
Observational evidence of aerosol-warm cloud interaction over two urban locations in eastern India
Sunny KANT, Jagabandhu PANDA, Sudhansu S. RATH
Observational evidence of aerosol-warm cloud interaction over two urban locations in eastern India
Aerosol-cloud interaction remains challenging due to the large uncertainties caused by the associated meteorological effects. This study examines the aerosol-warm cloud interaction over the cities of Bhubaneswar and Rourkela. A negative cloud effective radius (CER)-cloud optical depth and CER-cloud top pressure (CTP) relationship is found in all the regimes of aerosol optical depth (AOD) over Bhubaneswar and Rourkela, excluding CER-CTP association in heavy pollution scenarios over Rourkela. However, a significant positive CER-cloud water path (CWP) correlation is observed in all the cases of AOD over both cities. This can be attributed to strong competition between aerosol and cloud droplets for water vapor association. CER is found to increase with AOD in all the regimes of relative humidity (RH) over both cities, excluding low and high cases of RH over Bhubaneswar. In this scenario, enhanced collision and coalescence efficiency and increased water vapor content encourage the merging of smaller droplets, resulting in the growth in effective radius of clouds. Negative pressure vertical velocity (PVV) over these cities infers that the upward movement of the air parcels helps in the growth of cloud droplets and aerosol particles besides enhancing the cloud cover. The shift from the Anti-Twomey effect to the Twomey effect has been noticed in both urban areas, with the Twomey effect being the major influence. Overall results indicated aerosol-induced heating may increase the response of turbulent heat flux (sensible heat over the land), leading to enhanced stability at the lower troposphere and subsequent suppression of vertical mixing. It results in moisture trapping near the surface and increases warm clouds in Rourkela. However, the predominance of a positive semi-direct effect over Bhubaneswar leads to an adverse relationship between warm cloud cover and aerosols.
aerosol-cloud interaction / aerosol optical depth / cloud properties / stability / moisture
[1] |
Alam K, Khan R, Blaschke T, Mukhtiar A (2014). Variability of aerosol optical depth and their impact on cloud properties in Pakistan.J Atmos Sol Terr Phys, 107: 104–112
CrossRef
Google scholar
|
[2] |
Albrecht B A (1989). Aerosols, cloud microphysics, and fractional cloudiness.Science, 245(4923): 1227–1230
CrossRef
Google scholar
|
[3] |
Andersen H, Cermak J, Fuchs J, Knutti R, Lohmann U (2017). Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks.Atmos Chem Phys, 17(15): 9535–9546
CrossRef
Google scholar
|
[4] |
Bretherton C S, Blossey P N, Uchida J (2007). Cloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo.Geophys Res Lett, 34(3): L03813
CrossRef
Google scholar
|
[5] |
Chen Y C, Christensen M W, Stephens G L, Seinfeld J H (2014). Satellite-based estimate of global aerosol–cloud radiative forcing by marine warm clouds.Nat Geosci, 7(9): 643–646
CrossRef
Google scholar
|
[6] |
Christensen M W, Chen Y C, Stephens G L (2016). Aerosol indirect effect dictated by liquid clouds.J Geophys Res Atmos, 121(24): 14636–14650
CrossRef
Google scholar
|
[7] |
Costantino L, Bréon F M (2013). Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations.Atmos Chem Phys, 13(1): 69–88
CrossRef
Google scholar
|
[8] |
Feingold G, McComiskey A, Rosenfeld D, Sorooshian A (2013). On the relationship between cloud contact time and precipitation susceptibility to aerosol.J Geophys Res Atmos, 118(18): 10544–10554
CrossRef
Google scholar
|
[9] |
Feingold G, Remer L A, Ramaprasad J, Kaufman Y J (2001). Analysis of smoke impact on clouds in Brazilian biomass burning regions: an extension of Twomey’s approach.J Geophys Res, 106(D19): 22907–22922
CrossRef
Google scholar
|
[10] |
Gao S, Lu C, Liu Y, Yum S S, Zhu J, Zhu L, Desai N, Ma Y, Wu S (2021). Comprehensive quantification of height dependence of entrainment mixing between stratiform cloud top and environment.Atmos Chem Phys, 21(14): 11225–11241
CrossRef
Google scholar
|
[11] |
Gao W, Sui C H, Hu Z (2014). A study of macrophysical and microphysical properties of warm clouds over the Northern Hemisphere using CloudSat/CALIPSO data.J Geophys Res Atmos, 119(6): 3268–3280
CrossRef
Google scholar
|
[12] |
Grandey B S, Gururaj A, Stier P, Wagner T M (2014). Rainfall-aerosol relationships explained by wet scavenging and humidity.Geophys Res Lett, 41(15): 5678–5684
CrossRef
Google scholar
|
[13] |
Grandey B S, Stier P (2010). A critical look at spatial scale choices in satellite-based aerosol indirect effect studies.Atmos Chem Phys, 10(23): 11459–11470
CrossRef
Google scholar
|
[14] |
Gryspeerdt E, Quaas J, Bellouin N (2016). Constraining the aerosol influence on cloud fraction.J Geophys Res Atmos, 121(7): 3566–3583
CrossRef
Google scholar
|
[15] |
Gryspeerdt E, Stier P, Partridge D G (2014). Satellite observations of cloud regime development: the role of aerosol processes.Atmos Chem Phys, 14(3): 1141–1158
CrossRef
Google scholar
|
[16] |
Hansen J, Sato M, Lacis A, Ruedy R (1997). The missing climate forcing.Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 352(1350): 231–240
CrossRef
Google scholar
|
[17] |
Ignatov A, Minnis P, Loeb N, Wielicki B, Miller W, Sun-Mack S, Tanré D, Remer L, Laszlo I, Geier E (2005). Two MODIS aerosol products over ocean on the Terra and Aqua CERES SSF datasets.J Atmos Sci, 62(4): 1008–1031
CrossRef
Google scholar
|
[18] |
Jeong M J, Li Z, Andrews E, Tsay S C (2007). Effect of aerosol humidification on the column aerosol optical thickness over the Atmospheric Radiation Measurement Southern Great Plains site.J Geophys Res, 112(D10): D10202
CrossRef
Google scholar
|
[19] |
Johnson B T, Shine K P, Forster P M (2004). The semi-direct aerosol effect: impact of absorbing aerosols on marine stratocumulus.Q J R Meteorol Soc, 130(599): 1407–1422
CrossRef
Google scholar
|
[20] |
Jones T A, Christopher S A, Quaas J (2009). A six year satellite-based assessment of the regional variations in aerosol indirect effects.Atmos Chem Phys, 9(12): 4091–4114
CrossRef
Google scholar
|
[21] |
Kang N, Kumar K R, Yin Y, Diao Y, Yu X (2015). Correlation analysis between AOD and cloud parameters to study their relationship over China using MODIS data (2003–2013): impact on cloud formation and climate change.Aerosol Air Qual Res, 15(3): 958–973
CrossRef
Google scholar
|
[22] |
Kant S, Panda J, Gautam R (2019b). A seasonal analysis of aerosol-cloud-radiation interaction over Indian region during 2000–2017.Atmos Environ, 201: 212–222
CrossRef
Google scholar
|
[23] |
Kant S, Panda J, Gautam R, Wang P K, Singh S P (2017). Significance of aerosols influencing weather and climate over Indian region.J Earth Atmosph Sci, 4(1): 1–20
|
[24] |
Kant S, Panda J, Manoj M G (2019c). A satellite observation-based analysis of aerosol-cloud-precipitation interaction during the February 2016 unseasonal heatwave episode over Indian region.Aerosol Air Qual Res, 19(7): 1508–1525
CrossRef
Google scholar
|
[25] |
Kant S, Panda J, Pani S K, Wang P K (2019a). Long-term study of aerosol-cloud-precipitation interaction over the eastern part of India using satellite observations during pre-monsoon seasons.Theor Appl Climatol, 136(1−2): 605–626
CrossRef
Google scholar
|
[26] |
Kant S, Sarangi C, Wilcox E M (2023). Aerosol processes perturb cloud trends over Bay of Bengal: observational evidence.NPJ Climate Atmosph Sci, 6: 132
CrossRef
Google scholar
|
[27] |
Kaufman Y J, Remer L A, Tanré D, Li R R, Kleidman R, Mattoo S, Levy R C, Eck T F, Holben B N, Ichoku C, Martins J V (2005). A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean.IEEE Trans Geosci Remote Sens, 43(12): 2886–2897
CrossRef
Google scholar
|
[28] |
King M D, Menzel W P, Kaufman Y J, Tanré D, Gao B C, Platnick S, Ackerman S A, Remer L A, Pincus R, Hubanks P A (2003). Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS.IEEE Trans Geosci Remote Sens, 41(2): 442–458
CrossRef
Google scholar
|
[29] |
Klein S A, Hartmann D L (1993). The seasonal cycle of low stratiform clouds.J Clim, 6(8): 1587–1606
CrossRef
Google scholar
|
[30] |
Koch D, Del Genio A D (2010). Black carbon semi-direct effects on cloud cover: review and synthesis.Atmos Chem Phys, 10(16): 7685–7696
CrossRef
Google scholar
|
[31] |
Köppen W, Volken E, Brönnimann S (2011). The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world (Translated from: Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet, Meteorol Z 1884, 1, 215–226).Meteorol Z (Berl), 20(3): 351–360
CrossRef
Google scholar
|
[32] |
Koren I, Feingold G, Remer L A (2010). The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact.Atmos Chem Phys, 10(18): 8855–8872
CrossRef
Google scholar
|
[33] |
Koren I, Kaufman Y J, Rosenfeld D, Remer L A, Rudich Y (2005). Aerosol invigoration and restructuring of Atlantic convective clouds.Geophys Res Lett, 32(14): L14828
|
[34] |
Koren I, Martins J V, Remer L A, Afargan H (2008). Smoke invigoration versus inhibition of clouds over the Amazon.Science, 321(5891): 946–949
CrossRef
Google scholar
|
[35] |
Kulkarni J R, Maheskumar R S, Morwal S B, Kumari B P, Konwar M, Deshpande C G, Goswami B N (2012). The cloud aerosol interaction and precipitation enhancement experiment (CAIPEEX): overview and preliminary results. Current Sci, 102(3): 413–425
|
[36] |
Kumar S, Panda J, Paul D, Guha B K (2023). Impact of environmental variables on the North Indian Ocean tropical cyclones radial parameters.Climate Dynamics, 60(3−4): 813–830
CrossRef
Google scholar
|
[37] |
Li J, Yue Z, Lu C, Chen J, Wu X, Xu X, Luo S, Zhu L, Wu S, Wang F, He X (2022). Convective entrainment rate over the Tibetan Plateau and its adjacent regions in the boreal summer using SNPP-VIIRS.Remote Sens (Basel), 14(9): 2073
CrossRef
Google scholar
|
[38] |
Li Z, Zhao F, Liu J, Jiang M, Zhao C, Cribb M (2014). Opposite effects of absorbing aerosols on the retrievals of cloud optical depth from spaceborne and ground-based measurements.J Geophys Res Atmos, 119(9): 5104–5114
CrossRef
Google scholar
|
[39] |
Liu C, Song Y, Zhou G, Teng S, Li B, Xu N, Lu F, Zhang P (2023). A cloud optical and microphysical property product for the advanced geosynchronous radiation imager onboard China’s Fengyun-4 satellites: the first version.Atmosph Oceanic Sci Lett, 16(3): 100337
CrossRef
Google scholar
|
[40] |
Liu Y, de Leeuw G, Kerminen V M, Zhang J, Zhou P, Nie W, Qi X, Hong J, Wang Y, Ding A, Guo H (2017). Analysis of aerosol effects on warm clouds over the Yangtze River Delta from multi-sensor satellite observations.Atmos Chem Phys, 17(9): 5623–5641
CrossRef
Google scholar
|
[41] |
Liu Y, Huang J, Wang T, Li J, Yan H, He Y (2022). Aerosol-cloud interactions over the Tibetan Plateau: an overview.Earth-Sci Rev, 234: 104216
CrossRef
Google scholar
|
[42] |
Loeb N G, Manalo-Smith N (2005). Top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations.J Clim, 18(17): 3506–3526
CrossRef
Google scholar
|
[43] |
Lu C, Zhu L, Liu Y, Mei F, Fast J D, Pekour M S, Luo S, Xu X, He X, Li J, Gao S (2023). Observational study of relationships between entrainment rate, homogeneity of mixing, and cloud droplet relative dispersion.Atmos Res, 293: 106900
CrossRef
Google scholar
|
[44] |
Malavelle F F, Haywood J M, Jones A, Gettelman A, Clarisse L, Bauduin S, Allan R P, Karset I H H, Kristjánsson J E, Oreopoulos L, Cho N, Lee D, Bellouin N, Boucher O, Grosvenor D P, Carslaw K S, Dhomse S, Mann G W, Schmidt A, Coe H, Hartley M E, Dalvi M, Hill A A, Johnson B T, Johnson C E, Knight J R, O’Connor F M, Partridge D G, Stier P, Myhre G, Platnick S, Stephens G L, Takahashi H, Thordarson T (2017). Strong constraints on aerosol–cloud interactions from volcanic eruptions.Nature, 546(7659): 485–491
CrossRef
Google scholar
|
[45] |
Martins J V, Tanré D, Remer L, Kaufman Y, Mattoo S, Levy R (2002). MODIS cloud screening for remote sensing of aerosols over oceans using spatial variability.Geophys Res Lett, 29(12): 1619
CrossRef
Google scholar
|
[46] |
Medeiros B, Stevens B (2011). Revealing differences in GCM representations of low clouds.Clim Dyn, 36(1−2): 385–399
CrossRef
Google scholar
|
[47] |
Meyer K, Platnick S, Oreopoulos L, Lee D (2013). Estimating the direct radiative effect of absorbing aerosols overlying marine boundary layer clouds in the southeast Atlantic using MODIS and CALIOP.J Geophys Res Atmos, 118(10): 4801–4815
CrossRef
Google scholar
|
[48] |
Meyer K, Platnick S, Zhang Z (2015). Simultaneously inferring above-cloud absorbing aerosol optical thickness and underlying liquid phase cloud optical and microphysical properties using MODIS.J Geophys Res Atmos, 120(11): 5524–5547
CrossRef
Google scholar
|
[49] |
Minnis P, Ayers J K, Palikonda R, Phan D (2004). Contrails, cirrus trends, and climate.J Climate, 17(8): 1671–1685
CrossRef
Google scholar
|
[50] |
Moorthy K K, Suresh Babu S, Manoj M R, Satheesh S K (2013). Buildup of aerosols over the Indian Region.Geophys Res Lett, 40(5): 1011–1014
CrossRef
Google scholar
|
[51] |
Panda J, Kant S, Sarkar A (2023). A satellite-observation based study on responses of clouds to aerosols over South Asia during IOD events of south-west monsoon season.Atmos Pollut Res, 14(9): 101861
CrossRef
Google scholar
|
[52] |
Panicker A S, Pandithurai G, Dipu S (2010). Aerosol indirect effect during successive contrasting monsoon seasons over Indian subcontinent using MODIS data.Atmos Environ, 44(15): 1937–1943
CrossRef
Google scholar
|
[53] |
Patel P N, Kumar R (2016). Dust induced changes in ice cloud and cloud radiative forcing over a high altitude site.Aerosol Air Qual Res, 16(8): 1820–1831
CrossRef
Google scholar
|
[54] |
Paul D, Panda J, Routray A (2022). Ocean and atmospheric characteristics associated with the cyclogenesis and rapid intensification of NIO super cyclonic storms during 1981–2020.Nat Hazards, 114: 261–289
CrossRef
Google scholar
|
[55] |
Peng Y, Lohmann U, Leaitch R, Banic C, Couture M (2002). The cloud albedo-cloud droplet effective radius relationship for clean and polluted clouds from RACE and FIRE. ACE.J Geophys Res, 107(D11): 4106
CrossRef
Google scholar
|
[56] |
Platnick S, Meyer K G, King M D, Wind G, Amarasinghe N, Marchant B, Arnold G T, Zhang Z, Hubanks P A, Holz R E, Yang P (2017). The MODIS cloud optical and microphysical products: collection 6 updates and examples from Terra and Aqua.IEEE Trans Geosci Remote Sens, 55(1): 502–525
CrossRef
Google scholar
|
[57] |
Prasad A K, Singh R P, Singh A (2004). Variability of aerosol optical depth over Indian subcontinent using MODIS data.Photonirvachak (Dehra Dun), 32(4): 313–316
CrossRef
Google scholar
|
[58] |
Qiu Y, Zhao C, Guo J, Li J (2017). 8-Year ground-based observational analysis about the seasonal variation of the aerosol-cloud droplet effective radius relationship at SGP site.Atmos Environ, 164: 139–146
CrossRef
Google scholar
|
[59] |
Quaas J, Stevens B, Stier P, Lohmann U (2010). Interpreting the cloud cover–aerosol optical depth relationship found in satellite data using a general circulation model.Atmos Chem Phys, 10(13): 6129–6135
CrossRef
Google scholar
|
[60] |
Ramanathan V C P J, Crutzen P J, Kiehl J T, Rosenfeld D (2001). Aerosols, climate, and the hydrological cycle.Science, 294(5549): 2119–2124
CrossRef
Google scholar
|
[61] |
Remer L A, Kaufman Y J, Tanré D, Mattoo S, Chu D A, Martins J V, Li R R, Ichoku C, Levy R C, Kleidman R G, Eck T F, Vermote E, Holben B N (2005). The MODIS aerosol algorithm, products, and validation.J Atmos Sci, 62(4): 947–973
CrossRef
Google scholar
|
[62] |
Remer L A, Kleidman R G, Levy R C, Kaufman Y J, Tanré D, Mattoo S, Martins J V, Ichoku C, Koren I, Yu H, Holben B N (2008). Global aerosol climatology from the MODIS satellite sensors.J Geophys Res, 113(D14): D14S07
CrossRef
Google scholar
|
[63] |
Remer L A, Mattoo S, Levy R C, Munchak L A (2013). MODIS 3 km aerosol product: algorithm and global perspective.Atmos Meas Tech, 6(7): 1829–1844
CrossRef
Google scholar
|
[64] |
Rennó N O, Williams E, Rosenfeld D, Fischer D G, Fischer J, Kremic T, Agrawal A, Andreae M O, Bierbaum R, Blakeslee R, Boerner A, Bowles N, Christian H, Cox A, Dunion J, Horvath A, Huang X, Khain A, Kinne S, Lemos M C, Penner J E, Pöschl U, Quaas J, Seran E, Stevens B, Walati T, Wagner T (2013). CHASER: an innovative satellite mission concept to measure the effects of aerosols on clouds and climate.Bull Am Meteorol Soc, 94(5): 685–694
CrossRef
Google scholar
|
[65] |
Rosenfeld D, Gutman G (1994). Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data.Atmos Res, 34(1−4): 259–283
CrossRef
Google scholar
|
[66] |
Saponaro G, Kolmonen P, Sogacheva L, Rodriguez E, Virtanen T, de Leeuw G (2017). Estimates of the aerosol indirect effect over the Baltic Sea region derived from 12 years of MODIS observations.Atmos Chem Phys, 17(4): 3133–3143
CrossRef
Google scholar
|
[67] |
Sarkar A, Amal K K, Sarkar T, Panda J, Paul D (2021). Variability in air-pollutants, aerosols, and associated meteorology over peninsular India and neighboring ocean regions during COVID-19 lockdown to unlock phases.Atmosph Pollut Res, 12(12): 101231
CrossRef
Google scholar
|
[68] |
Sarkar A, Panda J, Kant S, Mukherjee A (2022). Influence of smoke aerosols on low-level clouds over the Indian region during winter.Atmosph Res, 278: 106358
CrossRef
Google scholar
|
[69] |
Satheesh S K, Krishna Moorthy K, Suresh Babu S, Vinoj V, Nair V S, Naseema Beegum S, Dutt C B S, Alappattu D P, Kunhikrishnan P K (2009). Vertical structure and horizontal gradients of aerosol extinction coefficients over coastal India inferred from airborne lidar measurements during the Integrated Campaign for Aerosol, Gases and Radiation Budget (ICARB) field campaign.J Geophys Res: Atmosph, 114(D5): D05204
CrossRef
Google scholar
|
[70] |
Sengupta K, Dey S, Sarkar M (2013). Structural evolution of monsoon clouds in the Indian CTCZ.Geophys Res Lett, 40(19): 5295–5299
CrossRef
Google scholar
|
[71] |
Sharif F, Alam K, Afsar S (2015). Spatio-temporal distribution of aerosol and cloud properties over Sindh using MODIS satellite data and a HYSPLIT Model.Aerosol Air Qual Res, 15(2): 657–672
CrossRef
Google scholar
|
[72] |
Small J D, Chuang P Y, Feingold G, Jiang H (2009). Can aerosol decrease cloud lifetime.Geophys Res Lett, 36(16): L16806
CrossRef
Google scholar
|
[73] |
Small J D, Jiang J H, Su H, Zhai C (2011). Relationship between aerosol and cloud fraction over Australia.Geophys Res Lett, 38(23): L23802
CrossRef
Google scholar
|
[74] |
Sogacheva L, Kolmonen P, Virtanen T H, Rodriguez E, Saponaro G, De Leeuw G (2017). Post-processing to remove residual clouds from aerosol optical depth retrieved using the advanced along track scanning radiometer.Atmos Meas Tech, 10(2): 491–505
CrossRef
Google scholar
|
[75] |
Sorooshian A, Feingold G, Lebsock M D, Jiang H, Stephens G L (2009). On the precipitation susceptibility of clouds to aerosol perturbations.Geophys Res Lett, 36(13): L13803
CrossRef
Google scholar
|
[76] |
Sporre M K, Swietlicki E, Glantz P, Kulmala M (2014). A long-term satellite study of aerosol effects on convective clouds in Nordic background air.Atmos Chem Phys, 14(4): 2203–2217
CrossRef
Google scholar
|
[77] |
Stathopoulos S, Georgoulias A K, Kourtidis K (2017). Space-borne observations of aerosol-cloud relations for cloud systems of different heights.Atmos Res, 183: 191–201
CrossRef
Google scholar
|
[78] |
Stevens B, Feingold G (2009). Untangling aerosol effects on clouds and precipitation in a buffered system.Nature, 461(7264): 607–613
CrossRef
Google scholar
|
[79] |
Tang J, Wang P, Mickley L J, Xia X, Liao H, Yue X, Sun L, Xia J (2014). Positive relationship between liquid cloud droplet effective radius and aerosol optical depth over Eastern China from satellite data.Atmos Environ, 84: 244–253
CrossRef
Google scholar
|
[80] |
Thomas A, Sarangi C, Kanawade V P (2019). Recent increase in Winter Hazy Days over central India and the Arabian Sea.Sci Rep, 9(1): 17406
CrossRef
Google scholar
|
[81] |
Toll V, Christensen M, Gassó S, Bellouin N (2017). Volcano and ship tracks indicate excessive aerosol-induced cloud water increases in a climate model.Geophys Res Lett, 44(24): 12492–12500
CrossRef
Google scholar
|
[82] |
Toll V, Christensen M, Quaas J, Bellouin N (2019). Weak average liquid-cloud-water response to anthropogenic aerosols.Nature, 572(7767): 51–55
CrossRef
Google scholar
|
[83] |
Tripathi S N, Dey S, Tare V, Satheesh S K (2005). Aerosol black carbon radiative forcing at an industrial city in northern India.Geophys res lett, 32(8): L08802
CrossRef
Google scholar
|
[84] |
Twomey S (1977). The influence of pollution on the shortwave albedo of clouds.J Atmos Sci, 34(7): 1149–1152
CrossRef
Google scholar
|
[85] |
Wang F, Guo J, Wu Y, Zhang X, Deng M, Li X, Zhang J, Zhao J (2014). Satellite observed aerosol-induced variability in warm cloud properties under different meteorological conditions over eastern China.Atmos Environ, 84: 122–132
CrossRef
Google scholar
|
[86] |
Wang F, Guo J, Zhang J, Huang J, Min M, Chen T, Liu H, Deng M, Li X (2015). Multi-sensor quantification of aerosol-induced variability in warm clouds over eastern China.Atmos Environ, 113: 1–9
CrossRef
Google scholar
|
[87] |
Wilcox E M (2010). Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol.Atmos Chem Phys, 10(23): 11769–11777
CrossRef
Google scholar
|
[88] |
Wilcox E M, Thomas R M, Praveen P S, Pistone K, Bender F A M, Ramanathan V (2016). Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer.Proc Natl Acad Sci USA, 113(42): 11794–11799
CrossRef
Google scholar
|
[89] |
Wright M E, Atkinson D B, Ziemba L, Griffin R, Hiranuma N, Brooks S, Lefer B, Flynn J, Perna R, Rappenglück B, Luke W, Kelley P (2010). Extensive aerosol optical properties and aerosol mass related measurements during TRAMP/TexAQS 2006–Implications for PM compliance and planning.Atmos Environ, 44(33): 4035–4044
CrossRef
Google scholar
|
[90] |
Yuan T, Li Z, Zhang R, Fan J (2008). Increase of cloud droplet size with aerosol optical depth: an observation and modeling study.J Geophys Res, 113(D4): D04201
CrossRef
Google scholar
|
[91] |
Zhang J, Reid J S, Holben B N (2005). An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products.Geophys Res Lett, 32(15): L15803
CrossRef
Google scholar
|
[92] |
Zhao J, Ma X, Quaas J, Jia H (2023). Exploring aerosol-cloud interactions over eastern China and its adjacent ocean using the WRF-SBM-MOSAIC model.EGUsphere, 2023: 1–27
CrossRef
Google scholar
|
/
〈 |
|
〉 |