañeda-Moya E, Thomas N, Van der Stocken T (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency.Nat Geosci, 12(1): 40–45
CrossRef Google scholar
[64]
Sippo J Z, Lovelock C E, Santos I R, Sanders C J, Maher D T (2018). Mangrove mortality in a changing climate: an overview.Estuar Coast Shelf Sci, 215: 241–249
CrossRef Google scholar
[65]
Soeprobowati T R, Sularto R B, Hadiyanto H, Puryono S, Rahim A, Jumari J, Gell P (2024). The carbon stock potential of the restored mangrove ecosystem of Pasarbanggi, Rembang, Central Java.Mar Environ Res, 193: 106257
CrossRef Google scholar
[66]
Tang R, Dai Z, Zhou X, Li S (2021). Tropical cyclone-induced water and suspended sediment discharge delivered by mountainous rivers into the Beibu Gulf, south China.Geomorphology, 389: 107844
CrossRef Google scholar
[67]
Tinh P H, MacKenzie R A, Hung T D, Hanh N T H, Hanh N H, Manh D Q, Ha H T, Tuan M S (2022). Distribution and drivers of Vietnam mangrove deforestation from 1995 to 2019.Mitig Adapt Strategies Glob Change, 27(4): 29
CrossRef Google scholar
[68]
Tran T V, Reef R, Zhu X (2022). A review of spectral indices for mangrove remote sensing.Remote Sens (Basel), 14(19): 4868
CrossRef Google scholar
[69]
Turschwell M P, Tulloch V J, Sievers M, Pearson R M, Andradi-Brown D A, Ahmadia G N, Connolly R M, Bryan-Brown D, Lopez-Marcano S, Adame M F, Brown C J (2020). Multi-scale estimation of the effects of pressures and drivers on mangrove forest loss globally.Biol Conserv, 247: 108637
CrossRef Google scholar
[70]
TwilleyR R, Castañeda-Moya E, Rivera-MonroyV H, RovaiA (2017). Productivity and carbon dynamics in mangrove wetlands. In: Rivera-Monroy V H, Lee S Y, Kristensen E, Twilley R R, eds. Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services, 113–162
[71]
Walcker R, Laplanche C, Herteman M, Lambs L, Fromard F (2019). Damages caused by hurricane Irma in the human-degraded mangroves of Saint Martin (Caribbean).Sci Rep, 9(1): 18971
CrossRef Google scholar
[72]
Wang G, Guan D, Xiao L, Peart M R, Zhang H, Singh M (2019b). Changes in mangrove community structures affecting sediment carbon content in Yingluo Bay of south China.Mar Pollut Bull, 149: 110581
CrossRef Google scholar
[73]
Wang G, Guan D, Zhang Q, Peart M R, Chen Y, Peng Y, Ling X (2014). Spatial patterns of biomass and soil attributes in an estuarine mangrove forest (Yingluo Bay, south China).Eur J For Res, 133(6): 993–1005
CrossRef Google scholar
[74]
Wang R, Dai Z, Huang H, Liang X, Zhou X, Ge Z, Hu B (2023). Dramatic changes in the horizontal structure of mangrove forests in the largest delta of the northern Beibu Gulf, China.Acta Oceanol Sin, 42(7): 116–123
CrossRef Google scholar
[75]
Wang W, Sardans J, Wang C, Zeng C, Tong C, Chen G, Huang J, Pan H, Peguero G, Vallicrosa H, Peñuelas J (2019a). The response of stocks of C, N, and P to plant invasion in the coastal wetlands of China.Glob Change Biol, 25(2): 733–743
CrossRef Google scholar
[76]
Wang Z, Liu K, Cao J, Peng L, Wen X (2022). Annual change analysis of mangrove forests in China during 1986–2021 based on Google Earth engine.Forests, 13(9): 1489
CrossRef Google scholar
[77]
Xia P, Meng X W, Feng A P, Li Z, Yang G (2015). Sediment compaction rates in mangrove swamps of Guangxi and its mangrove migration response to sea-level rise.Acta Sediment Sin, 33(3): 551–560
[78]
Xiong Y, Dai Z, Long C, Liang X, Lou Y, Mei X, Nguyen B, Cheng J (2024). Machine Learning-Based examination of recent mangrove forest changes in the western Irrawaddy River Delta, Southeast Asia.Catena, 234: 107601
CrossRef Google scholar
[79]
Xu H Q (2005). A study on information extraction of water body with the modified normalized difference water index (MNDWI).Nation Remote Sens Bull, 9(5): 589–595
[80]
Yang J Y, Luo F S, Wang A J, Yu D S (2020). Comprehensive evaluation for silted bay restoration: a case study in Xiamen Bay.J App Oceanograph, 39(3): 389–399
[81]
Yang X, Li S, Xu S, Yu C, Pan J (2023). Variations in water and sediments of the Nanliu River flowing into the sea under the influence of extreme weather in the past 60 years.J Tropical Oceanograph, 42(4): 91–103
[82]
Yoshikai M, Nakamura T, Bautista D M, Herrera E C, Baloloy A, Suwa R, Basina R, Primavera-Tirol Y H, Blanco A C, Nadaoka K (2022). Field measurement and prediction of drag in a planted Rhizophora mangrove forest.J Geophys Res: Oceans, 127(11): e2021JC018320
CrossRef Google scholar
[83]
Yue W, Li C T, Lin Y Y, Feng T Q, Wang L R (2023). History and prospect on ecological restoration of mangroves on Qi’ao Island, Zhuhai.J Guangdong Ocean Univ, 43(2): 135–140
[84]
Zha Y, Gao J, Ni S (2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery.Int J Remote Sens, 24(3): 583–594
CrossRef Google scholar
[85]
Zhang W, Chen Z H, Wang J K (2015). Monitoring the areal variation of mangrove in Beibu Gulf coast of Guangxi China with remote sensing data.J Guangxi U (Nat Sci Ed), 40(6): 1570–1576
[86]
Zhang Z, Ahmed M R, Zhang Q, Li Y, Li Y (2023). Monitoring of 35-year mangrove wetland change dynamics and agents in the sundarbans using temporal consistency checking.Remote Sens (Basel), 15(3): 625
CrossRef Google scholar
[87]
Zhao C, Qin C Z, Wang Z, Mao D, Wang Y, Jia M (2022). Decision surface optimization in mapping exotic mangrove species (Sonneratia apetala) across latitudinal coastal areas of China.ISPRS J Photogramm Remote Sens, 193: 269–283
CrossRef Google scholar
[88]
Zhou X, Dai Z, Carniello L, Long C, Wang R, Luo J, Huang Z (2022). Linkage between mangrove wetland dynamics and wave attenuation during a storm–A case study of the Nanliu Delta, China.Mar Geol, 454: 106946
CrossRef Google scholar
[89]
Zhou Z, Ye Q, Coco G (2016). A one-dimensional biomorphodynamic model of tidal flats: sediment sorting, marsh distribution, and carbon accumulation under sea level rise.Adv Water Resour, 93: 288–302
CrossRef Google scholar

Acknowledgments

This research was supported by the National Natural Science Key Foundation of China (NSFC) (Grant Nos. 41930537 and 42366009), and Marine Science Program for Guangxi First-Class Discipline, Beibu Gulf University.

Competing interests

The authors declare that they have no competing interests.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(10897 KB)

Accesses

Citations

Detail

Sections
Recommended

/